弱视的多焦视网膜电图及图形视觉诱发电位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 应用多焦视网膜电图(mERG)及图形视觉诱发电位(P-VEP)探讨弱视的视网膜及视中枢损害。
     方法使用VERIS 4.2视诱发反应图象系统和NICOLET compact 4视觉电生理检测仪对28例屈光参差性弱视,25例斜视性弱视、14例屈光不正性弱视儿童进行mERG和P-VEP的检测,并与正常对照组比较。对mERG一阶反应,二阶反应的N_1波、P_1波的振幅密度、潜时进行四组间比较、两两组间比较、不同视网膜区域间比较。对屈光参差性弱视组、斜视性弱视组的重度与轻、中度弱视的mERG指标进行比较。对弱视组视力与mERG指标进行相关分析。刘屈光参差性弱视组、斜视性弱视组的好眼与患眼、好眼与正常组的mFRG指标进行比较。对P-VEP P_(100)波振幅、潜时进行四组间比较、两两组间比较。
     结果三种类型弱视的mERG一阶反应P_1波、N_1波、二阶反应的P-1波均表现振幅降低,在视野中央较显著,这种改变随离心度的增加而减少。正常组颞上、颞下视野一阶反应P_1波、N-1波潜时较鼻上、鼻下视野延长,鼻下视野振幅密度较颞上视野高。四组均表现颞侧视野一阶
    
     反应P;波、N;波振幅密度较鼻侧视野降低,颖侧视野潜时延长。四组
     二阶反应P;波振幅密度上半视野低于下半视野,其余指标上半、下半视
     野差异无显著性。弱视组与正常组间***G潜时比较差异无显著性。三
     种类型弱视间mERG比较差异无显著性。轻、中度弱视与重度弱视mERG
     差别无显著性。弱视患者视力与mERG指标之间无线性相关关系。弱
     视组好眼mERG指标与患眼差别有显著性,与正常组相比差别无显著
     性。弱视的 PVEP P1*波潜时延长,振幅降低。三种类型弱视间 PVEP
     P;;。波比较差异无显著性。
     结论①三种类型弱视mERG二阶反应的 P;波振幅密度比正常对照
     组降低,且在视野中央较显著,这种改变随离心度增加而减少,支持弱
     视X神经节细胞受损学说。②弱视组与正常组mERG潜时差异无显著
     性,提示神经信屈、的传递在视[f4膜内无延长。PVEP P;。。波潜时延长主
     要发生在视网膜到视皮层的传寻时问,视网膜内反应时间无延长。③本
     文中加。}厂,;。ERG对训附野小问区域比较的意义,四个象限之间,鼻侧。
     颚侧千W之间,卜丫、卜IW0 之问 士 人在刁对称现象。④本研亨击明
     弱视服卜VEP比厂发组P;W波潜时延长,振幅降低,支持弱视视中枢和
     传导系统存在异常。
     因而本研究结果支持弱视发病机制既存在视网膜困素也存在视中
     枢因素。
     2
    
     弱视眼外层视网膜是否受损,不同程度弱视之间视网膜受损程度是
    否不同,不同类型弱视发病机制的差别存在于何种水平(中枢、外周入
    单侧弱视患者的好眼视网膜是否正常有待进一步研究。
Objective To investigate the characteristic of the multifocal electroretinogram and pattern visual evoked potentials in amblyopic eyes.
    Methods The mERG and P-VEP of 28 anisometropic amblyopic eyes, 25 strabismic amblyopic eyes, 28 isometropic amblyopic eyes and 54 normal control eyes were tested.
    Results The NI wave and P, wave amplitude densities of mERG first order kernel and the PI wave amplitude densities of second order kernel in amblyopic eyes were significantly attenuated in the central region of the visual field, and these phenomena gradually reduced with the increase of the eccentricity. The NI wave and PI wave latencies of mERG first order kernel at the superior-temporal and inferior- temporal quadrant visual field were delayed than at the superior-nasal and inferior- nasal quadrant visual field in control eyes. The NI wave and PI wave amplitude densities of mERG first order kernel at the inferior- nasal quadrant visual field were larger than at the
    
    
    superior-temporal quadrant visual field. The N, wave and PI wave amplitude densities of mERG first order kernel at the temporal visual field were smaller than at the nasal visual field, and the latencies were delayed at the temporal visual field in all groups. The Pt wave amplitude densities of mERG second order kernel at the upper visual field were smaller than at the lower visual field in all groups, and other indexes were not statistically significantly different between the upper visual field and the lower visual field. Latencies of mERG among all groups were not significantly different. No significant difference of mERG was found among the three types of the amblyopic eyes. No significant difference of mERG was found between mild amblyopia and serious amblyopia. There were no linear correlations between visual acuity in amblyopic eyes and the indexes of mERG. There were significant differences between the sound eyes and the amblyopic eyes in mERG, but there were no significant differences between the sound eyes and the control eyes. The P|0o amplitudes of P-VEP in amblyopic eyes were significantly attenuated. The P)0o latencies of the P-VEP in amblyopic eyes were significantly delayed. No significant difference of P-VEP was found among the three types of the amblyopic eyes.
    Conclusions The results suggested that the pathological mechanism of
    
    amblyopia might exit in both the retina and the visual cortex. The X ganglion cells in the retina of amblyopic eye were abnormal. The visual information transmitting time was normal in the retina of amblyopic eye. There were abnormal development and function in visual cortex. The mERG and P-VEP were objective methods for assessing visual function in amblyopia.
引文
1 陈珊娜,崔京华,艾育德,等.多焦视网膜电图的研究及临床应用.国外医学眼科学分册,1999,23:295-301
    2 Erich E.Sutter, Duong Tran.The field topography of ERG components in man-I.The photopic luminance response. Vision Res, 1992,32:433-446.
    3 Alexander I.Klistorner, Stuart L.Graham, John R.Grigg. Multifocal topographic visual evoked potential:improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci,1998,39:937-950.
    4 Donald C.Hood, Vivienne Greenstein, Laura Frishman,et al. Identifying inner retinal contributions to the human multifocal ERG. Vision Res, 1999,39:2285-2291.
    5 余敏忠,吴德正.多焦视网膜电图技术及临床应用.中华眼底病杂志,2000,16:64-66
    6 余敏忠.屈光参差性弱视的多焦视觉诱发电位特征.中华眼底病杂志,2000,16:27-29
    7 余敏忠.多焦视诱发电位在屈光不正性弱视眼视功能检查中的应用.中国实用眼科杂志,1999,17:348-350
    8 Minzhong Yu, Brian Brown, Marion H.Edwards. Investigation of multifocal visual evoked potential in anisometropic and esotropic amblyopes. Invest Ophthahnol Vis Sci, 1998,39:2033-2040
    9 Arden GB,Wooding SL. Pattern ERG in amblyopia. Invest Ophthalmol Vis Sci, 1985,26:88-94
    10 Persson HE, Wanger P. Pattern-reversal electroretinograms in squit amblyopia. artificial anisometropia and simulated eccentric fixation. Acta Ophthalmol, 1982:60:123-135
    11 Hess RF, Baker Jr. CL, Verhoeve JN, et al. The pattern evoked eletroretinogram:its variability on normals and its relationship to amblyopia, Invest Ophthalmol Vis Sci, 1985,26:1610-1618
    12 Gottlob I, Welge-lussent L. Normal pattern electroretinograms in amblyopia. Invest Ophthalmol Vis Sci, 1987,28:187-196
    13 Erich E.Sutter. Imaging visual function with the multifocal m-sequence technique. Vision Res.2001,41:1241-1255
    14 Mineo Kondo, Yozo Miyake, Masayuki Horiguchi,et al. Recording multifocal electroretinogram on and off responses in humans. Invest Ophthalmol Vis Sci, 1998,39:574-580.
    
    
    15 梁小颖,李根林,王景昭.正常多焦视网膜电流图从其在黄斑疾病论断中的应用.临床眼科杂志,2001,9:82-84
    16 S Parks, D Keating, TH Williamson, et al. Functional imaging o.f the retina using the multifocal electroretinograph:a control study. Br J Ophthalmol, 1996,80:831-834.
    17 吴德正.正确使用视觉电生理技术提高其临床应用价值.中华眼底病杂志,2001,17:255-256
    18 Erich E.Sutter, Marcus A.Bearse.Jr. The optic nerve head component of the human ERG.Vision Res, 1999,39:419-436
    19 吴德正,黄时洲,梁炯基,等.多焦视网膜电图在视网膜病变中的应用.眼视光学杂志,2001,3:86-88
    20 余敏忠.多焦视网膜电图的研究进展及其临床应用,眼视光学杂志,2001,3:189-191,
    21 Mineo Kondo, Yozo Miyake, Masayuki Horiguchi,et al. Clinical evaluation of multifocal electroretinogram. Invest Ophthalmol Vis Sci, 1995,36:2146-2150.
    22 Ying-jie Si,Shoji Kishi, Koji Aoyagi.Assessment of macular function by multifocal electroretinogram before and after macular hole surgery. Br J Ophthalmol, 1998,83:420-424.
    23 Brad Fortune, Marilyn E.Scbneck, Anthony J Adams. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci, 1999,40:2638-2651.
    24 陈晶华,黎晓新.多焦视网膜电图与多焦视诱发电位检测的原理和临床应用.中华眼科杂志,2001,37:233-236
    25 Hood DC,Seiple W, Holopigian,et al.A comparison of the components of the multifocal and full-field ERGs.Vis Neurosci, 1997,14:634-640
    26 Anja M.Palmowski, Erich E.Sutter, Marcus A.Bearse.Jr., et al.Mapping of retinal function in Diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci, 1997,38:2586-2596.
    27 Verdon WA,Haegerstrom-Portony G.Topography of the multifocal electroretinogram.Doc Ophthalmol,1998,95;73-90.
    28 吴德正,粱炯基,马娟妹,等.我国正常人多焦视网膜电图的特征.中华眼科杂志,2001,37:98-103
    
    
    29 Kondo M, Miyake Y, Horiguchi M,et al.Normal values of retinal response densities in multifocal electroretinogram J Jpn Ophthalmol Sol, 1996,100:810-834
    30 Nagatomo A, Nao-i N, Maruiwa F, et al. Multifocal electroretinograms in normal subjects. J pn J Ophthalmol, 1998,42:129-135
    31 Hidehito Kawabata,Emiko Adachi-Usami. Multifocal electroretinogram in myopia.Invest Ophthalmol Vis Sci, 1997,38:2844-2851
    32 Chang-Hua Piao, Mineo Kondo, Atsubiro Tanikawa,et al. Multifocal electroretinogram in occult rnacular dystrophy. Invest Ophthalmol Vis Sci,2000,41:513-517.
    33 Persson HE, Wanger P. Pattern-reversal electroretinograms in squint amblyopia, artificial anisometropia and simulated eccentric fixation. Acta Ophthalmol(Copenh),1982,60:123-132
    34 李惠玲,崔惠贤.弱视眼的色觉变异.中国中医眼科杂志,2000,10:85-87
    35 Delint PJ, Weissenbruch C, Berendschot TT, et al. Photoreceptor function in unilateral amblyopia. Vision Res 1998,38:613-617
    36 李建东,孙慧华,李海生,等.弱视的视觉电生理学研究.国外医学眼科学分册,1989,1 3:349-352.
    37 川岛幸夫。弱视及电生理学的新进展.国外医学眼科学分册,1989,13:352-356.
    38 Donald C.Hood, Vivienne C.Greenstein, Karen Holopigian,et al. An attempt to detect glucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci,2000,41: 1570-1579.
    39 赵堪兴,刘家琦,郭静秋,等.功能性弱视儿童全视野刺激多导视觉诱发电位地形图研究.中华眼科杂志,1990,26:68-72
    40 Yang Shang, Mark L.Moster, Richard A.Roemer. Abnormal function of parvocelluar visual system in anisometropic amblyopia. J Pediatr Ophthalmol strabismus, 2000,37:73-78.
    41 Arvind Chandna,Phillippa M.Pennefather, Hona Kovacs,et al. Contour integration deficits in anisometropic amblyopia. Invest Ophthalmol Vis Sci,2001,42;875-878
    42 王林洪,蔡浩然,郭静秋.斜视性弱视与屈光参差性弱视对比敏感度函数的研究.中国斜视与小儿眼科杂志,1998,6:56-59
    43 Mi Young Choi, Kyoung-Min Lee, Jeong-Min Hwang,et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br
    
    J Ophthalmol,2001. 85:1052-1056.
    44 Richard Harrad, frank Sengpiel, Colin Blakemore.Physiology of suppression in strabismic amblyopia. Br J Ophthalmol, 1996,80:373-377
    45 Hubel PH, Wiesel TN. Binocular interaction in striate cortex of kittens reared with artificial squit.J Neurophysiol,1965,28:1041
    46 Ikeda H, Wright MJ.Is amblyopia due to inappropriate stimulation of the sustained pathyway during development? Br J Ophthalmol, 1974,58:165
    47 Noorden GK von.Histological studies of the visual system in monkeys with experimental amblyopia. Invest Ophthalmol Vis Sci,1973,12:727
    48 Mai K EI Mallah, Usha Chakravarthy, Patricia M Hart.Amblyopia:is visual loss permanent? Br J Ophthalmol,2000,84:952-956.
    49 Hubel DH, Wiesel TM. Receptive fields of celis in striate corter of every young visually inexperienced kittens. J Neurophysiol,1963,26:994-998.
    50 Takeshi Kumagami, Bin Zhang, Earl L.SmithⅢ.Effect of onset age of strabismus on the binocular responses of neurons in the monkey visual cortex. Invest Ophthalmol Vis Sci,2000,41:948-954
    51 Levi DM, Manny RE. The pathophysiology of amblyopia. Electrophysiological studies. Ann NY Acad Sci,1983,388:243-263
    52阴正勤,方谦逊,曾丽芳,等.儿童弱视的图形视网膜电图和图形视觉诱发电位同 步记录分析.中华眼科杂志.1989,25:312-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700