碱性脂肪酶高产诱变菌株产酶条件优化及其碱性脂肪酶的高效分离纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶(EC3.1.1.3,甘油酯水解酶)是一类能催化长链脂肪酸甘油酯水解为甘油和长链脂肪酸(或者是此反应的逆反应)的生物催化剂.它可以在油水界面上催化甘油三酯水解生成脂肪酸和甘油,以及中间产物甘油一酯和甘油二酯.广泛应用于食品、医药、洗涤、皮革、造纸等行业领域.
     本文以实验室保存的碱性脂肪酶高产诱变菌株Lp-11为出发菌株,通过菌种复壮.产酶条件优化,从而提高菌株产酶量.并对其碱性脂肪酶进行高效分离纯化,以期降低纯化成本.提高碱性脂肪酶的活性回收率.
     利用平板划线法和平板涂布法对菌株Lp-11进行菌种复壮.得到一株产脂肪酶活性相对最高且传代稳定的菌株:Lp-11-④。
     利用逐因子试验及正交设计等方法对菌株Lp-11-④进行产酶条件的优化。首先运用逐因子试验确定Lp-11-④产碱性脂肪酶的最适碳源和氮源分别为:葡萄糖和蛋白胨.然后在此基础上利用正交试验对其发酵培养基成分进行优化,最后得到其最佳培养条件为:葡萄糖0.5%;蛋白胨5.0%;Na_2HPO_40.7%;KH_2PO_40.5%;Tween80 1.0%:橄榄油2.0%;培养基pH8.0:接种量3.0%(v/v):种龄12h:转速250r/min;温度30℃,在此条件下培养(30h)发酵液酶活达到366.996U/ml,比优化前提高84.541%.
     对菌株Lp-11-④所产的碱性脂肪酶进行高效分离纯化.菌体发酵液经双水相萃取(ATPS)、Phenyl-Sepharose疏水作用层析处理.超滤浓缩后得到了纯化后的碱性脂肪酶,用SDS聚丙烯酰胺凝胶电泳和等电聚焦检测其纯度为电泳纯.该酶的纯化倍数为26.81倍.活性的回收率为65.15%.比活力达到9901.02U/mg.
     理化性质研究表明,脂肪酶的分子量为265.6KD,由四个分子量为64.8KD的相同亚基组成,该酶的等电点pI为5.43。
Lipase(EC3.1.1.3,triacylglycerol acylhydrolase)is a kind of biocatalysts to hydrolysis long-chain triglycerides to glycerol and lang-chain fatty acids.It can hydrolysis Triglyceride to fatty acid and glycerol in the interface of oil-water.Lipase is widely used in food,medicine,scour,leather and paper industry.
     In this research work,rejuvenation and enzyme production optimization were used to improve the lipase production of Lp-11-④.Alkalin lipase was purified high efficiently to reduce purification costs.
     We used plate streaking and coating methods to rejuvenate Lp-11 which was conserved by our laboratory.Finally,the high yield Lp-11-④strain was selected.Stability test demonstrated that the lipase activity remained the same level after five generations.
     Lipase production condition of Lp-11-④was optimized using seriatim-factorial experiment and orthogonal experiment.The optimum carbon source and the optimum nitrogen source for Lp-11-④screened through seriatim-factorial experiment were glucose and peptone,respectively.By orthogonai experiment we obtained result of the optimum culture medium was:glucose0.5%; peptone5.0%;Na_2HPO_40.7%;KH_2PO_40.5%;Tween80 1.0%;olive oil2.0%;pH8.0;inoculation quantity 3.0%(V/V);bacteria age 12h;revolution 250r/min;temperature 30℃.After 30h incubation with the optimum condition,a maximum lipase yield 366.996U/mL was obtained,which was 84.541%higher than that under beginning culture mediums.
     The alkaline lipase of the supernatant was purified to homogeneity through aqueous two-phase extraction and hydrophobic interaction chromatography on Phenyl-Sepharose Fast Flow column, and the pure alkaline lipase was characterized by SDS-PAGE and IEF electrophoresis.65.15%of the lipase activity was recovered,and purification fold was 26.81.The specific activity was 9901.02 unit/mg.
     The molecular weight of the lipase is 265.6KD and submits are 64.8KD determined by gel filtration chromatography on Superdex-200 and SDS-PAGE method.Isoelectric point of the pure lipase was 5.43 showed by IEF-PAGE.
引文
[1]张树政.酶制剂工业(下).科学出版社.北京.1984,655-670.
    [2]Sarda L,Desnuelle P.Action de la lipase pancreatique sur les esters en emulsion.Biochimica et Biophysica Acta,1958,30:513-521.
    [3]Desnuelle P,Sarda L,Ailhaud G.Inhibition of pancreatic lipase by diethyl-p-nitrophenyl phosphate in emulation.Biochimica et Biophysica Acta,1960,37(2):570-571.
    [4]Norin M,Olsen O,Svendsen A,et al.Theoretical studies of Rhizomucor miehei lipase activation.Protein Engineering.1993,6(8):855-863.
    [5]Rohit S,Uttam C B.Production,purification,characterization,and applications oflipases.Biotechnology Advances,2001,19:627-662.
    [6]Jaeger K E,Eggert T.Lipases for biotechnology.Current Opinion in Biotechnology,2002,13(4):390-397.
    [7]Kazlauskas R J,Bomscheuer U T.Biotransformatiom with lipases.Biotechnology,1998,8:37-50.
    [8]Glória P M,Mudge S M.Cleaning oiled shores:laboratory experiments testing the potential use of vegetable oil biodiesls.Chemosphere,2004,54:297-304.
    [9]Fangrui M,Milford A H.Biodiesel production:a review.BioresourceTechnology,1999,70:1-15.
    [10]Wardle D A.Global sale of green air travel supported using biodiesel.Renewable and Sustainable Energy Reviews,2003,7:1-64.
    [11]Iso M,Chen B,Eguchi M,et al.Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase.Journal of Molecular Catalysis B:Enzymatic,2001,16:53-58.
    [12]Jung H C,Sumin K,Suk J J,et al.Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific.Journal of activities Molecular Catalysis B:Enzymatic,2003,26(8):177-184.
    [13]Rosenau F,Jaeger K.Bacterial lipases from Pseudomonas:Regulation of gene expression and mechanisms of secretion.Biochimie,2000,82(11):1023-1032.
    [14]Yuichi K,Katsuya K,Hideo N,et al.Inverting enantioselectivity of Burkholderia cepacia KWI-56 Lipase by Combinatorial Mutation and high throughtput screening using single molecule PCR and in vitro cxpression.Journal of Molecular Biology,2003,331(3):585-592.
    [15]Brockerhoff H,Jensen R G.Lipolytic enzymes.Academic Press,N Y,1974.
    [16]lee K T,Akoh C C.Structureed Lipids:Synthesis and Applications.Food Reviews International,1998,14(1):17-64.
    [17]Winkler FK,D'Arcy A,Hunziker W.Structure of human pancreatic lipase.Nature.1990,343:771-774.
    [18]郭诤,张根旺.脂肪酶的结构特征和化学修饰.中国油脂.2003,28(7):5-10.
    [19]Jaeger KE,Dijkst BW,Reetz MT.Bacterial biocatalysis:Molecular biology,three- dimensional structures,and biotechnological applications of lipases.Annual Review of Microbiology.1999,53(1):315-351.
    [20]Tan T,Zhang M,Xu J,et al.Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3.Process Biochemistry,2004,39:1495-502.
    [21]徐岩,谢红想,王栋.一株根霉产脂肪酶发酵条件的研究.工业微生物,1999,29(1):6-10.
    [22]徐岩.赵光鳌.高克亮,等.华根酶产脂肪酶发酵培养基的研究.工业微生物,2000,30(3):8-11.
    [23]周晓云,黄建宁,欧志敏,等.链霉菌Z9422碱性脂肪酶产生条件及酶学性质.微生物学报.2000,40(1):75-79.
    [24]逄淑召.王群,等.荧光假单孢菌Pseudomonas fluorescence 5963产脂肪酶条件的优化.生物加工过程,2004,2(1):62-65.
    [25]曾璐,林亲录,王伟.脂肪酶产生菌产酶条件的研究.2007.23(7):15-21.
    [26]张搏.杨江科.苏华武,闫云君.脂肪酶产生菌的筛选、鉴定及其产酶条件优化.生物技术,2007,17(1):23-26.
    [27]任丽虹,周应揆.脂肪酶产生苗的筛选及一株黑曲霉产脂肪酶最适条件研究.工业微生物,1996,26(1):23-26.
    [28]马歌丽,王建民,彭新榜,李青春.发酵条件对根霉产脂肪酶的影响.食品科技,2006,8:39-42.
    [29]Ahujia S.K.,Ferreira G.M.,Moreira A.R..Application of Placket-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium.Biotechnol Bioeng,2004,85:666-675.
    [30]Zhi Y.W.,Feng Ch..Application of statistically-based experimental designs for the optimization of Eicosapontaenoic acid production by the diatom Nitzschia laevis,Biotechnol Bioeng,2001,75:159-169.
    [31]Poorna V.and Neelesh R.S..Production of α-amylase with Aspergillus flavus on amaranthus grains b solid-state fermentation.J Basic Microbiol.2001,41:57-64.
    [32]阎金勇,杨江科,闫云君.Galactomyces geotrichum Y25产脂肪酶条件的优化.生物加工过程,2007,5(2):46-51.
    [33]余琼,梁运祥.产低温脂肪酶假单胞菌的选育及产酶条件的优化.湖北农业科学,2006,45(5):662-665.
    [34]王龙英.费笛波,等.碱性脂肪酶高产菌株产酶条件的优化研究.浙江农业学报,2005.17:79-82.
    [35]尹利,阎金勇,等.响应面法优化洋葱假单胞菌产脂肪酶液体发酵工艺.微生物学杂志,2007,27(3):11-15.
    [36]徐健全,郑连英.脂肪酶发酵条件的统计学优化.科技通报.2007,23(4):565-573.
    [37]Ooijkaas L.P.,Wilkinson E.C.,Tramper J.,Buitelaar R.M..Medium oprimization for spore production of coniothyrium minitans using statistically based experimental designs,Biotechnol Bioeng,1999,64:92-100.
    [38]Shih I.L.,Van Y.T.,Chang Y.N..Application of statistical experimental methods to optimize production of poly(-glutamic acid)by Bacillus licheniformis CCRC 12826.Enzyme Microb Tech,2002,31:213-220.
    [39]Gargi D.,Abhijit M.,Rintu B.R.,Maiti.Enhanced production of amylase by optimization of nutritional constituents using response surface methodology.Biochem Eng J,2001,7:227-231.
    [40]Aires B,M R,Taipa,et al.Isolation and purification of lipases,ln:Woolley,P.,Petersen,S.B.(Eds.),Lipeses:Their Structure,Biochemistry and Application.Cambridge Univ.Press,1994,243-270.
    [41]Saxena R k,Sheoran A,Bhoopander G,et al.Purification strategies for microbial lipases.Journal of Microbioiogical Methods,2003,52:1-18.
    [42]Gulati R,Saxena R K,Gupta R.Fermentation and downstream process of lipase from Asperillus terreus.Process Biochemistry,2000,36:149-155.
    [43]S.Bradoo,R.K.Szxena,R.Gupta.Partitioning and resolution of mixture of two lipase from Bacillus stearothermophilus SB-1 in aqueous two-phase system.Process Biochemistry,1999,35:57-62.
    [44]闫云君,陈晖.杨江科.ATPS法分离纯化Aspergillus sp.F044脂肪酶.华中科技大学学报(自然科学版).2005.33(10):92-95.
    [45]王俊华.付建红.杨洁,石玉瑚.欧阳平凯.白地霉Cryytococcus neoformans脂肪酶产酶条件与纯化.生物技术.2007.17(3):68-71.
    [46]黄瑛.尹利,闫云君.双水相萃取法分离纯化洋葱假单胞菌G- 63脂肪酶.现代化工,2007,27(增)(2):300-305.
    [47]Sharma R,Soni SK,Vohra RM,et al.Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp.RSJ-1.Process Biochemistry,2002,37(10):1075-1084.
    [48]Kojima Y,Shimizu S.Purification and characterization of the lipase from Pseudomonas fluorescens HU380.Journal of Bioscience and Bioengineering,2003,96(3):219-226.
    [49]Kambourova M,Kirilova N,Mandeva R,et al.Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC 7.Journal of Molecular Catalysis B:Enzymatic,2003,22(5):307-313.
    [50]Erick A S,Elise R.S.Purification and properties of the extracellular lipase,LipA,of Acinetobactersp.RAG-1.Eur[J]Biochem,2002,269:5771-5779.
    [51]Saxena RK,Davidson WS,Sheoran A,et al.Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus.Process Biochemistry,2003,39(2):239-247.
    [52]LIN S,CHIOU C,YEH C,et al.Prification and Partial Characterization of an Alkaline Lipase from Pseudomonas pseudoalcaligenes F-111.Applied and Environmental Microbilogy,1996,62(3):1093-1095.
    [53]秦韶巍,于明锐.谭天伟.Candida sp.脂肪酶的纯化及其性质.过程工程学报.2007,7(1):141-144.
    [54]Marija A,Ivana L,Tamara K,et al.Purification and properties of extracellular lipase from Strepotomyces rimosus.Enzyme and Microbial Technology,1999,25:522-529.
    [55]Shu ZY,Yang JK,Yan YJ.Purification and Characterization of a Lipase from Aspergillus niger F044.Chinese Journal of Biotechnology,2007,23(1):96-101.
    [56]Abel H,Marie D J,Danielle D,et al.Production,purification and characterization of an extracellular lipase from Mucor hiemalis f.hiemalis.Enzyme Microbiology Technology,1999,25:80-87.
    [57]邬敏辰,王曙,黄伟达.圆弧青霉碱性脂肪酶的分离纯化和特性.生物化学与生物物理学报,1999,31(6):664-668.
    [58]Abel H,Marie D.J,Nathalie R,et al.Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit.Enzyme and Technology,2000,26:421-430.
    [59]邬敏辰.孙崇荣.李江华.圆弧青霉碱性脂肪酶发酵和纯化的研究.江苏食品与发酵.2000·100(1):1-4.
    [60]邬敏辰,黄伟达,孙崇荣.扩展青霉脂肪酶的纯化及氨基酸序列测定.江南学院学报,2001.16(4):56-62.
    [61]吴吟妮,潘剑茹.江贤章.嗜硫色谱分离纯化碱性脂肪酶及其氨基酸序列测定.工业微生物,2004,34(4):,34-37.
    [62]B.Y.Zaslavsky,Aqueous Two-phase Partitioning.Matcel Dekker[M],New York:NY,1995.
    [63]P.-A.Albertsson.Partition of Cell Particles and Macromolecules[J/OL].Wiley-lnterscience, 3rd ed.New York:1986.
    [64]Chen D H,Hall D G has diagram of the systems:Ⅰ.Sodium dodecylsulphate-octyl trimethylam monium bromide-water[J].Kolloid ZZP Polym,1973,251:41-44.
    [65]]常秀莲.牛血清清蛋白(BSA)在双水相体系中分配特性的研究[J/OL].烟台大学学报(自然科学与工程版),1999,12(1):25-30.
    [66]Lorena Capezio,Diana Romanini,Guillermo A.Pico,etal.Partition of whey milk proteins in aqueous two-phase systems of polyethylene glycol-phosphate as a starting point to isolate proteins expressed in transgenic milk[J/OL].Journal of Chromatography B.2005,819,25-31.
    [67]Kristina Berggren,Alejandro Wolf,Juan A.Asenjo,etal.The surface exposed amino acid residues of monomeric proteins determine the partitioning in aqueous two-phase systems[J/OL].Biochinica et Biophysica Acta,2002,1596,253-268.
    [68]S.Q.Hu,L.Li,B.Li,etal.Partitioning of Bovine Serum Albumin in Polethylene Glycol (PEG)/Phosphate Aqueous Two-Phase System.Journal of South China University of Technology (Natural Science Edition),2002,30(8):64-68.
    [69]焦庆才.刘茜,陈耀祖.双水相萃取法从发酵液中分离提取 α-淀粉酶和蛋白酶的研究[J/OL].高等学校化学学报,1998,19(3):391-394.
    [70]Alvaro S.lima,Ranulfo M.Aiegre,Antonio.J.A.Meirelles.Partitioning of pectinolytic enzymes in polyethylene glycol/potassium phosphate aqueous two-phase systems[J/OL].Carbohydrate Polymers,2002,50:63-65.
    [71]Nina Bandmann,Eric Collet,Jeanette Leijen,etal.Genetic engineering of the Fusarium solani pisi lipase cutinase for enhanced partitioning in PEG-phosphate aqueous two-phase systems [J/OL].Journal of Biotechnology,2000,79:161-172.
    [72]李孱,蔡昭铃,丛威等.温度诱导双水相分离纯化细菌素工艺条件的选取与优化[J/OL].过程工程学报,2001,1(4):412-415.
    [73]巩育军,薛元英,李东升等.丝裂霉素在表面活性剂双水相中的分配规律[J/OL].应用化学,2000,17(6):657-659.
    [74]Q.K.Shang,W.Li,Q.Jia,etal.Partitioning behavior of amino acid in aqueous two-phase systems containing polyethylene glycol and phosphate buffer[J/OL].Fluid Phase Equilib.2004,219:195-203.
    [75]吴瑛.表面活性剂双水相体系及其对某些氨基酸的萃取分离[J/OL].塔里木农垦大学学报,1998,10(1):37-59.
    [76]Mos van Berlo,Marcel Ottens,Karel Ch.A.M.Luyben,etal.Partitioning behavior of amino acids in aqueous two-phase systems with recyclable volatile salts[J/OL].Journal of Chromatography B,2000,,743:317-325.
    [77]S.L.Zhai,G.S,Luo,J.G.Liu.Aqueous two-phase electrophoresis for separation of amino acids [J/OL].Separation and Purification Technology.2001,21:197-203.
    [78]Mos van Berlo,Marcel Ottens,Karel Ch.A.M.Luyben,etal.Partitioning behavior of amino acid in aqueous two-phase systems with recyclable volatile salts[J/OL].Journal of Chromatography B,2000,743:317-325.
    [79]Alexander Zaslabsky,Nellie Gulyaeva,Boris Zaslavsky.Peptides partitioning in an aqueous dextran-polyethylene glycol two-phase system[J/OL].Journal of Chromatography B,2000,743:271-279.
    [80]Christoph Grobmann,Ralf Tintinger,Jiandung Zhu,etal.Partitioning of some amino acids and low molecular peptides in aqueous two-phase systems of poly(ethylene glycol)and dipotassium hydrogen phosphate[J/OL].Fluid Phase Equilibria,1997,137:209-228.
    [81]朱自强,关怡新.李勉.双水相系统在抗生素提取和合成中的应用[J/OL].化工学报.2001.52(12):1039-1048.
    [82]秦德华.潘杰,高红.用双水相萃取丙酰螺旋霉素的研究[J].中国抗生素杂志,1998,23(2):144-147.
    [83]霍清.葛根素在双水相体系中分配特性的研究[J/OL].北京中医药大学学报.2004.27(4):51-53.
    [84]郭黎平,傅冬梅.张卓勇等.双水相萃取技术的研究进展[J].东北师大学报自然科学版,2000.32(3):34-40.
    [85]Marco Rito-Palomares.Practical application of aqueous two-phase partition to process development for the recovery of biological products[J/OL].Journal of Chromatography B,2004,807:3-11.
    [86]Simon G.Walker,Andrew Lyddiatt.Aqueous two-phase systems as an alternative process route for the fractionation of small inclusion bodies[J/OL].Journal of Chromatography B,1998,711:185-194.
    [87]Mayra Cismeros,Jorge Benavides,Carmen H.Brenes,eta.Recovery in aqueous two-phase systems of lutein produced by the green microalga Chlorella protothecoides[J/OL].Journal of Chromatography B,2004,807:105-110.
    [88]I.-Horng Pan,His-Ho Chiu,Chu-Hsu Lu,etal.Aqueous two-phase extraction as an effective tool for isolation of geniposide from gardenia fruit[J/OL].Journal of Chromatography A,2002,977:239-246.
    [89]Gerritse G,Hommes R W,Quax W J.Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain.Applied and Environmental Microbiology,1998,64:2644-2651.
    [90]Undurraga D,MarkovitsA,Erazo S.Cocoa butter equivalent through enzymic interesterification of palm oil midfraction.Process Biochemistry,2001,36:933-942.
    [91]Pabai F,Kermasha S,Morin A.Interesterification of butter fat by partially purifiedextracellular lipases from Pseudomonas putida,Aspergillus niger and Rhizopus oryzae.World J Microbiol Biotechnol 1995,11:669-677.
    [92]Fangrui M,MilfordA H.Biodiesel Prodction:a Review.Bioresource Technology,1999,70(1):1-15.
    [93]YasuhisaA,Fukuda H,Shimada Y,et al.Biofuel Production Process by Novel Biocatalysis.Journal of molecular Catalysis B:Enzymatic,2002,17:111.
    [94]Samukawa T,Kaieda M,Matsumoto T,et al.Pretreatment of immobilized Candida Antarctica Lipase for Biodiesel Fuel Production from Plant Oil.[J]Biosei Bioeng,2000,90(2):180-183.
    [95]Kazuhiro B,Masaru K,Takeshi M,et al.Whole Cell Biocatalyst for Biodiesel Fuel Production Utilizing Rhizopus Oryzae Cells Immobilized within Biomass Support Particles.Biochemistry Engineering Journal,2001,8(1):39-43.
    [96]郑毅,黄建忠,施巧琴等.中温碱性脂肪酶的研究-扩展青霉PF868变株碱性脂肪酶的纯化及其酶学性质.工业微生物.1996.26(8):15-19.
    [97]Desnuelle P.Pancreatic Lipase.Advance in Enzymology,New York:F.Nord,Interscience Publ.1961,23:129-161.
    [98]罗珊珊.Penicillium expansum PED-03固态发酵产脂肪酶及酶学性质研究:[硕士学位论文].浙江:浙江大学,2006.2.
    [99]曹淑桂.脂肪酶的底物特异性及其应用潜力.生物化学与生物物理进展.1995.1,22(1):9-13.
    [100]Caro JD,Boudouard M,Bonicel J,et al.Porcine pancreatic lipase:Completion of the primary structure.Biochimica et Biophysica Acta(BBA)-Protein Structure.1981,12,671(2):129-138.
    [101]Gǒtz F,Popp F,Korn E,et al.Complete nucleotide sequence of the lipase gene from Staphylococcus hyicus cloned in Staphylococcus carnosus.Nucleic Acids Res.1985.8,13(16):5895-5906,
    [102]Lee CY,landolo JJ.Mechanism of bacteriophage conversion of lipase activity in Staphylococcus aureus[J].Bacteriol.1985.10,164(1):288-293.
    [103]Brady L,Brzozowski AM,Derewenda ZS,et al.A serine protease triad froms the catalytic center of a triacylglycerol lipase.Nature,1990,343:767-770.
    [104]Winkler FK,D'Arcy A,Hunziker W.Structure of human pancreatic lipase.Nature.1990,343:771-774.
    [103]Kumar S,Kikon K,Upadhyay A,et al.Production,purification,and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulan BTS-3.Protein Expression and Purification,2005,5,41(1):38-44.
    [104]Winkler UK,Stuckmann M.Glycogen,hyaluronate,and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens.Journal of bacherbiology,1979,6,138:663-670.
    [105]汪家政.范明.蛋白质技术手册.北京:科学出版社。2000,77-108.
    [106]张龙翔,张庭芳,李令嫒.生化实验方法和技术(第二版).北京;高等教育出版社,1997.111-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700