基于工程图的三维形体重建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于工程图的三维形体重建技术是计算机辅助设计与图形学、人工智能领域的重要研究方法,其主要任务是依据形体在二维视图的几何投影信息和拓扑信息构造对应的三维形体,是一个从低维到高维的变换过程。针对目前已有算法在重建效率和应用范围方面存在的问题,本文对基于工程图重建三维形体的关键技术进行了研究,主要工作包括:
     1.提出了一个基于实际工程图的预处理算法。首先,针对现有算法只能处理标准三视图的不足,提出了一个多视图自动分离算法。接着,依据视图之间的位置关系判别视图的投影方向和所属投影平面,构造复合三视图。最后,将已经确定投影方向和投影平面的视图转换到空间坐标系,以方便后续的重建过程。该算法从实际工程图中提取几何信息构造复合三视图,将同一个投影方向的多个视图归属到一个复合视图,既满足现有三维重建算法的输入条件,又能处理更多更复杂的工程图样,为三维重建技术的实用化提供了一个新的思路。
     2.提出了一个从三视图重建复杂组合体的重建算法。针对具有复杂遮挡关系的组合体三视图轮廓搜索不完备的问题,提出了基于动态子视图划分的投影轮廓搜索算法。在应用传统角度判别法找出三视图中所有基环后,以基环为线索动态划分单向子视图并搜索惯性环,对已找到的环进行二元组匹配。接着,依据二元匹配环组动态划分双向子视图并搜索惯性环;最后,从已找到的所有环中搜索基本形体的投影轮廓,通过拉伸或旋转构建基本形体,对基本形体应用正则布尔运算形成最终三维形体。算法既保证了构成组合体的每个基本形体的投影轮廓环不被遗漏、重建结果正确,又避免了穷举式的轮廓环搜索,提高了三维重建的效率。
     3.提出了一个从三视图构建曲面相贯体的新算法。二次曲面体相交时产生的相贯线一般是高次空间曲线,无法用二维投影精确地表达,通常用拟合的光滑曲线表达,甚至简化为圆弧或直线段,导致相交曲面体的轮廓投影被破坏。而现有构建曲面体的算法都要求曲面体的投影轮廓是完整和精确的,均不适用于曲面相贯体的重建。针对这种情况,本文提出了一种基于四种投影轮廓线索的启发式搜索算法处理曲面相贯体的重建,利用曲面相交时留下的最小迹线在二维视图中恢复曲面体相交之前的正确和完整的投影轮廓,进而重建出完整的曲面体。与以往算法相比,本文提出的曲面相贯体重建算法可以处理视图中出现的简化画法或拟合曲线,解决了二次曲面相交形成的高次空间曲线的投影不精确的问题,扩大了基于CSG表示的重建算法的覆盖域。
Reconstruction of three dimensional solids from three-view engineering drawings is a problem of research interest in fields of computer aided design, computer graphics and artificial intelligence, which main task is to recover a three dimensional shape from its two dimensional geometric projections and topology information. This dissertation focuses on several key technologies of the solid reconstruction from engineering drawing to solve the existing problems in the domain of reconstructed objects and the process efficiency. The main contributions are summarized as follows.
     1. A method is presented to preprocess the initial engineering paper before reconstructing the solid. At First, a method based on bounding boxes of elements is presented to automatically divide multi views in the drawing to solve the problem that only three-view drawings can be dealt with by existing methods. Then, a Composite-Three-View is constructed from the views by their projection orientation. Finally, the views are all translated from the drawing coordinate systems to the three dimensional coordinate systems for the conveninence of following processes. By constructing Composite-Three-View from practical multi-view drawings, the method can group all views in one projection plane into one Composite-View, which acts as an intermedium from practical engineering drawings to standard three-view drawings required by existing algorithms. The presented method can extend the types of engineering drawings dealt with by the reconstruction algorithm to multi-view drawings.
     2. A new method is presented to reconstruct complicated complex solids. An algorithm, based on dynamic division of sub-views, is proposed to find out profile loops from complicated three views of complex with some elementary volumes concealed from others. First of all, fundamental loops are searched out using traditional turn-to-most-left method. Then, inertia loops are searched in unidirectional-sub-views, which are divided from orthographic views using the fundamental loops as hints. Finally, bidirectional-sub-views are divided using the Double-Matching-Loops generated from existing loops, and inertia loops are found out in the bidirectional-sub-views. Using extrusion or rotation, elementary volumes are generated from Triple-Matching-Loops constructed from loops found out previously, and Boolean operations are applied on the elementary volumes to generate the solution solid. Experiments show that the proposed algorithm can find out all profile loops of the elementary volumes of the complex, including the obscured ones, effectively and completely, which ensures the correctness of the solution solid.
     3. Anew approach is presented to reconstruct curved solids composed of elementary volumes intersecting with one another from three-view engineering drawings. Intersection curves arising from two intersecting curved surfaces are mostly higher order spatial curves, which cannot be described exactly by orthographic projections and normally represented as smooth curves passing through several key points or even simplified as arcs or lines. Approximated sketches of higher order intersection curves in two dimensional views will result in the invalidation of existing methods that need the exact projection information as input. Based on some heuristic hints, our method is able to recover the complete and correct half-profiles of the intersecting elementary volumes using the least traces left by them, which ensure the correctness of solution solids constructed finally.
引文
[1]李民,王健.尚书译注——十三经译注.上海:上海古籍出版社,2004.
    [2](宋)李诫,邹其昌.营造法式.北京:人民出版社,2006.
    [3]王兆春.中国古代兵书.北京:科文图书业信息技术有限公司,2008.
    [4](元)王祯,缪启愉,缪桂龙(译注).东鲁王氏农书译注.上海:上海古籍出版社,2008.
    [5](明)宋应星,管小琪(译).天工开物.哈尔滨:哈尔滨出版社,2009.
    [6](明)徐光启,陈焕良,罗文华(校注).农政全书.长沙:岳麓书社,2002.
    [7]Rezende L. Chronology of Science. New York:Infobase Publishing,2006.
    [8]Ivan ES. Sketch pad a man-machine graphical communication system. Proceedings of the SHARE design automation workshop:ACM,1964.
    [9]Hubbard C, Kim YS. Geometric assistance for visual reasoning and construction of solids with curved surfaces from 2D orthographic views. Advances in Engineering Software,2001,32(1):21-35.
    [10]孙家广.计算机图形学.北京:清华大学出版社,1998.
    [11]刘小年.机械制图.北京:机械工业出版社,2005.
    [12]赵学田.机械工人速成看图.北京:科学普及出版社,1981.
    [13]Idesawa M. A system to generate a solid figure from three view. Bulletin of JSME,1973,16(92):216-225.
    [14]Nagendra IV, Gujar UG.3-D objects from 2-D orthographic views-a survey. Computers & Graphics,1988,12(1):111-114.
    [15]王东泉.由二维正投影重建三维实体算法的评述.计算机应用与软件,1995,12(1):55-60.
    [16]公茂凯.由三视图构造三维实体方法的综述.计算机研究与发展,1992,29(8):47-55.
    [17]龚洁晖,张慧.基于工程图的三维重建研究.软件学报,2008,19(7):1796-1805.
    [18]Markowsky G, Wesley MA. Fleshing out wire frames. IBM Journal of Research and Development 1980,24(5):582-597.
    [19]Wesley MA, Markowsky G. Fleshing out projections. IBM Journal of Research and Development 1981,25(6):934-953.
    [20]Preiss K. Algorithms for automatic conversion of a 3-view drawing of a plane-faced part to the 3-D representation. Computers in Industry,1981,2(2):133-139.
    [21]Preiss K. Constructing the solid representation from engineering projections. Computers & Graphics,1984,8(4):381-389.
    [22]Sakurai H, Gossard DC. Solid model input through orthographic views. ACM/SIGGRAPH Computer Graphics,1983,17(3):243-252.
    [23]Gu KN, Tang ZS, Sun JG. Reconstruction of 3D objects from orthographic projections. Computer Graphics Forum,1986,5(4):317-323.
    [24]Gujar UG, Nagendra Ⅳ. Construction of 3D solid objects from orthographic views. Computers & Graphics,1989,13(4):505-521.
    [25]Yan Q-W, Chen CLP, Tang Z-S. Efficient algorithm for the reconstruction of 3D objects from orthographic projections. Computer-Aided Design,1994,26(9):699-717.
    [26]You CF, Yang SS. Reconstruction of curvilinear manifold objects from orthographic views. Computers & Graphics,1996,20(2):275-293.
    [27]Lequette R. Automatic construction of curvilinear solids from wireframe views. Computer-Aided Design,1988,20(4):171-180.
    [28]Dutta D, Srinivas L. Reconstruction of curved solids from two polygonal orthographic views. Computer-Aided Design,1992,24(3):149-159.
    [29]Masuda H, Numao N. A cell-based approach for generating solid objects from orthographic projections. Computer-Aided Design,1997,29(3):177-187.
    [30]Shin BS, Shin YG. Fast 3D solid model reconstruction from orthographic views. Computer-Aided Design,1998,30(1):63-76.
    [31]Kuo MH. Reconstruction of quadric surface solids from three-view engineering drawings. Computer-Aided Design,1998,30(7):517-527.
    [32]Kuo MH. Automatic extraction of quadric surfaces from wire-frame models. Computers & Graphics,2001,25(1):109-119.
    [33]Liu SX, Hu SM, Chen YJ, et al. Reconstruction of curved solids from engineering drawings. Computer-Aided Design,2001,33(14):1059-1072.
    [34]Liu SX, Hu SM, Sun JG. Two accelerating techniques for 3D reconstruction. Journal of Computer Science and Technology,2002,17(3):362-368.
    [35]Geng WD, Wang JB, Zhang YY. Embedding visual cognition in 3D reconstruction from multi-view engineering drawings. Computer-Aided Design,2002,34(4):321-336.
    [36]Wang Z, Latif M. Reconstruction of a 3D solid model from orthographic projections. Proceedings of IEEE International Conference on Geometric Modeling and Graphics,2003.75-82.
    [37]Wang Z, Latif M. Reconstruction of 3D solid models using fuzzy logic recognition. Proceedings of the 4th WSEAS International Conference on Signal Processing, Computational Geometry & Artificial Vision. Tenerife, Canary Islands, Spain:World Scientific and Engineering Academy and Society,2004.
    [38]张爱军,诸昌钤,薛勇.基于三视图的曲面体重建技术.计算机研究与发展,2002,39(11):1423-1428.
    [39]张爱军,薛勇.基于规则的曲面体三维重建.计算机集成制造系统,2004,10(6):714-720.
    [40]张爱军,薛勇.基于工程图的二次曲面体重建.计算机研究与发展,2004,41(7):1207-1212.
    [41]Gong JH, Zhang GF, Zhang H, et al. Reconstruction of 3D curvilinear wire-frame from three orthographic views. Computers & Graphics,2006,30(2):213-224.
    [42]Gong JH, Zhang H, Zhang GF, et al. Solid reconstruction using recognition of quadric surfaces from orthographic views. Computer-Aided Design,2006,38(8):821-835.
    [43]张怡文,龚洁晖,张慧.由三视图重建包含圆环面的形体.计算机辅助设计与图形学学报,2008,20(2):186-192.
    [44]文雅玫,龚洁晖,张慧.基于投影特征识别的斜截切二次曲面重建算法.计算机辅助设计与图形学学报,2009,21(6):789-795.
    [45]Lafue G. Recognition of Three Dimensional Objects from Orthographic Views. ACM/SIGGRAPH Computer Graphics,1976,10(2):103-108.
    [46]Haralick RM, Queeney D. Understanding engineering drawings. Computer Graphics and Image Processing,1982,20(3):244-258.
    [47]Miller JR. Geometric approaches to nonplanar quadric surface intersection curves. ACM Transactions on Graphics,1987,6 (4):274-307.
    [48]Bagali S, Waggenspack WN. A shortest path approach to wire-frame to solid model conversion. ACM symposium on Solid Modeling and Applications,1995,339-350.
    [49]Lysak DB, Decaux PM, Kastari R. View labeling for automated interpretation of engineering drawings. Pattern Recognition,1995,28(3):393-407.
    [50]朱仁芝,刘磊,陶涛,等.任意空间位置回转二次曲面体的三维重建.工程图学学报,1998,1):55-60.
    [51]朱仁芝,卢益玲,俞巧云,等.自底向上的三维重建算法及其加速措施.计算机工程与应用,2001,15):126-128.
    [52]吴占国,李启炎.基于表面提取的三维重建方法.计算机应用与软件,2001,18(9):40-42.
    [53]陶涛,朱仁芝,刘磊,等.任意摆放的二次曲面体的三维重建.小型微型计算机系统,1999,20(2):121-125.
    [54]江涛,陆国栋,雷建兰,等.基于面域理解的多面体三维重建.计算机辅助设计与图形学学报,2000,12(7):522-527.
    [55]Aldefeld B. On automatic recognition of 3D structures from 2D representations. Computer-Aided Design,1983,15(2):59-64.
    [56]Aldefed B, Richter H. Semiautomatic three-dimensional interpretation of line drawing. Computers & Graphics,1984,8(4):371-380.
    [57]Nagasamy V, Langrana NA. Reconstruction of three-dimensional objects using a knowledge-based environment. Engineering with Computers,1991,7(1):23-35.
    [58]Bin H. Inputting constructive solid geometry representations directly from 2D orthographic engineering drawings. Computer-Aided Design,1986,18(3):147-155.
    [59]Chen Z, Perng DB. Automatic reconstruction of 3D solid objects from 2D orthographic views. Pattern Recognition,1987,21(5):439-449.
    [60]Meeran S, Pratt MJ. Automated feature recognition from 2D drawings. Computer-Aided Design,1993,25(1):7-17.
    [61]Cicek A, Gulesin M. Reconstruction of 3D model from 2D orthographic views using solid extrusion and revolution. Journal of Materials Processing Technology,2004,152(3):291-298.
    [62]Shum SSP, Lau WS, Yuen MMF, et al. Solid reconstruction from orthographic opaque views using incremental extrusion. Computers & Graphics,1997,21 (6):787-800.
    [63]Shum SSP, Lau WS, Yuen MMF, et al. Solid reconstruction from orthographic views using 2-stage extrusion. Computer-Aided Design,2001,33(1):99-102.
    [64]Soni S, Gurumoorthy B. Handling solids of revolution in volume based construction of solid models from orthographic views. Journal of Computing and Information Science in Engineering,2003,3(3):250-259.
    [65]Lee H, Han S. Reconstruction of 3D interacting solids of revolution from 2D orthographic views. Computer-Aided Design,2005,37(13):1388-1398.
    [66]李晋芳,施法中.商品化CAD软件中基于二维视图的三维重建模块的设计与实现.计算机辅助设计与图形学学报,2005,17(4):795-799.
    [67]李晋芳,何汉武,孙健.从二维视图到三维几何模型转换的研究与实现.机械与电子,2006,1):16-18.
    [68]Yoshiura H, Fujimura K, Kumii L. Top-down construction of 3-D mechanical object shapes from engineering drawing. IEEE Computer Magazine,1984,17(12):32-40.
    [69]Kim CH, Inoue M, Nichihara S. Heuristic understanding of three orthographic views. Journal of Information Processing,1992,15(4):510-518.
    [70]Kitajima K, Yoshida M, Tasaka M. Reconstruction of CSG solid from a set of orthographic three views. Proceedings of IEEE International Conference on Systems Engineering,1992.220-224.
    [71]高玮,彭群生.基于二维视图特征的三维重建.计算机学报,1999,22(5):481-485.
    [72]岳小莉,陆国栋,叶金荣,等.面向图样理解的工程语义获取技术研究.中国图象图形学报,2002,7(7):672-678.
    [73]岳小莉,陆国栋,谭建荣,等.基于形体组合关系的基元体识别技术研究.计算机学报,2002,25(6):618-703.
    [74]Jakubowski R. Extraction of shape features for syntactic recognition of mechanical parts. IEEE Transactions on Systems, Man and Cybernetics,1985,15(5):643-651.
    [75]Mortensen KS, Belnap BK. A rule-based approach employing feature recognition for engineering graphics characterisation. Computer-Aided Engineering Journal,1989,221-228.
    [76]Liu CH, Chen Z. A feature-based scheme for reconstructing 3D parts from 2D orthographic projections. Proceedings of IEEE International Workshop on Emerging Technologies and Factory Automation:IEEE, 1992.688-693.
    [77]Tyan LW, Devarajan V. Automatic identification of non-intersecting machining features from 2D CAD input. Computer-Aided Design,1998,30(5):357-366.
    [78]Ganesan R, Devarajan V. Intersecting features extraction from 2D orthographic projections. Computer-Aided Design,1998,30(11):863-873.
    [79]Meeran S, Taib JM. A generic approach to recognising isolated, nested and interacting features from 2D drawings. Computer-Aided Design,1999,31 (14):891-910.
    [80]Meeran S, Taib JM, Afzal MT. Recognizing features from engineering drawings without using hidden lines:a framework to link feature recognition and inspection systems. International Journal of Production Research,2003,41(3):465-495.
    [81]Dori D, Tombre K. From Engineering drawings to 3D CAD models:are we ready now? Computer-Aided Design,1995,27(4):243-254.
    [82]Dimri J, Gurumoorthy B. Handling sectional views in volume-based approach to automatically construct 3D solid from 2D views. Computer-Aided Design,2005,37(5):484-495.
    [83]陆国栋,阮建中,江涛,等.基于工程图样的三维重建技术研究与实现.计算机辅助设计与图形学学报,1999,11(6):516-520.
    [84]陆国栋,彭群生.基于工程图样语义的基元关系识别研究.计算机辅助设计与图形学学报,2000,12(9):700-704.
    [85]陆国栋,晏群,彭群生.面向图形理解的工程语义研究.中国图象图形学报(A版),2000,5(10):861-867.
    [86]陆国栋,彭群生.三维重建新方法及新技术研究.高技术通讯,2001,3):58-61.
    [87]陆国栋,叶金荣,彭群生.基于分治思想的工程图样智能理解方法研究.计算机集成制造系统,2001,7(5):63-67.
    [88]陆国栋,雷建兰,彭群生.面向工程图样智能理解的关系模型.计算机集成制造系统,2001,7(9):64-68.
    [89]陆国栋,段鹏,彭群生.基于基元组合关系的形体重建技术研究.工程图学学报,2007,1):48-54.
    [90]Gong J-H, Zhang H, Jiang B, et al. Identification of sections from engineering drawings based on evidence theory. Computer-Aided Design,2010,42(2):139-150.
    [91]单婷,李剑中,冯刚.三维重建过程中的视图分离及坐标转换.仪器仪表学报,2006,27(6):762-763.
    [92]王耘,彭群生.一种多视图的视图分离和视图关系确立方法.中国机械工程,2001,12(6):687-693.
    [93]石岚峰,邹北骥.基于工程图三维重建中的预处理与信息提取技术研究.计算机应用研究,2007,24(4):161-165.
    [94]田媚,罗四维,黄雅平,等.基于局部复杂度和初级视觉特征的自底向上注意信息提取算法.计算机研究与发展,2008,45(10):1739-1746.
    [95]马军,岩间一雄,马绍汉.寻找无向图中回路的并行算法.软件学报,1997,8(6):475-480.
    [96]Miller JR, Goldman RN. Geometric algorithms for detecting and calculating all conic sections in the intersection of any two natural quadric surface. Graphical Models and Image Processing,1995,57(1):55-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700