基于图形理解的建筑工程量信息获取原理、方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机辅助建筑工程量信息获取技术经过近二十年的研究,形成了基于数据交换文件、图形输入等方法,并在实际中得到了较广泛的应用,但这些方法离根本解决工程量信息自动获取的目标还相当遥远。咎其根本原因在于现有的工程量信息获取方法和计算机辅助建筑设计没有很好地集成和形成一体化。本文在分析该领域的研究现状和存在问题的基础上,提出了一种新的基于图形理解的工程量信息获取方法,不仅对建筑图样的计算机理解具有一定的理论价值,而且将对工程造价管理工作的改革和发展、建筑业计算机应用的深入起到推动作用,并具有广阔的应用前景。
     基于图形理解的工程量信息获取方法,实质是在对施工图进行图形理解的基础上,识别出建筑物的各种功能部件,广义上是建筑图样的计算机理解和三维重建方法研究。论文第二章面向图形理解对施工图语义从表达方式、投影关系、尺寸约束等不同层次进行了分析,归纳出建筑图样和机械图样视图表达方式的主要区别,针对现有的三维重建策略在建筑图样图形理解中的局限性,提出了针对建筑图样的基于知识的建筑图理解策略。
     建筑图样和机械图样的一个显著区别是:反映建筑物功能部件形状信息的平、立、剖面图时常不在同一张图纸中。论文第三章从功能部件的视图表达方式入手,分析了面向功能部件图形信息完整表达的不同种类施工图组合形式,归纳出了功能部件的视图关联特征,提出了基于视图关联的工程量信息获取方法。以土石方工程量为例,给出了功能部件对应图形信息的理解策略、具体算法和应用实例。利用基于中心线最大连通域搜索技术,判别墙基础的类型,提出了建立视图尺寸关系树以获取施工图中图形实体尺寸的方法。
     建筑图样和机械图样的另一个显著区别是:建筑图样的理解要从建筑物视图中识别出某类特定的功能部件,为了提高图形理解的有效性,减小图形信息的搜索空间,论文第四章提出了工程特征类的概念和基于工程特征类的工程量信息获取方法。工程特征类用以实现对施工图的图形信息进行分离并以面向对象的方式进行表达;通过对工程特征类对象的图形实体进行分析,提出了特征实体利关联实体的概念,建立了工程特征类对象图形实体间的内在关联,为工程特征类对象的实例化提供了切入点。
     建筑图样形体形状的表达方式丰富、多样,建筑图样的很多标注中蕴涵形体的形状信息,并且这些标注具有明显的视图特点。论文第五章通过分析施工图中的标注和建筑物功能部件的关联特征,提出了基于标注实体功能语义的工程量信息获取方法。结合钢筋量工程量统计,分析了这些标注的特点、识别方法和所蕴涵的工程量信息的获取方法,并采用模糊逻辑对建筑结构图中钢筋线跟踪和钢筋形状的识别进行了研究。
     基于上述的研究工作,第六章介绍了所开发的基于图形理解的“建筑CAD与(概)
    
    浙江大学博士学位论文 基于图形理解的建筑工程量信息获取原理、方法及其应用研究
    一
    预算一体化软件系统”的组成、结构和各模块的功能,以及系统运行的一些实例。验证了
    论文中理论和技术方法的可行性、有效性和先进性。
     最后,在第七章总结了本文在建筑图样计算机理解、基于施工图理解的工程量信息获
    取技术研究和应用等方面的研究成果,并展望了未来的研究方向。
     本文研究得到了杭州市重大工业攻关项目(项目编号:9引12809-1)的资助。
Computer aided engineering quantity information extracting is still far from the aim after almost twenty years' research, though some extracting methods have been developed and applied in practice, such as "data exchange file" and "drawings input", etc. the key problem is that the existing methods and computer aided architecture design(CAAD) are not well integrated. On the basis of the analysis of its status quo and the problems remained, a new method is put forward in this dissertation. The research has important value of architectural drawing understanding, and it will also promote the innovation and development of project cost management , computer applications in architecture field in depth, and moreover, it will has huge foreground in practice.
    To realize engineering quantity information extracting based on shop drawings, recognizing diversified functional components in shop drawings based on drawing understanding is essential, which is in fact a method of "engineering drawing computer understanding" or "The 3D Reconstruction" in general. In chapter 2, we analyze shop drawings hierarchically such as projection relation, expression mode and dimension restriction, etc; conclude the main difference between mechanical and architectural drawings, based on it, strategies of knowledge-based engineering drawing computer understanding aim at shop drawings are introduced.
    One distinct difference between mechanical and architectural drawings is, views, which express one type of functional components, are not in one paper, in general, when all of the views is in the same paper, the methods aim at mechanical drawings such as engineering drawing computer understanding or "The 3D Reconstruction" can be used in architectural drawings. In chapter 3, a method to extract engineering quantity information based on relating views is introduced, understanding strategies of drawing information related to engineering quantity, detailed algorithms and its applied example are also introduced at the same time.
    Another distinct difference between mechanical and architectural drawings is, the aim of architectural drawing understanding is to recognize one type of the given components, for improving the validity of drawing understanding, reducing the search scope, in chapter 4, the concept of "Engineering Feature Class" is put forward, which is hoped for separating drawings information related to engineering quantity, expressing the drawing information in object oriented mode. Through the analysis of entities in Engineering Feature Class object, notions of Feature Entity and Relevancy Entity are introduced, Relevancy Entity opens out the relations between entities of Engineering Feature Class object; Feature Entity supplies the way in point of
    
    
    
    Engineering Feature Class object instantiation.
    Considering the shape expression modes are more diversiform, dispersed, and complex in shop drawing, many notations in shop drawing contain shape information, also with distinct characteristics, a new method of extracting engineering quality based on notation entities functional semantics is put forward in chapter 5. Characteristics, recognition and engineering extracting methods of the notations are analyzed with an example of steel bars quality, tracking and shape recognition methods of steel bars lines are introduced at the same time.
    Based on the research work above all, a "CAAD and budgetary-budget integration software system" based on drawings understanding is introduced in chapter 6, including its buildup, structure and main functions, also with some examples, witch testifies the feasibility, validity and advancement of the technology and methods presented in the dissertation.
    Finally, the development of architectural drawings computer understanding, technology research on CAAD and budgetary-budget integration based on drawing understanding is summarized and the future research work is put forward.
引文
[1] Idesawa M. A System to generate a solid figure from a three view. Bull, JSME Feb. 1973
    [2] Markowsky G and Welsley M. Fleshing out wire Frames. IBM J. RES. Develop. Vol 24. No.5(1980)
    [3] Markowsky G and Welsley M. Fleshing out projections. IBM J. RES. Develop. Vol 25. No.6(1981)
    [4] Sakura H and Gossard D C. Solid model input through orthographic views. Computer Graphics, 1983 No.3
    [5] Qing-wen Yang, C L Philip Chen and Zesheng Tang. Efficient algorithm for the reconstruction of 3D objects from orthographic projections. CAD Vol 26 No.9, 1994
    [6] Lee-Wen Tyan and Venkat Devarajan. Automatic identification of non-intersecting machining features from 2D CAD input. CAD v 30 n 5, 1998
    [7] Aldefeld B. On automatic recognition of 3D structures from 2D representations. CAD 1983 15 No.2
    [8] Dori D. Dimensioning analysis: toward automatic understanding of engineering drawing. Commun. ACM, v35,92-103, 1992
    [9] G C Vosniakos. Knowledge-based interpretation of CAD-drawing annotation for mechanical-engineering components. CAD v 24 n 10,1992
    [10] Dori, Dov; Weiss, Miri. A Scheme for 3D object reconstruction from dimentioned orthographic views. Engineering Applications of Artificial Intelligence, Vol 9 No.1, 1996
    [11] S Meeran, M J Pratt. Automated feature recognition from 2D drawings. CAD v25 n1 Jan 1993
    [12] You, Chun-Fong; Yang, Shih-Shing. Reconstruction of curvilinear manifold objects fron orthographic views. Computer & Graphics (Pergamon) v20 n2 Mar-Apr 1996
    [13] Liu, Chia-Hwa; Perng, Der-Baau; Chen, Zen. Automatic form feature recognition and 3D part reconstrution from 2D CAD data. Computers & Industrial Engineering 26 4 Oct 1994
    [14] M.T.Wang. An Object-Oriented feature-based CAD/CAPP/CAM integration framework advances in design automation. ASME, 1991(1) : 109-117
    
    
    [15] Reiner Anderl und Hans-J o rg Speck. Produktdaten-Management mit STEP. Datenverarbeitung im Betrieb, 1997, 130(1-2) : 46-49 Reiner Anderl und Hans-Jo rg Speck.. Produktdaten-Management mit STEP. Datenverarbeitung im Betrieb, 1997, 130(1-2) : 46-49
    [16] Y.Garden and C.Minich. Feature-based models for CAD/CAM and their limits. Computers in Industry, 1993, 23(1) : 3-13
    [17] G.Doumeingts, B.Vallespir and D.Chen. Methodologies for designing CIM systems: A survey. Computer in Industry. 1995(25) : 263-280
    [18] H.Mamoru and K.Fumihiko. A model-based approach to CAD/CAM integration. Computers In Industry, 1992, 18(1) : 35-42
    [19] H.P.Wiendahl and P.Scholtissek. Management and control of complexity in manufacturing. Annals of the CIRP, 1994, 43(2) : 533-540
    [20] ISO 10303-41 Industrial Automation Systems and Integrated-Product Data Representation and Exchange-Part 41: Integrated Generic Resources: Fundamentals of Product Description and Support.
    [21] J.M.Usher. A STEP-based object-oriented product model for process planning. Computer ind.Engng, 1996,31(1-2) : 185-188
    [22] A.J.C.Trappey, T.H.Liu and C.T.Hwang. Using EXPRESS data modeling technique for PCB assembly analysis. Computer in Industry, 1997(34) : 111-123
    [23] G.Messian and G.Tricomi. Software standardization integrating industrial automation systems. Computer in Industry, 1994(25) : 113-124
    [24] M.Ashworth, M.S.Bloor, A.Mckay and J.Owen. Adopting STEP for in-service configuration control. Computer in Industry, 1996(31) : 235-253
    [25] Lin V C, Gossard D C, light R A. Variational geometry in computer-Aided Design, 1982, 14(3) : 171-179
    [26] Aldefeld B. Variation of geometries based on a geometric reasoning method. Computer-Aided Design, 1988,20(3) : 117-126
    [27] Solano L, Brunet P. Constructive constraint-based model for parametric CAD system. Computer-Aided Design, 1994, 26(8) : 612-614
    [28] Rumbaugh J et al. Object-Oriented Modeling and Design. General Electric Reasearch and DevelopmentCenter, New York: Schenectady, 1991
    [29] Fayad M E, Schmidt D C. Object-Oriented Application frameworks. Communications of the
    
    ACM, 1997, 40(5) : 59-65
    [30] Chang Ping-Lai, Rangachar K. the detection of dimention sets in engineering drawings. IEEE Transaction on Pattern analysis and Machine Intelligence, 1994, 18(8) : 898-1041
    [31] Haralick R M, Queeney D. Understanding engineering drawings. Computer Vision Graphics ang Image Processing, 1982(20) :244-258
    [32] S. Okazaki, Y. Tsuji. Knowledge-based approach adaptive recognition of drawings. Proc. Of 9th ICPh, 1988,333-342
    [33] Dori D. A. Syntatic/Geometric Approach to Recognition of Dimensions in Engineering Machine Drawings. CVGIP, 1989(47) :211-291
    [34] Fenves S J, et al. Integrated software environment for building design and construction. CAD, 1990, 22(1) : 78-89
    [35] Papadias D, Theodoridis Y. Spatial Relations, Minimun Bounding Rectangles, and Spatial Data Structrue. International Journal of Geographical Information Systems, 1997, 11(2) : 111-138
    [36] Johnson A L and Thornton A C. Towards Real CAD. Design Studies, No.4, Oct, 1991:232-236
    [37] Johnson A L. A Development Path for CAD. Fundamentals of Computer Graphics(Proceedings of Pacific Graphics'94) . World Scientific, 1994: 269-277
    [38] Lee J Y and Kim K. Geometric Reasoning for Knowledge-based Parametric Design Using Graph Representation. Computer-Aided Design, 1996, 28(10) : 831-841
    [39] Screenivasa R G and Ram D S. From symbol to Form: a framework for Conceptual design. Computer-Aided Design, 1996, 28(11) :853-870
    [40] Wynne H, Lim A and Lee C S G. Conceptual level design for assembly analysis using state transitional approach. Proc. Of IEEE international Conference of Robotics and automation. IEEE Computer society, Piscataway, NJ, 1996: 3355-3361
    [41] Yoshikawa H. General design theory as a formal theory of design. In: Yoshikawa H and Gossard D eds. Intelligent CAD I :Proc.of the IFIP TC/WG 5. 2 Workshop on Intelligent CAD, Boston, MA, 1987. North-Holland, 1989:51-61
    [42] Yoshikawa H and Holden T(eds). Intelligent CAD II: Proc. of the IFIP TC/WG 5. 2 Workshop on Intelligent CAD, 1988. North-Holland, 1990
    [43] Dov Dori, Amir Pnueli. The Grammar of Dimension in Machine Drawing. Computer
    
    Vision,Graphics and Image Processing 42, 1988
    [44] Dov Dori. Intelligent Automatic Dimensioning of CAD Engineering Machine Drawings. International journal robotics and automation, 1990, 5(3)
    [45] Suzanne Collin, Dominique Colnet. Syntactic Analysis of Technical Drawing Dimensions. International Journal of Pattern Recognition and Artificial Intelligence, 1994, 8(5)
    [46] Suznki H, Ando H, Kimura F. Geometry constraints and reasoning for geometrical CAD sysytem. Computer & Graphics, 1990, 14(2)
    [47] Andreason M M. Modelling-the Language of the Designer. Journal of Engineering Design, 1994, 5(2) : 103-115
    [48] Ehrlenspiel K. Theory of Technical Systems. Journal of Engineering Design, 1994, 5(2) : 117-128
    [49] Hubka V, Andreason M M and Eder E. Practical Studies in systematic design. London:Butternworths, 1988
    [50] Malmavst J. Improved Funtion Means Trees by Inclusion of Design Histroy Information. Journal of Engineering Design, 1997, 8(2) :107-116
    [51] Pahl G and Beitz W. Engineering Design: A systematic approach. Berlin: Springer Verlag, 1984
    [52] Tolman F. Integration core model for product modelling (Vesion 1. 0) . ICM Project CAM-I Product Modelling Program, TNO, Apr, 1991
    [53] Coyne R, Rosenman M et al. Knowledge-based design system. Addison-Wesley Publishing Company, Inc. 1990
    [54] Wei S. Design and Manufacturing in the 21st Century. Traveling Lectures on International Industrial Design, Printed in Drexel University, 1996
    [55] Richens P N. OXSYS-BDS Building Design Systems. Bulletin of Computer Aided Architechtural Design, 1977(25) : 20-44
    [56] Eastman C M, Henrion M. GLIDE: a system for implementing design databases. ParC 79 Prpceedings, Ed. Anonymous(AMK, Berlin; Online conferences Ltd., Uxbridge, UK) 551-564
    [57] Bijl A. Design with words and pictures in a logic modeling environment. Compuer-Aided architectural Design Future, Ed. Pipes A(Butterworth, London), 1986, 128-145
    [58] Balachandran M, Gero J S. Role of prototypes in integrated expert systems and CAD
    
    systems. Applications of Artificial Intelligence in Engineering V, Vol.1: Design, Ed. Gero J S(Computational Mechanics, Southampton; Springer, Berlin), 195-211
    [59] Balachandran M, Roseman M A, Gero J S. A knowledge-based approach to the automatic verification of designs from CAD databases. Artificial Intelligence in Design'91, Ed. Gero J S,(Butterworth-Heinemann, Oxford)pp757-781
    [60] Cherneff J, Logcher R, Connor J, Patrikalakis N. Knowledge-based interpretation of architectural drawings. Research in Engineering Design 3, 1992, 195-210
    [61] de Vries M, Wagter H. The first CAAD package(sketch based cad), in CAAD futures '91. Computer Adied Architectural Design Futures. Education, Research, Apllications, Ed. Schimitt G N (Vieweg, Braunschweig/Wiesbaden) pp497-510
    [62] Durgun F B, et al. Architectural sketch recognition. Architectural Science Review 33, 2-16
    [63] Koutmanis A, Mitossi V. Architectural computer vision: Automated recognition of architectural drawings. Design and Decision Support Systems in Architecture, Ed. Timmermans H, proc. of a conference held in Mierlo, the Netherlands, July 1992 by the Faculty of Architexture, Building, and Planning, Eindhoven University of Technology(Kluwer Academic Publishers, Dordrecht)pp 17-25
    [64] Koutamanis A, Mitossi V. Computer vision in architectural design. Design Studies, 1993(14) : 40-57
    [65] Koutmanis A, Mitossi V. On the representation of dynamic aspects of architectural design in machine environment, in Advanced Technologies. Architecture. Planning. Civil Engineering, Eds. Behesti M R and Zreik K proc. of the fourth EuropIA International Conference on the application of Artificial Intelligence, Robotics and Image Processing to Architecture, Building Engineering, Urban Design Urban Planning(Elsevier, Amsterdam) pp65-76
    [66] Myers L, Pohl J, Chapman A. The ICADS expert design advisor: concepts and directions. Artificial Intelligence in Design '91, Ed. Gero J S, (Butterworth-Heinemann, Oxford) pp897-920
    [67] Taschini G, Puliti P. Automated recognition of graphic documentation in building design. proc. of the 1989 ECAADE conference, Eds. Agger K, Lentz U(copy available from School of Architecture in Aarhus) pp 7. 6. 1-7. 6. 7
    [68] Dosch P, Masini G. Reconstruction of the 3D Structure of a Building from the 2D Drawings of its Floors. LORIA-CNRS-INRIA-UHP, France
    
    
    [69]Contruction IT-STEP standard. Robert Amor's Publications in 1998
    [70]Concepts of space in computer based product modelling and design#1. Robert Amor's Publications in 1998
    [71]Newnham, L. and Amor, R. (1998) Translation of Manufacturer's Product Data for the ARROW Product Search System, the Second European Conference on Product and Process Modelling, London, UK, 19-21 October, pp. 405~412
    [72]贺建平,丁秋林,孙正兴.基于特征的产品信息建模技术研究.计算机辅助设计与制造,1996(3):32~34
    [73]聂明,丁秋林,阮雪榆.产品集成建模及其关键技术.计算机辅助设计与制造,1997(2):55~59
    [74]王庆文.支持CAD/CAPP开放性信息共享的产品信息建模技术.计算机辅助设计与制造,1996(7):37~40
    [75]张申生,侯小林等.基于知识的开放型产品信息建模方法研究.第三届中国计算机集成制造系统(CIMS)学术会议论文集,武汉,1994(5):1~11
    [76]罗燕.基于STEP的产品数据模型研究.机械科学与技术,1997,16(2):359~362
    [77]袁清珂,刘宁,曹岩,赵汝嘉.产品数据表达与交换标准STEP的研究与应用.机械科学与技术,1997,16(6):1097~1102
    [78]陈云,方明伦,严镌琪.面向对象与STEP技术相结合的信息建模方法研究.计算机工程与应用,1996(5):41~43
    [79]陈云,严镌琪,方明伦.基于面向对象与STEP技术的制造环境研究.机械工程学报,1996,32(4):5~9
    [80]段广洪,吴瑞荣,王先逵,张玉云.基于STEP的面向对象工艺计划信息模型.计算机集成制造系统,1997,4:20~23
    [81]黄金国,张新访等.基于STEP的CAD/CAM集成.中国机械工程,1995,6(3):17~19
    [82]郎波.STEP技术与CAD/CAM集成制造系统中的PDM.第五届中国计算机集成制造系统(CIMS)学术会议论文集,成都,1998,2(4):60~63
    [83]孟明辰,李志超,李兵,扬岭.基于STEP机械零件的CAD/CAPP/CAM集成工具.清华大学学报,1997,37(11):39~41
    [84]寿宇澄,刘建,董金祥.STEP标准数据存取界面SDAI及在OSCAR中的实现.计算机辅助设计与图形学学报,1997,9(2):143~149
    [85]孙家广,扬长贵,周济,顾元宪.基于STEP集成化CAD/CAM支撑软件系统.计算机学报,1996,19(8):561~567
    
    
    [86]田增平,周傲英,施伯乐.一个基于STEP的产品数据库系统的设计与实现.第五届中国计算机集成制造系统(CIMS)学术会议论文集,成都,1998,2(7):43~48
    [87]韦银星,吴锡英.STEP后处理器的设计与实现.计算机集成制造系统,1997,2:21~24
    [88]扬军,邓家提,周桂琴.基于STEP的产品数据交换和管理.第五届中国计算机集成制造系统(CIMS)学术会议论文集,成都,1998,2(4):152~155
    [89]易红,韦银星等.基于STEP的装配CAD/CAPP集成研究.第五届中国计算机集成制造系统(CIMS)学术会议论文集,成都,1998,2(4):215~220
    [90]袁清珂,刘宁,曹岩,赵汝嘉.产品数据表达与交换标准STEP的研究与应用.机械科学与技术,1997,16(6):1097~1102
    [91]赵永顺,邓家提.基于STEP标准CIMS环境下集成技术研究.第五届中国计算机集成制造系统(CIMS)学术会议论文集,成都,1998,2(4):164~179
    [92]郭昊.用面向对象方法实现建筑设计CAD的智能辅助.工程设计CAD与智能建筑,1999(3):24~27
    [93]于国清,方建睦,郭俊.面向方案CAD软件初探.工程设计CAD与智能建筑,1999(3):16~18
    [94]汪逸.工程设计CAD应用面临新技术的选择.工程设计CAD与智能建筑,1999(1):44~45
    [95]国外工程设计CAD技术的进展与我国的下一步发展对策.工程设计CAD及自动化,1997(1):50~56
    [96]戎左俊,戎剀伦.论工程设计软件的最佳架构模式.工程设计CAD及自动化,1997(6):15~17
    [97]赵勇.工程造价管理及其电脑化发展.工程设计CAD及自动化,1996(1):13~17
    [98]唐锦春,娄常青.展望21世纪土木工程设计中计算机技术的应用.工程设计CAD及自动化,1998(4):1~5
    [99]魏文郎.建筑工程项目模型.工程设计CAD与智能建筑,2000(5):16~19
    [100]朱军生,顾建钧,朱九英.MCAD API开发关键技术.工程设计CAD与智能建筑,2000(4):34~34
    [101]胡黎明.信息集成在智能化建筑设计中的应用.工程设计CAD与智能建筑,2000(5):33~36
    [102]余庄.建筑智能化工程CIMS中的系统分析.工程设计CAD与智能建筑,2000(5):6~10
    
    
    [103]陈月林等.机械图尺寸标注的智能识别.中国机械工程,1994,5(6):46~48
    [104]中国建筑科学研究院PKPM CAD工程部.PKPM自主图形平台CFG的发展.工程设计CAD与智能建筑,2000(1):16~19
    [105]谭建荣,董玉德.基于图形理解的尺寸环提取算法及其实现.计算机研究与发展,1999,36(2):192~196
    [106]谢飞,赵致格等.建筑安装工程施工图设计与管理系统的实现.计算机辅助设计与图形学学报,1999,11(1):24~27
    [107]唐连章,樊志平.用面向对象的方法设计建筑施工图工程量自动计算软件.工程设计CAD与智能建筑,2000(2):24~26
    [108]李士才,黄永红等.基于AutoCAD对象技术的钢结构CAD软件模型的研究.计算机辅助设计与图形学学报,1999,11(3):241~217
    [109]林毅,严隽琪等.ARX在建筑装潢CAD中的应用.计算机辅助设计与图形学学报,1999,11(5):426~429
    [110]王欣,魏生民.基于ActiveX技术的图纸标题栏信息自动提取.计算机研究与发展,2000,37(4):507~512
    [111]邹荣金,蔡士杰等.工程图中线状图形的自动分类与识别算法.计算机辅助设计与图形学学报,1999,11(1):15~19
    [112]孙家广.软件发展第四次浪潮下的图形开发环境.工程设计CAD与智能建筑,2000(1):9~13
    [113]唐荣锡.机械产品建模技术的应用和发展.航空制造工程,1993,12:3~5
    [114]余俊.设计工程技术发展现状.中国机械工程,1997,8(4):100~103
    [115]王光远.工程设计理论展望.工程设计CAD及自动化,1998(5):1~7
    [116]吴炜煜.关于新一代CAAD/CAE系统研制的探讨.工程设计CAD及自动化,1998(1):26~28
    [117]胡友兰,常明等.工程图纸智能识别的分层理解模型.计算机工程,1998,24(12):50~52,55
    [118]陈岱林.设计CAD系统的主要技术环节.工程设计CAD与智能建筑,2000(3):51~53
    [119]黄治中.建筑和结构系统计算机辅助设计.国际学术动态,1998.11,33~35
    [120]吕大刚,王光远.信息时代的CAD——计算机集成智能设计系统.工程设计CAD与智能建筑,2000(1):38~42
    
    
    [121]董智力、郭春雨等.搜索建筑平面图房间的算法及应用.计算机辅助设计与图形学学报,2000,12(3):216~219
    [122]陆再林,张树有,谭建荣,郑炜.基于工程特征类的预算工程量自适应提取方法研究计算机辅助设计与图形学学报,已录用(待发表)
    [123]王静.PKPM软件与ABD软件集成的技术处理.工程设计CAD与智能建筑,2000(2):17~19
    [124]陆再林,张树有,谭建荣,丁秀芳.建筑CAD与概预算一体化技术研究.工程设计,Vol.27,2001(2),74~77
    [125]方天培.建筑业软件开发质量控制与标准化.工程设计CAD及自动化,1998(1):19~20
    [126]李勇,姜永林等.一种机械工程图参数化设计的新方法.软件开发与应用,1996,(2):29~34
    [127]洪沙,张建勋等.提取尺寸标注信息.工程设计CAD与智能建筑,2000(5):49~51
    [128]张东亮,谭建荣等.基于尺寸约束离线形成的参数化驱动方法.计算机学报,1996,19(12):916~922
    [129]陆再林,张树有,谭建荣.基于图形理解的预算工程量提取算法.计算机辅助设计与图形学学报,已录用(待发表)
    [130]陆再林,张树有,谭建荣.基于图形实体功能语义的预算钢筋量自动提取.中国图象图形学报,已录用(待发表)
    [131]陆国栋.基于工程语义的三维重建方法研究.浙江大学博士学位论文,1999,12
    [132]王尚华,周远清等.关于三视图理解的研究.机器人,1991,12
    [133]吴东成,宣国荣.工程三视图的三维恢复.计算机工程,1994,No.1
    [134]顾景文.应重视计算机辅助建筑设计.国际学术动态,1998.8,64~65
    [135]张海军,周济等.工程图解释技术现状与展望.计算机应用,1995,No.3
    [136]高曙明.自动特征识别技术综述.计算机学报,1998,3
    [137]扬若瑜,谭俊,基于图形理解技术的钢筋量数系统——VHStation.计算机辅助设计与图形学学报,2000,12(9):688~694
    [138]吴涛,刘金义,基于轮廓线的三维重建方法的研究.抚顺石油学院学报,1999,19(3):44~48
    [139]高玮.基于二维视图特征的三维重建及多视图参数化技术的研究.浙江大学博士学位论文,1996,11
    
    
    [140]张思荣.支持并行设计的产品信息和过程一体化建模理论与集成管理方法及其应用研究.浙江大学博士学位论文,1999,6
    [141]魏修亭.面向设计历史与过程的图形置换与迭代理论、方法及其应用研究.浙江大学博士学位论文,1999,8
    [142]阮建中.基于工程图样理解的三维重建技术的研究.浙江大学硕士学位论文,1998,2
    [143]江涛.面向工程图样的复合型三维重建技术研究.浙江大学硕士学位论文,1999,3
    [144]来建良.基于尺寸引导的三维重建技术研究.浙江大学硕士学位论文,1999,3
    [145]马艳聪.基于三维特征的尺寸自动标注机理研究及其实现.浙江大学硕士学位论文,1999,3
    [146]黄长林.基于图形理解的变量设计尺寸标注.浙江大学硕士学位论文,1994,3
    [147]余辉,侯长俊主编.建筑工程概预算编制与应用实例手册.北京:中国建筑工业出版社,1996,3
    [148]汪培庄,李洪兴著.模糊系统理论与模糊计算机.北京:科学出版社,1996,3
    [149]傅京孙主编,程民德等译.模式识别应用.北京:北京大学出版社,1990,2
    [150]H-J,Zimmermann著,张广全等译.模糊集决策和专家系统.石家庄:河北教育出版社,1992,8
    [151]朱福熙主编 建筑制图.北京:高等教育出版社,1982,10
    [152]王维如主编.建筑工程概预算及电算化.上海:同济大学出版社,1998,6
    [153]李宏扬.建筑工程预算——识图、工程量计算与定额应用.北京:中国建材工业出版社,1997,11
    [154]中国建筑科学研究院PKPM CAD工程部.建筑工程工程量统计及概预算报表软件STAT(Windows95版).1998,12
    [155]陆国栋,张树有等著,工程图样数字化转换与智能理解.北京:机械工业出版社,2001,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700