11家族木聚糖酶的热稳定性与结构特征的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的三维结构决定其功能,二硫键,离子对,疏水作用等结构因素都会影响蛋白质的热稳定性。大量的晶体结构研究表明,嗜温性和嗜热性的蛋白质内部疏水区域的序列和结构很保守,这表明嗜温性的蛋白质内部疏水核心的氨基酸同样堆积得非常有效,以保证其结构的稳定及功能的行使。在蛋白质内部疏水区域的点突变常常会破坏这种堆积效果,从而导致蛋白质热稳定的降低。因此目前对于蛋白质热稳定性提高的点突变大多数都是发生在蛋白质的表面。
     本论文第一次报道了在蛋白质内部疏水区域的两个半胱氨酸之间的疏水结合提高了蛋白质的热稳定性。本论文通过定向进化和定点突变鉴定了来源于Neocallimastix patriciarum的木聚糖酶C(XynC)内部疏水核心的一个点突变(G201C),该点突变导致该突变体的热稳定性明显提高,同时酶的比活也显著提高。在该突变体中,201位和50位的半胱氨酸所形成的疏水结合是导致热稳定性提高的主要原因。突变体的SDS-PAGE和自由巯基的测定均表明50,201位的半胱氨酸之间并不形成二硫键。这表明半胱氨酸不但可以通过形成二硫键,还能通过其本身的强疏水性质提高蛋白质的稳定性。在50和201位点上为半胱氨酸的G201C和C60A-G201C两个突变体比本研究中其余的木聚糖酶突变体的热稳定性都要高。通过圆二色光谱分析,G201C的T_m值比野生型提高了9度,C60A-G201C提高了12度。经过酶活测定,G201C和C60A-G201C在所有的温度和pH值所测定的比活都要比野生型高,在72度,C60A-G201C的酶活是野生型的6倍。这表示C60A-G201C突变体酶在工业应用中具有比野生型更加广阔的应用前景。该实验结果提示我们可以通过改变蛋白质内部氨基酸的疏水性从而改变蛋白质的热稳定性,为后来的蛋白质理性设计提供新的思路和方向。
     另一方面,一些外界因素同样有可能导致酶的热稳定性发生变化,在这些外界因素中,底物一直被认为能够通过稳定酶的活性中心而使酶在高温下稳定。虽然底物对酶的热稳定作用是被报道得较多的,但通过点突变提高底物对蛋白质的热稳定作用却很少被报道。本研究中,我们将XynC活性中心的57位的Asp突变为Asn。在底物不存在的情况下,XynC和D57N突变体的热稳定性是相同的;但是在底物存在的情况下,底物却能更好的稳定D57N突变体,使其表现出比野生型更高的热稳定性。突变体中的Asn57,Glu202与底物分子之间可能存在的氢键导致底物能更好的稳定突变体。该结果表明,酶在底物存在时的热稳定性同样可以改造的,这就为以后通过定向进化或理论设计提高工业用酶的热稳定性指出了另一种方向:通过增强底物对酶的稳定作用而使酶的热稳定性提高。这种突变体的获得一方面可以满足于工业生产的需要,另一方面为了解底物和酶的结合机制提供了理论模型。
The protein structure determintes its function.Some structural basis like disulfide bond,ion pairs,hydrophobic effect may affect the protein thermostability.As the protein interior hydrophobic region of thermostable proteins and mesostable homologues are both packed almost as efficiently as possible,mutation in the protein interior hydrophobic region are often destabilizing,most current stabilization strategies are directed on the protein surface.In the presented researches,by using directed evolution in combination with site-directed mutagenesis,we identified a point-mutation G201C taken place in protein interior hydrophobic region in a family 11 xylanase(XynC) from Neocallimastix patriciarum.G201C is hydrophobically associated with C50 rather than the formation of a new disulfide bond between C50 and C201.RosettaDesign and point mutation using residues with different hydrophobic nature demonstrate that the thermostability of the variant is correlation with hydrophobicity of the residues in site 50 and 201.Two mutants,G201C and C60A-G201C,were identifed greatly increased thermostability than the wild-type. Both in site 50 and 201 of these two mutants are cys,which is considered as the most hydrophobicity residue.The far-ultraviolet circular dichroism signal showed that the transition temperature(T_m) of the mutant G201C is about 9℃higher than that of the wild-type,while the C60A-G201C about 12℃higher.This paper first found a hydrophobic interaction between two cysteines,this interaction stabilizes the protein by decreasing the entropy of the unfolded state.Accompanied with the increased thermostability,these two mutants also possess higher special activity than their parent at all tested pHs and temperatures.This suggests that cysteine could stabilize the protein not only by the formation of disulfide bond,but also for its strong hydrophobicity in the protein interior hydrophobic region.The obtained mutants with higher thermostability and special activity are implied their potential applications in industrial processes.Our results suggest that we could improve the protein thermostability through modifing the residues in protein inner hydrophobic region.
     On the other hand,extrinsic factors such as substrate molecules have long been known to stabilize the enzymes.Many thennostable enzymes have been improved intrisincally by site-directed mutagenesis,but increasing the thermostability of the enzymes in the presence of substrate by such mutation method is rarely been reported. Here,we report a mutant(D57N) of XynC in the active site could be stabilized by the substrates while the wild-type not.Despite the thermostability of these two enzymes are almost identical in the absence of the substrate,the mutant enzyme displays an increased optimal temperature.The potential hydrogen bond between N57.E202 of the mutant and the substrate molecule may account for this stabilization.These results suggest that enzyme thermostablity engineering processes should consider the stabilization effect by the substrate.The 'thermophilic' mutants which could be stabilized by the substrate from such engineering processes will deepen our understanding about the binding mechanism between the enzyme and the substrate.
引文
[1] Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R.. Terenzi, H.F., Jorge. J.A. and Amorim, D.S. (2005). Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577-591.
    
    [2] Rubin, E.M. (2008). Genomics of cellulosic biofuels. Nature 454, 841-845.
    
    [3] Viikari. L., Kantelinen, A. and Sundquist, J.L., M. (1994). Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335-350.
    
    [4] Kulkarni, N., Shendye, A. and Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411-456.
    
    [5] Torronen, A. and Rouvinen, J. (1997). Structural and functional properties of low molecular weight endo-1,4-beta-xylanases. J. Biotechnol. 57, 137-149.
    
    [6] Torronen, A., Kubicek, C.R and Henrissat, B. (1993). Amino acid sequence similarities between low molecular weight endo-1,4-beta-xylanases and family H cellulases revealed by clustering analysis. FEBS Lett. 321, 135-139.
    
    [7] Gilkes, N.R.. Henrissat, B., Kilburn, D.G., Miller, R.C. and Warren, R.A. (1991). Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303-315.
    
    [8] Kumar. P.R., Eswaramoorthy, S., Vithayathil. RJ. and Viswamitra, M.A. (2000). The tertiary structure at 1.59 A resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti bainier. J. Mol. Biol. 295, 581-593.
    
    [9] Gruber, K., Klintschar, G., Hayn, M., Schlacher. A., Steiner, W. and Kratky, C. (1998). Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry 37, 13475-13485.
    
    [10] Hakulinen, N., Turunen, O., Janis. J., Leisola, M. and Rouvinen, J. (2003). Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem. 270, 1399-1412.
    
    [11] Yang, H.M., Yao, B., Meng, K., Wang, Y.R., Bai, Y.G and Wu, N.F. (2007). Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant. J.Ind.Microbiol.Biotechnol. 34, 213-218.
    [12] Xiong, H., Fenel. F., Leisola. M. and Turunen, O. (2004). Engineering the thermostability of Trichoderma reesei endo-1,4-beta-xylanase Ⅱ by combination of disulphide bridges. Extremophiles 8. 393-400.
    [33] Jeong, M.Y., Kim, S., Yun, C.W., Choi, Y.J. and Cho. S.G. (2007). Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J.Biotechnol. 127, 300-309.
    [14] Fenel, F.. Leisola, M., Janis, J. and Turunen. O. (2004). A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase Ⅱ. J.Biotechnol. 108, 137-143.
    [15] Turunen, O., Etuaho, K., Fenel, F., Vehmaanpera, J., Wu, X., Rouvinen, J. and Leisola, M. (2001). A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase Ⅱ increases the thermal stability through synergism. J. Biotechnol. 88, 37-46.
    [16] Georis, J., de Lemos Esteves, F., Lamotte-Brasseur. J., Bougnet, V., Devreese, B., Giannotta, F., Granier, B. and Frere, J.M. (2000). An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study. Protein sci. 9. 466-475.
    [17] Turunen, O., Vuorio, M., Fenel. F. and Leisola. M. (2002). Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase Ⅱ increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng. 15. 141-145.
    [18] Stephens, D.E.. Rumbold, K., Permaul. K.. Prior, B.A. and Singh. S. (2007). Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. J.Biotechnol. 127, 348-354.
    [19] Ruller, R., Deliberto. L., Ferreira, T.L. and Ward, R.J. (2008). Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins: Struct. Funct. Genet. 70, 1280-1293.
    [20] Miyazaki, K., Takenouchi. M., Kondo, H.. Noro, N., Suzuki, M. and Tsuda, S. (2006). Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J.Biol.Chem. 281, 10236-10242.
    [21] Vieille, C. and Zeikus. GJ. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol.Mol.Biol.Rev. 65, 1-43.
    [22] Arnold, F.H., Wintrode, P.L., Miyazaki, K. and Gershenson, A. (2001). How enzymes adapt: lessons from directed evolution. Trends. Biochem. Sci. 26, 100-106.
    [23] Nagano, N., Ota, M. and Nishikawa, K. (1999). Strong hydrophobic nature of cysteine residues in proteins. FEBS Lett. 458, 69-71.
    [24] Rose. G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H. (1985). Hydrophobicity of amino acid residues in globular proteins. Science. 229, 834-838.
    [25] Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428.
    [26] Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77. 51-59.
    [27] Hilvert, D. (2003). Directed evolution of enzyme structure and function. Biochemistry 42, 8595-8595.
    [28] Eijsink, V.G., Gaseidnes, S., Borchert, T.V. and van den Burg, B. (2005). Directed evolution of enzyme stability. Biomol.Eng. 22, 21-30.
    [29] Schmidt-Dannert, C. and Arnold, F.H. (1999). Directed evolution of industrial enzymes. Trends Biotechnol 17, 135-136.
    [30] Zhao. H., Giver. L., Shao, Z., Affholter, J.A. and Arnold, F.H. (1998). Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16, 258-261.
    [31] Sushma, Y., Faizan,A. (2000). A New Method for the Determination of Stability Parameters of Proteins from Their Heat-Induced Denaturation Curves. Anal. Biochem. 283, 207-213.
    [32] Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch.Biochem.Biophys. 82, 70-77.
    [33] Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
    [34] Guex, N. and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18. 2714-2723.
    [35] Kopp, J. and Schwede. T. (2004). The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res 32. D230-234.
    [36] Schwede, T., Kopp, J., Guex. N. and Peitsch, M.C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385.
    [37] Liu, Y. and Kuhlman, B. (2006). RosettaDesign server for protein design. Nucleic acids research 34, W235-238.
    [38] Kongsted, J.. Ryde, U., Wydra. J. and Jensen. J.H. (2007). Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases. Biochemistry 46, 13581-13592.
    [39] Li, H., Robertson, A.D. and Jensen, J.H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins: Struct. Funct. Genet. 61, 704-721.
    [40] Sun, J.Y.. Liu, M.Q.. Xu, Y.L., Xu, Z.R., Pan, L. and Gao, H. (2005). Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expr Purif 42, 122-130.
    [41] Torronen, A., Harkki, A. and Rouvinen, J. (1994). Three-dimensional structure of endo-1,4-beta-xylanase Ⅱ from Trichoderma reesei: two conformational states in the active site. EMBO J 13, 2493-2501.
    [42] Murakami. M.T., Ami, R.K., Vieira, D.S., Degreve, L., Ruller, R. and Ward, R.J. (2005). Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Lett. 579, 6505-6510.
    [43] Sapag, A., Wouters, J., Lambert. C. de loannes, P., Eyzaguirre, J. and Depiereux, E. (2002). The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95, 109-131.
    [44] Matthews, B.W., Nicholson, H. and Becktel, W.J. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc.Natl.Acad.Sci. U S A 84, 6663-6667.
    [45] Oakley, A.J., Heinrich. T., Thompson. C.A. and Wilce, M.C.J. (2003). Characterization of a family 11 xylanase from Bacillus subtillis B230 used for paper bleaching. Acta Crystallogr. Sect. D. 59, 627-636.
    [46] Chen, Y.-L., Tang, T.-Y. and Cheng, K.-J. (2001). Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can.J.Microbiol. 47, 1088-1094.
    [47] Miyazaki, K., Wintrode, P.L., Grayling, R.A., Rubingh, D.N. and Arnold, F.H. (2000). Directed evolution study of temperature adaptation in a psychrophilic enzyme. J.Mol.Biol. 297, 1015-1026.
    [48] Dumon, C. et al. (2008). Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J.Biol.Chem. 283, 22557-22564.
    [49] Gershenson, A., Schauerte, J.A., Giver, L. and Arnold, F.H. (2000). Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases. Biochemistry 39,4658-4665.
    [50] Krengel, U. and Dijkstra, B.W. (1996). Three-dimensional structure of Endo-1,4-beta-xylanase Ⅰ from Aspergillus niger: molecular basis for its low pH optimum. J. Mol. Biol. 263, 70-78.
    [51] Xie, H., Flint, J.. Vardakou, M., Lakey, J.H., Lewis, R.J., Gilbert, H.J. and Dumon, C. (2006). Probing the structural basis for the difference in thermostability displayed by family 10 xylanases. J.Mol.Biol. 360,157-167.
    [52] Paes, G and O'Donohue, M.J. (2006). Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. J. Biotechnol. 125. 338-350.
    [53] Wakarchuk, W.W., Sung, W.L., Campbell, R.L.. Cunningham, A.. Watson. D.C. and Yaguchi, M. (1994). Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 7, 1379-1386.
    [1] Viikari, L., Kantelinen, A. and Sundquist, J.L., M. (1994). Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335-350.
    [2] Kulkarni, N., Shendye, A. and Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23,411-456.
    [3] Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti. R., Terenzi, H.F., Jorge, J.A. and Amorim, D.S. (2005). Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577-591.
    [4] Miyazaki, K., Takenouchi, M., Kondo, H., Noro, N., Suzuki. M. and Tsuda, S. (2006). Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J.Biol.Chem. 281, 10236-10242.
    [5] Jeong, M.Y., Kim, S., Yun, C.W., Choi, Y.J. and Cho, S.G. (2007). Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J.Biotechnol. 127, 300-309.
    [6] Stephens, D.E., Rumbold, K., Permaul, K., Prior. B.A. and Singh, S. (2007). Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. J.Biotechnol. 127, 348-354.
    [7] Dumon, C. et al. (2008). Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J.Biol.Chem. 283, 22557-22564.
    [8] Ruller. R., Deliberto, L., Ferreira. T.L. and Ward, R.J. (2008). Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins: Struct. Funct. Genet. 70. 1280-1293.
    [9] Vieille, C. and Zeikus, GJ. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol.Mol.Biol.Rev. 65, 1-43.
    [10] Joshi, M.D., Sidhu, G, Pot, I.. Brayer, GD., Withers. S.G and Mcintosh, L.P. (2000). Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299. 255-279.
    [11] Sapag, A., Wouters, J., Lambert, C, de Ioannes, P., Eyzaguirre, J. and Depiereux, E. (2002). The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95. 109-131.
    [12] Sabini, E. et al. (1999). Catalysis and specificity in enzymatic glycoside hydrolysis: a 2.5B conformation for the glycosyl-enzyme intermediate revealed by the structure of the Bacillus agaradhaerens family 11 xylanase. Chem.Biol. 6,483-492.
    [13] Wakarchuk, W.W.. Sung, W.L.. Campbell, R.L., Cunningham, A., Watson, D.C. and Yaguchi, M. (1994). Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 7, 1379-1386.
    [14] Georis, J.. de Lemos Esteves, F., Lamotte-Brasseur, J., Bougnet, V.. Devreese, B., Giannotta, R, Granier. B. and Frere, J.M. (2000). An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study. Protein sci. 9, 466-475.
    [15] Chen, Y.-L., Tang, T.-Y. and Cheng, K.-J. (2001). Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47. 1088-1094.
    [16] Turunen, O., Etuaho, K., Fenel, F., Vehmaanpera, J., Wu, X., Rouvinen, J. and Leisola, M. (2001). A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1.4-beta-xylanase Ⅱ increases the thermal stability through synergism. J. Biotechnol. 88, 37-46.
    [17] Fenel, R, Leisola, M.. Janis. J. and Turunen, O. (2004). A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1.4-beta-xylanase Ⅱ. J.Biotechnol. 108, 137-143.
    [18] Xiong. H.. Fenel, F.. Leisola, M. and Turunen, O. (2004). Engineering the thermostability of Trichoderma reesei endo-1.4-beta-xylanase Ⅱ by combination of disulphide bridges. Extremophiles 8, 393-400.
    [19] Sun, J.Y., Liu, M.Q., Xu, Y.L., Xu, Z.R., Pan, L. and Gao. H. (2005). Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expr Purif 42, 122-130.
    [20] Paes, G and O'Donohue. M.J. (2006). Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. J. Biotechnol. 125,338-350.
    [21] Yang. H.M.. Yao. B., Meng, K.. Wang, Y.R., Bai, Y.G. and Wu, N.F. (2007). Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant. J.Ind.Microbiol.Biotechnol. 34. 213-218.
    [22] Thomas, T.M. and Scopes, R.K. (1998). The effects of temperature on the kinetics and stability of mesophilic and thermophilic 3-phosphoglycerate kinases. Biochem. J. 330 ( Pt 3). 1087-1095.
    [23] Kongsted, J., Ryde, U., Wydra, J. and Jensen, J.H. (2007). Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases. Biochemistry 46, 13581-13592.
    [24] Bourgois, T.M. et al. (2007). Targeted molecular engineering of a family 11 endoxylanase to decrease its sensitivity towards Triticum aestivum endoxylanase inhibitor types. J.Biotechnol. 130, 95-105.
    [25] Fushinobu, S., Ito, K., Konno, M., Wakagi, T. and Matsuzawa, H. (1998). Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11, 1121-1128.
    [26] Tanaka, H., Okuno, T., Moriyama, S., Muguruma, M. and Ohta, K. (2004). Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis. J.Biosci.Bioeng. 98, 338-343.
    [27] Oakley, A.J., Heinrich, T., Thompson. C.A. and Wilce, M.C.J. (2003). Characterization of a family 11 xylanase from Bacillus subtillis B230 used for paper bleaching. Acta Crystallogr. Sect. D. 59, 627-636.
    [28] Joshi, M.D., Sidhu, G., Nielsen. J.E., Braver. G.D., Withers. S.G. and Mclntosh, L.P. (2001). Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40. 10115-10139.
    [29] Sidhu, G, Withers, S.G, Nguyen, N.T., Mclntosh, L.P., Ziser, L. and Brayer, G.D. (1999). Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry. 38, 5346-5354.
    [30] Vardakou, M. et al. (2008). Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J.Mol.Biol. 375, 1293-1305.
    [31] Turunen, O., Vuorio, M., Fenel, F. and Leisola, M. (2002). Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase Ⅱ increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng. 15.141-145.
    [1]Stetter,K.O.(1996).Hyperthermophiles in the history of life.Ciba.Found.Symp.202,1-10;discussion 11-18.
    [2]Vieille,C.,Burdette,D.S.and Zeikus,J.G.(1996).Thermozymes.Biotechnol.Annu.Rev.2,1-83.
    [3]Szilagyi,A.and Zavodszky,P.(2000).Structural differences between mesophilic,moderately thermophilic and extremely thermophilic protein subunits:results of a comprehensive survey.Structure 8,493-504.
    [4]Deckert,G.et al.(1998).The complete genome of the hyperthermophilic bacterium Aquifex aeolicus.Nature 392,353-358.
    [5]Kawarabayasi,Y.et al.(1999).Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon,Aeropyrum pernix K1.DNA.Res.6,83-101,145-152.
    [6]Mrabet,N.T.et al.(1992).Arginine residues as stabilizing elements in proteins.Biochemistry 31,2239-2253.
    [7]Teplyakov,A.V.,Kuranova,I.P.,Harutyunyan,E.H.,Vainshtein,B.K.,Frommel,C.,Hohne,W.E.and Wilson,K.S.(1990).Crystal structure of thermitase at 1.4 A resolution.J.Mol.Biol.214,261-279.
    [8]Wakarchuk,W.W.,Sung,W.L.,Campbell,R.L.,Cunningham,A.,Watson,D.C.and Yaguchi,M.(1994).Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds.Protein Eng.7,1379-1386.
    [9]Turunen,O.,Etuaho,K.,Fenel,F.,Vehmaanpera,J.,Wu.X.,Rouvinen,J.and Leisola,M.(2001).A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase Ⅱ increases the thermal stability through synergism.J.Biotechnol.88,37-46.
    [10]Fenel,F.,Leisola,M.,Janis,J.and Turunen,O.(2004).A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase Ⅱ.J.Biotechnol.108,137-143.
    [11]Xiong,H.,Fenel,F.,Leisola,M.and Turunen,O.(2004).Engineering the thermostability of Trichoderma reesei endo-1,4-beta-xylanase Ⅱ by combination of disulphide bridges.Extremophiles 8,393-400.
    [12]Jeong,M.Y.,Kim,S.,Yun,C.W.,Choi.Y.J.and Cho.S.G.(2007).Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J.Biotechnol. 127, 300-309.
    [13] Yang, H.M., Yao, B., Meng, K., Wang, Y.R., Bai, YG and Wu, N.F. (2007). Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant. J.Ind.Microbiol.Biotechnol. 34, 213-218.
    [14] Dill, K.A. (1990). Dominant forces in protein folding. Biochemistry 29, 7133-7155.
    [15] Pace, C.N. (1992). Contribution of the hydrophobic effect to globular protein stability. Journal of molecular biology 226, 29-35.
    [16] Haney, P.J.. Stees, M. and Konisky, J. (1999). Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. The Journal of biological chemistry 274, 28453-28458.
    [17] Matsumura. M., Signor, G. and Matthews, B.W. (1989). Substantial increase of protein stability by multiple disulphide bonds. Nature 342. 291-293.
    [18] Kumar, P.R.. Eswaramoorthy, S., Vithayathil, P.J. and Viswamitra, M.A. (2000). The tertiary structure at 1.59 A resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti bainier. J. Mol. Biol. 295, 581-593.
    [19] Paice, M.G.. Bernier, R. and Jurasek, L. (1988). Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnology and bioengineering 32, 235-239.
    [20] Burley. S.K. and Petsko, G.A. (1985). Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science (New York. N Y ) 229, 23-28.
    [21] Dong, G, Vieille, C. and Zeikus, J.G. (1997). Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Applied and environmental microbiology 63, 3577-3584.
    [22] Georis, J., de Lemos Esteves, F., Lamotte-Brasseur, J., Bougnet, V., Devreese, B., Giannotta, F., Granier, B. and Frere, J.M. (2000). An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study. Protein sci. 9, 466-475.
    [23] Anderson, D.E., Becktel, W.J. and Dahlquist, F.W. (1990). pH-induced denaturation of proteins:a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme.Biochemistry 29,2403-2408.
    [24]Yip,K.S.,T.J.Stillman,K.L.Britton,RJ.A.,P.J.Baker,S.E.,Sedelnikova,P.C.E.,A.Pasquo,R.Chiaraluce,V.Consalvi,R.Scandurra,and Rice,a.D.W.(1995).The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures.Structure 3,1147 1158.
    [25]丁彦蕊,蔡宇杰,须文波.(2007).氢键与蛋白质耐热性关系的研究.计算机与应用化学24,641-677.
    [26]Tanner,J.J.,Hecht,R.M.and Krause,K.L.(1996).Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution.Biochemistry 35,2597-2609.
    [27]Ma,K.,Linder,D.,Stetter,K.O.and Thauer,R.K.(1991).Purification and properties of N5,N10-methylenetetrahydromethanopterin reductase(coenzyme F420-dependent) from the extreme thermophile Methanopyrus kandleri.Archives of microbiology 155.593-600.
    [28]Fabry,S.and Hensel,R.(1987).Purification and characterization of D-glyceraldehyde-3-phosphate dehydrogenase from the thermophilic archaebacterium Methanothermus fervidus.European journal of biochemistry /FEBS 165,147-155.
    [29]Miyazaki,K.,Wintrode,P.L.,Grayling.R.A.,Rubingh,D.N.and Arnold,F.H.(2000).Directed evolution study of temperature adaptation in a psychrophilic enzyme.J.Mol.Biol.297,1015-1026.
    [30]Gershenson,A..Schauerte,J.A.,Giver,L.and Arnold,F.H.(2000).Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases.Biochemistry 39,4658-4665.
    [31]Nikolova,P.V.,Henckel,J.,Lane,D.P.and Fersht,A.R.(1998).Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability.Proc Natl Acad Sci U S A 95,14675-14680.
    [32]Kawamura,S.,Kakuta,Y.,Tanaka,I..Hikichi,K.,Kuhara,S.,Yamasaki,N,and Kimura,M.(1996).Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus.Biochemistry,35.1195-1200.
    [33] Matthews, B.W., Nicholson, H. and Becktel, W.J. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc.Natl.Acad.Sci. U S A 84, 6663-6667.
    [34] Kimura, S., Kanaya, S. and Nakamura. H. (1992). Thermostabilization of Escherichia coli ribonuclease HI by replacing left-handed helical Lys95 with Gly or Asn. J Biol Chem 267, 22014-22017.
    [35] Sanz-Aparicio, J.. Hermoso, J.A., Martinez-Ripoll, M., Gonzalez, B., Lopez-Camacho, C. and Polaina, J. (1998). Structural basis of increased resistance to thermal denaturation induced by single amino acid substitution in the sequence of beta-glucosidase A from Bacillus polymyxa. Proteins 33, 567-576.
    [36] Van den Burg, B., Vriend, G, Veltman, O.R., Venema, G. and Eijsink, V.G. (1998). Engineering an enzyme to resist boiling. Proc Natl Acad Sci U S A 95, 2056-2060.
    [37] Schmidt-Dannert, C. and Arnold, F.H. (1999). Directed evolution of industrial enzymes. Trends Biotechnol 17. 135-136.
    [38] Chen, Y.-L., Tang, T.-Y. and Cheng, K.-J. (2001). Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47, 1088-1094.
    [39] Miyazaki, K., Takenouchi. M., Kondo. H.. Noro, N., Suzuki, M. and Tsuda. S. (2006). Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J.Biol.Chem. 281, 10236-10242.
    [40] Dumon, C. et al. (2008). Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J.Biol.Chem. 283, 22557-22564.
    [41] Malakauskas, S.M. and Mayo, S.L. (1998). Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Biol 5, 470-475.
    [42] Purmonen. M., Valjakka, J., Takkinen, K., Laitinen, T. and Rouvinen, J. (2007). Molecular dynamics studies on the thermostability of family 11 xylanases. Protein.Eng.Des.Sel. 20, 551-559.
    [43] Caflisch, A. and Karplus, M. (1995). Acid and thermal denaturation of barnase investigated by molecular dynamics simulations. J Mol Biol 252, 672-708.
    [44] Caflisch, A. and Karplus, M. (1994). Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase. Proc Natl Acad Sci U S A 91, 1746-1750.
    [45] Creveld, L.D.. Amadei, A., van Schaik, R.C.. Pepermans. H.A., de Vlieg, J. and Berendsen, HJ. (1998). Identification of functional and unfolding motions of cutinase as obtained from molecular dynamics computer simulations. Proteins 33, 253-264.
    [46] Daggett, V. and Levitt, M. (1993). Protein unfolding pathways explored through molecular dynamics simulations. J Mol Biol 232, 600-619.
    [47] Lazaridis, T., Lee, I. and Karplus, M. (1997). Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci 6, 2589-2605.
    [48] Liu, Y. and Kuhlman, B. (2006). RosettaDesign server for protein design. Nucleic acids research 34. W235-238.
    [49] Nauli, S., Kuhlman, B. and Baker, D. (2001). Computer-based redesign of a protein folding pathway. Nature structural biology 8, 602-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700