非对称共面波导与微带天线的综合及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,随着无线通信需求的不断增加,宽带、双频无线通信技术得到了广泛的应用。无源器件性能的改进以及新型器件的涌现都促进了无线通信技术的不断发展。共面波导(Coplanar Waveguide, CPW)是一种十分重要的微波传输线。与微带线相比,它具有低损耗、高集成度、易于与器件串并联等优点。它的出现给单片微波集成电路及其相关领域带来了里程碑似的革命。非对称共面波导(Asymmetric Coplanar Waveguide, ACPW)作为CPW的扩展,也得到了越来越多的关注。在ACPW器件的研究与设计中,ACPW的综合是不可逾越的。
     天线作为无线通信系统必不可少的部件,其性能好坏将对整个系统的性能产生重大的影响。微带天线以其体积小、重量轻、成本低等优点而被广泛应用。由于无线通信系统对微带天线的要求是多种多样的,因此需要研制相应的微带天线。
     在国家自然科学基金、交通运输部交通应用基础研究项目和中央高校基本科研业务费的资助下,本文对ACPW和单馈切角圆极化微带天线的综合模型、基于ACPW的双频带通滤波器和宽带定向耦合器、满足工程应用的新型微带天线进行了深入的研究。具体内容如下:
     (1)根据保角变换理论推导了有限介质厚度ACPW和介质覆盖金属背敷ACPW的准静态分析公式。以此为基础并结合神经网络,构造了它们的综合模型,并通过保角变换分析、仿真与测试等实验数据验证了该模型的有效性。此外,为了提高介质覆盖金属背敷ACPW综合模型的计算精度,提出了一种将遗传算法(Genetic Algorithm, GA)与Levenberg-Marquardt (LM)算法相结合的混合算法(GA-LM混合算法)。采用该混合算法进行训练可使综合模型的最大相对误差小于8.1%,而采用已有算法进行训练其最大相对误差大于15%。
     (2)提出了一种基于非对称阶跃阻抗ACPW i皆振器的双频带通滤波器。与传统阶跃阻抗双频带通滤波器相比,在第一通带两侧分别实现了一个额外的传输零点,提高了滤波器的频率选择性。此外,提出了一种CPW嵌入式开路谐振器,并应用于滤波器的输入和输出端,实现了独立可控的传输零点,显著地提高了滤波器的性能。
     (3)推导了平行耦合线定向耦合器实现理想匹配与隔离的必要条件。为了满足该条件,提出了一种基于ACPW的电容性相速补偿技术。以此为基础,研制了一个宽边耦合CPW定向耦合器,其隔离度大于20 dB的相对带宽从25%提高到了61.8%。为进一步提高隔离度,又提出了一种将缺陷地结构(Defected Ground Structure, DGS)与ACPW相结合的改进方案。改进后宽边耦合CPW定向耦合器的最大隔离度为57.2 dB,隔离度大于20 dB的相对带宽达81.1%。
     (4)提出了两个基于神经网络的微带天线综合模型。模型一应用于传统单馈切角圆极化微带天线,模型二应用于可调谐单馈切角圆极化微带天线。该模型可计算出单馈切角圆极化微带天线的两个重要设计参量(正方形贴片大小和切角尺寸),显著地提高了天线的设计效率。电磁仿真和加工测试验证了该模型的有效性。
     (5)提出了一种低交叉极化低驻波比宽带线极化微带天线。通过采用叠层贴片配置和二维蜿蜒带条馈电技术,将微带天线电压驻波比小于1.2的阻抗带宽提高到了22%(804-1002 MHz),在此频率范围内E面和H面交叉极化电平都小于-20 dB。此外,对该微带天线进行了参数化研究,给出了设计指南。
     (6)提出了水平蜿蜒带条馈电技术,采用该技术可实现良好的阻抗匹配和得到对称的辐射方向性图。以此为基础,针对超高频射频识别(Radio Frequency Identification, RFID)读写器研制了两个单馈宽带圆极化叠层微带天线,其轴比小于3 dB的圆极化带宽分别为10.8%(838-934 MHz)和13.5%(838-959 MHz)在圆极化工作带宽内电压驻波比均小于1.5,增益都大于8.5 dBi,天线指标满足工程应用。
     (7)提出了一种应用于海事卫星通信BGAN终端的2×2连续旋转微带天线阵。该天线阵引入了不等输入阻抗天线单元和ACPW串联馈电网络。该天线单元为切角圆极化微带天线,其馈电结构为三维蜿蜒带条,调整馈电带条的物理尺寸可非常容易地实现不等输入阻抗且不影响其辐射特性。与微带串联馈电网络相比,ACPW串联馈电网络具有较低的辐射损耗,并且与不等输入阻抗天线单元相结合,提高了馈电网络的设计灵活性。测试结果表明,电压驻波比小于1.5的阻抗带宽达40.5%,轴比小于3 dB的圆极化带宽达25.6%,在BGAN系统工作频率范围内天线增益大于11.6 dBi。所设计的天线阵满足了BGAN终端的应用要求,具有良好的应用前景。
In resent years, broadband or dual-band wireless communication technologies are widely adopted due to the need of wireless communications. The improvement of the passive components and the emergence of the new devices promote the continuous development of wireless communication technology. Coplanar waveguide (CPW) is an important microwave transmission line. It offers several advantages over microstrip line, such as low radiation losses, high circuit density, and ease of making series and shunt connections. The emergence of CPW arouses a landmark revolution of monolithic microwave integrated circuits (MMIC) and related fields. As an extension of CPW, asymmetric coplanar waveguide (ACPW) has got more and more attention. The synthesis of ACPW is the basis of ACPW component research and design, which is very important.
     Antennas are the essential components of wireless communication systems. The performance of antenna has a significant effect on the performance of the whole system. Microstrip antennas are widely used due to the merits of small volume, light weight, low cost. The specifications of microstrip antennas for each wireless communication system are different, so it is necessary to design corresponding microstrip antennas.
     Under the supports of the National Natural Science Foundation of China, the Traffic Applied Basic Research Project of the Ministry of Transport of China, and the Fundamental Research Funds for the Central Universities, this dissertation is devoted to the researches on synthesis models for ACPW and single-feed truncated-corner circularly polarized microstrip antennas (CPMA), ACPW-based dual-band bandpass filters and broadband directional couplers, and novel microstrip antennas suitable for engineering application. Details are as follows:
     (1) The quasi-static analysis formulae for ACPWFDT (ACPW with finite dielectric thickness) and ACPWCBSO (ACPW with conductor backing and substrate overlaying) are deduced with the conformal mapping theory (CMT). Using the CMT analysis data sets and artificial neural networks (ANNs), synthesis models for ACPWFDT and ACPWCBSO are constructed. The synthesis models are validated by the comparison with the CMT analysis, electromagnetic simulation, and measurement. To improve the calculation accuracy of synthesis models for ACPWCBSO, a novel hybrid algorithm combining genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm (hybrid GA-LM algorithm) is proposed. Using the hybrid GA-LM algorithm to train the synthesis models, the maximal relative error is less than 8.1%, which is smaller compared with that using the existing algorithms (greater than 15%).
     (2) Dual-band bandpass filters with asymmetric stepped-impedance ACPW resonators are proposed. Compared to traditional stepped-impedance dual-band bandpass filters, the proposed filters have two additional transmission zeros near the first passband, which improves frequency selectivity of the filter. Furthermore, an open-circuit resonator embedded into CPW is proposed and inserted into the input/output port of filter to achieve one or two independent controllable transmission zeros as a result of significantly improving the performance of the filter.
     (3) The conditions of the realization of a parallel coupled line directional coupler with ideal match and isolation are deduced. To meet the condition, a capacitive phase velocities compensation technique based on ACPW is proposed. Using the technique, a broadside-coupled CPW directional coupler is designed. The bandwidth (isolation more than 20 dB) of the designed coupler is improved from 25% to 61.8%. To further enhance the isolation of the coupler, an improved scheme combining defected ground structure (DGS) and ACPW compensation technique is proposed. Using the improved scheme, the bandwidth (isolation more than 20 dB) is enhanced to be 81.1% with a best isolation of 57.2 dB.
     (4) Two ANN-based synthesis models for microstrip antenna are proposed, one is applied to the traditional single-feed truncated-corner CPMA, and another is used to the tunable single-feed corner-truncated CPMA. Two key design parameters of the corner-truncated patch can be directly obtained with the proposed synthesis models, which significantly improve the antenna design efficiency. The models are validated by the comparison with electromagnetic simulation and measurement.
     (5) A broadband linearly-polarized microstrip antenna with low cross-polarization and low voltage standing wave ratio (VSWR) is proposed. By means of the stacked patch configuration and two-dimensional meander strip feed technique, the VSWR<1.2 bandwidth of the microstrip antenna is enhanced to be 22% from 804 to 1002 MHz. Furthermore, the antenna has a cross-polarization level of less than -20 dB in both E-and H-planes. In addition, a parametric study and a design guideline of the proposed antenna are presented.
     (6) A horizontally meandered strip (HMS) feed technique is proposed to achieve good impedance match and symmetrical broadside radiation patterns. Based on the feed technique, two single-feed broadband circularly polarized (CP) stacked microstrip antennas are designed for ultrahigh frequency (UHF) radio frequency identification (RFID) applications. The 3-dB axial ratio (AR) bandwidths of the proposed antennas are 10.8% (838-934 MHz) and 13.5%(838-959 MHz). In CP operation bandwidths, the VSWR is less than 1.5, and antenna gain is larger than 8.5 dBi, which meet engineering applications.
     (7) A novel 2×2 sequentially rotated microstrip antenna array with unequal input impedance elements and a conductor-backed ACPW series-feed network is proposed. The corner truncated patch element is fed by a three-dimensional meander strip, which can easily control the input impedance and has slight effects on the radiation performance. Compared to micro strip-line feed networks, the radiation loss of the proposed feed network is lower. The measured results show that the proposed antenna array has an impedance bandwidth (VSWR<1.5) of about 40.5%, a 3-dB AR bandwidth of about 25.6%, and a gain-level larger than 11.6 dBi across the broadband global area network (BGAN) operating bands. Therefore, the proposed antenna array can be a good candidate for Inmarsat BGAN portable terminal applications.
引文
[1]栾秀珍,房少军,金红,等.微波技术.北京:北京邮电大学出版社,2009.
    [2]L. Wolff. Coplanar Microwave Integrated Circuits. New York:John Wiley & Sons, 2006.
    [3]阮成礼.悬置共面波导的特性阻抗.电子科技大学学报,1999,28(1):32-36.
    [4]阮成礼.有限尺寸介质基片上的共面波导.电子学报,2000,28(3):104-105.
    [5]R. N. Simons. Coplanar Waveguide Circuits, Components, and Systems. New York:John Wiley & Sons,2001.
    [6]Y. K. Kuo, C. H. Wang, C. H. Chen. Novel reduced-size coplanar-waveguide bandpass filters. IEEE Microwave and Wireless Components Letters,2001,11(2):65-67.
    [7]H. L. Zhang, K.J. Chen. Miniaturized coplanar waveguide bandpass filters using multisection stepped-impedance resonators. IEEE Transactions on Microwave Theory and Techniques,2006,54(3):1090-1095.
    [8]D. Chen, C. H. Cheng. Coplanar waveguide bandpass filter using quarter-wavelength resonators. Electronics Letters,2007,43(9):526-527.
    [9]C. C. Wang, H. C. Chiu, T. G. Ma. A slow-wave multilayer synthesized coplanar waveguide and its applications to rat-race coupler and dual-mode filter. IEEE Transactions on Microwave Theory and Techniques,2011,59(7):1719-1729.
    [10]C. P. Wen. Coplanar waveguide directional couplers. IEEE Transactions on Microwave Theory and Techniques,1970,18(6):318-322.
    [11]F. Tefiku, E. Yamashita, J. Funada. Novel directional couplers using broadside-coupled coplanar waveguides for double-sided printed antennas. IEEE Transactions on Microwave Theory and Techniques,1996,44(2):275-282.
    [12]M. Nedil, T. A. Denidni, L. Talbi. CPW multilayer slot-coupled directional coupler. Electronics Letters,2005,41(12):706-707.
    [13]D. J. Kim, Y. Jeong, J. H. Kang, et al. A novel design of high directivity CPW directional coupler design by using DGS. IEEE MTT-S International Microwave Symposium Digest,2005:1239-1242.
    [14]S.G. Mao, M.S. Wu. A novel 3-dB directional coupler with broad bandwidth and compact size using composite right/left-handed coplanar waveguides. IEEE Microwave and Wireless Components Letters,2007,17(5):331-333.
    [15]C. P. Chang, J. C. Chiu, H. Y. Chiu, et al. A 3-dB quadrature coupler using broadside-coupled coplanar waveguides. IEEE Microwave and Wireless Components Letters,2008,13(3):191-193.
    [16]V. F. Hanna, D. Thebault. Analysis of asymmetrical coplanar waveguides. International Journal of Electronics,1981,50(3):221-224.
    [17]章文勋:译.天线(第3版).北京:电子工业出版社,2005.
    [18]钟顺时.微带天线理论与应用.西安:西安电子科技大学出版社,1991.
    [19]H. M. Chen, Y. F. Lin, T. W. Chiou. Broadband circularly polarized aperture-coupled microstrip antenna mounted in a 2.45 GHz wireless communication system. Microwave and Optical Technology Letters,2001,28(2):100-101.
    [20]T. A. Denidni, L. Talbi. High gain microstrip antenna design for broadband wireless applications. International Journal of RF and Microwave Computer-Aided Engineering,2003,13(6):511-517.
    [21]V. P. Sarin, M.S. Nishamol, D. Tony. A wideband stacked offset microstrip antenna with improved gain and low cross polarization. IEEE Transactions on Antennas and Propagation,2011,59(4):1376-1379.
    [22]R. Want. An introduction to RFID technology. IEEE Pervasive Computing,2006, 5(1):25-33.
    [23]谢智东,常江,周辉Inmarsat BGAN系统(上).数字通信世界,2007,3:88-91.
    [24]K. V.S. Rao, P. V. Nikitin, S. F. Lam. Antenna design for UHF RFID tags:a review and a practical application. IEEE Transactions on Antennas and Propagation,2005, 53 (12):3870-3876.
    [25]Y. F. Lin, H. M. Chen, F. H. Chu, et al. Bidirectional radiated circularly polarised square-ring antenna for portable RFID reader. Electronics Letters,2008,44(24): 1383-1384.
    "26] http://www.gsl.org/docs/epcglobal/UHF_Regulations.pdf
    [27]谢智东,常江,周辉.Inmarsat BGAN系统(下).数字通信世界,2007,4:88-90.
    [28]V. F. Hanna, D. Thebault. Theoretical and experimental investigation of asymmetric coplanar waveguides. IEEE Transactions on Microwave Theory and Techniques, 1984,32(12):1649-1651.
    [29]T. Kitazawa, R. Mittra. Quasi-static characteristic of asymmetrical and coupled coplanar type transmission lines. IEEE Transactions on Microwave Theory and Techniques,1985,33(10):771-778.
    [30]T. Kitazawa, Y. Hayashi. Analysis of asymmetrical coplanar waveguide and coplanar strip lines with anisotropic substrate. Electronics Letters,1985,21(21): 986-987.
    [31]J. J. Chang, W. S. Wang. Characteristics of asymmetrical conductor-backed coplanar waveguides. International Journal of Electronics,1992,72(4):641-650.
    [32]G. Ghione. A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs. IEEE Transactions on Microwave Theory and Techniques,1993,41(9):1499-1510.
    [33]N.I. Dib, M. Gupta, G. E. Ponchak, et al. Characterization of asymmetric coplanar waveguide discontinuities. IEEE Transactions on Microwave Theory and Techniques,1993, 41(9):1549-1558.
    [34]C. Karpuz, A. Gorur, H. Gorur, et al. Fast and simple analytical expressions for quasistatic parameters of asymmetric coplanar lines. Microwave and Optical Technology Letters,1995,9(6):334-336.
    [35]A. Gorur, C. Karpuz, M. Alkan. Quasistatic TEM characteristics of overlayed supported asymmetric coplanar waveguides, International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering,1996,6(5):297-304.
    [36]S. J. Fang, B. S. Wang. Analysis of asymmetric coplanar waveguide with conductor backing. IEEE Transactions on Microwave Theory and Techniques,1999,47(2):238-240.
    [37]C. Karpuz, A. Gorur. Effect of upper shielding and conductor backing on quasistatic parameters of asymmetric coplanar waveguides, International Journal of RF and Microwave Computer-Aided Engineering,1999,9(5):394-402.
    [38]A. Gorur, C. Karpuz. Effect of finite ground-plane width on quasistatic parameters of asymmetric coplanar waveguides. Microwave and Optical Technology Letters,1999,22(1):63-68.
    [39]A. Gorur, C. Karpuz. Effect of finite and different ground-plane widths on quasistatic parameters of asymmetrical coplanar waveguides. International Journal of RF and Microwave Computer-Aided Engineering,2000,10(6):383-389.
    [40]房少军,王百锁.面向CAD的非对称共面波导模型及分析.电子学报,2002,30(6):804-807.
    [41]G. H. Park, Y. B. Park. Capacitance of asymmetric conductor-backed coplanar waveguides. Journal of Electromagnetic Waves and Applications,2010,24(13): 1721-1729.
    [42]C. Yildiz, S. Sagiroglu,O. Saracoglu. Neural models for coplanar waveguides with a finite dielectric thickness. International Journal of RF and Microwave Computer-Aided Engineering,1999,9(5):394-402.
    [43]C. Yildiz, S. Gultekin, K. Guney, et al. Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor. AEU International Journal of Electronics and Communications,2002,56(6):396-406.
    [44]M. Turkmen, C. Yildiz, K. Guney, et al. Comparison of adaptive-network-based fuzzy inference system models for analysis of conductor-backed asymmetric coplanar waveguides. Progress In Electromagnetics Research M,2009,8:1-13.
    [45]陈鹏,房少军.时域有限差分法计算分析非对称共面波导色散特性.电子学报,2006,34(9):1610-1612.
    [46]范目杰,房少军,陈鹏,等.非对称共面波导色散特性的时域多分辨分析.大连海事大学学报,2007,33(2):49-52.
    [47]M. J. Fan, S. J. Fang, P. Chen. Application of ADI-MRTD method on numerical compution in electromagnetic field. Proceedings of 4th International Conference on Wireless Communications, Networking and Mobile Computing,2008:1-3.
    [48]S. Q. Fu, S. J. Fang, Z. B. Wang, et al. Broadband circularly polarized slot antenna array fed by asymmetric CPW for L-band applications. IEEE Antennas and Wireless Propagation Letters,2009,8:1014-1016.
    [49]陈鹏,房少军,范木杰,等.非对称共面波导一槽线转接器S参数的分析与计算.大连海事大学学报,2009,35(1):36-38.
    [50]陈鹏,李晓明,房少军,等.一种超宽带非对称共面波导—槽线转接器的研究.电波科学学报,2010,25(3):559-563.
    [51]X.M. Li, S. J. Fang, S. Q. Fu. Ultra-wideband bandpass filter using hybrid microstrip/ACPW structures. Proceedings of 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2009:1147-1149.
    [52]范木杰,房少军,李晓明.ADI-MRTD算法在新型非对称共面波导滤波器中的应用.吉林大学学报(理学版),2010,25(3):559-563.
    [53]李晓明.非对称共面波导等阻抗特性及其应用的研究:(博士学位论文).大连:大连海事大学,2011.
    [54]范木杰,房少军,苏晓宏.一种新型非对称共面波导滤波器的设计与仿真.太原理工大学学报,2011,42(2):138-140.
    [55]裴慧.具有缺陷地结构的非对称共面波导滤波器研究:(硕士学位论文).大连:大连海事大学,2011.
    [56]S. Kaya, K. Guney, C. Yildiz, et al. New and accurate synthesis formulas for asymmetric conductor-backed coplanar waveguides, Microwave and Optical Technology Letters,2011,53(1):211-216.
    [57]S. Kaya, K. Guney. New and accurate synthesis formulas for asymmetric coplanar waveguides, Microwave and Optical Technology Letters,2011,53(9):1991-1996.
    [58]X. H. Guan, Z. W. Ma, P. Cai, et al. A two-pole 900/1800 MHz microstrip filter for dual-band applications, Microwave and Optical Technology Letters,2006,48(7): 1388-1391.
    [59]X. Y. Zhang, J. X. Chen, Q. Xue, et al. Dual-band bandpass filters using stub-loaded resonators. IEEE Microwave and Wireless Components Letters,2007,17(8): 583-585.
    [60]P. Mondal, M. K. Mandal. Design of dual-band bandpass filters using stub-loaded open-loop resonators. IEEE Transactions on Microwave Theory and Techniques,2008, 56(1):150-155.
    [61]S. G. Mao, M.S. Wu, Y. Z. Chueh. Design of composite right/left-handed coplanar-waveguide bandpass and dual-passband filters. IEEE Transactions on Microwave Theory and Techniques,2006,54(9):3543-3549.
    [62]S. G. Mao, Y. Z. Chueh, M. S. Wu. Asymmetric dual-passband coplanar waveguide filters using periodic composite right/left-handed and quarter-wavelength stubs. IEEE Microwave and Wireless Components Letters,2007,17(6):418-420.
    [63]J. C. Liu, J. W. Wang, C. P. Kuei, et al. CPW-fed dual-mode resonators with double-ring and double-square-loop for dual-band applications. Microwave and Optical Technology Letters,2009,51(9):2010-2015.
    [64]E. E. Djoumessi, K. Wu. Multilayer dual-mode dual-bandpass filter. IEEE Microwave and Wireless Components Letters,2009,19(1):21-23.
    [65]S. Fu, B. Wu, J. Chen, et al. Novel second-order dual-mode dual-band filters using capacitance loaded square loop resonator. IEEE Transactions on Microwave Theory and Techniques,2012,60(3):477-483.
    [66]H. Chen, Y. X. Zhang. Dual-band filter using composite microstrip/CPW structure. Electronics Letters,2008,44(16):979-980.
    [67]C. H. Lee, C. G. Hsu, Y. C. Chen. Design of dual-band bandpass filter incorporating tri-section SIRs and CPW SIRs. Journal of Microwaves, Optoelectronics and Electromagnetic Applications,2009,8(1):13-18.
    [68]G. S. Huang, C. H. Chen. Dual-band balun bandpass filter with hybrid structure. IEEE Microwave and Wireless Components Letters,2011,21(7):356-358.
    [69]C. Y. Hung, C. S. Ye, R. Y. Yang, et al. A compact-size and high isolation dual-band coplanar-waveguide bandpass filter. Proceedings of IEEE/MTT-S International Microwave Symposium,2007:925-928.
    [70]K. Satoh, Y. Takagi, S. Narahashi. New CPW quarter-wavelength resonator with open stubs for multipole dual-band bandpass filter. Proceedings of the 38th European Microwave Conference,2008:365-368.
    [71]J. Shi, J. X. Chen, Q. Xue. A quasi-elliptic function dual-band bandpass filter stacking spiral-shaped CPW defected ground structure and back-side coupled strip lines. IEEE Microwave and Wireless Components Letters,2007,17(6):430-432.
    [72]M. A. Sanchez-Soriano, E. Bronchalo, G. Torregrosa-Penalva. Dual band bandpass filters based on strong coupling directional couplers. Proceedings of the 39th European Microwave Conference,2009:1401-1404.
    [73]A. A. Omar,0. H. Abu Safia, M. C. Scardelletti. Design of dual-band bandpass coplanar waveguide filter, International Journal of Electronics,2011,98(3): 311-322.
    [74]C. H. Weng, H. W. Liu, C. H. Ku, et al. Dual circular polarisation microstrip array antenna for WLAN/WiMAX applications, Electronics Letters,2010,46(9):609-611.
    [75]I. Malo-Gomez, J. D. Gallego-Puyol, C. Diez-Gonzalez, et al. Cryogenic hybrid Coupler for ultra-low-noise radio astronomy balanced amplifiers. IEEE Transactions on Microwave Theory and Techniques,2009,57(12):3239-3245.
    [76]W. M. Fathelbab. Synthesis of cul-de-sac filter networks utilizing hybrid couplers. IEEE Microwave and Wireless Components Letters,2007,17(5):334-336.
    [77]C. L. Liao, C. H. Chen. A novel coplanar-waveguide directional coupler with finite-extent backed conductor. IEEE Transactions on Microwave Theory and Techniques, 2003,51(1):200-206.
    [78]C. Y. Kuo, A. Y. K. Chen, C.M. Lee, et al. Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process. Electronics Letters,2011,47(16):924-925.
    [79]C. C. Wang, C. H. Lai, T. G. Ma. Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides. IEEE Transactions on Microwave Theory and Techniques, 2010,58(8):2266-2276.
    [80]袁乃昌,何建国,赫崇俊,等.单片集成传输线——共面耦合线、共面耦合带线及矩形微屏蔽的共面耦合线的新研究.国防科技大学学报,1995,17(4):1-7.
    [81]G. A. Deschamps. Microstrip microwave antenna. Proceedings of the 3rd USAF Symposium on Antennas,1953.
    [82]J.Q. Howell. Microstrip antennas. Proceedings of IEEE International Symposium Antennas and Propagation,1972:177-180.
    [83]R. E. Munson. Conformal microstrip antennas and microstrip phased arrays. IEEE Transactions on Antennas and Propagation,1974,22(1):74-78.
    [84]I. J. Bahl, P. Bhartia. Microstrip Antennas. Dedham:Artech House,1980.
    [85]J. R. James, P. S. Hall, C. Wood. Microstrip Antenna-Theory and Design. London: Peter Peregrinus,1981.
    [86]F. Abboud, J. P. Damiano, A. Papiernik. Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD. IEE Proceedings H Microwaves, Antennas and Propagation,1988,135(5):323-326.
    [87]F. Abboud, J. P. Damiano, A. Papiernik. Accurate model for the input impedance of coax-fed rectangular microstrip antenna with and without airgaps. Proceedings of Sixth International Conference on Antennas and Propagation,1989:102-106.
    [88]F. Abboud, J. P. Damiano, A. Papiernik. A new model for calculating the input impedance of coax-fed circular microstrip antennas with and without air gaps. IEEE Transactions on Antennas and Propagation,1990,38(11):1882-1885.
    [89]D. R. Jackson, N. G. Alexopoulos. Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch. IEEE Transactions on Antennas and Propagation,1991,39(3):407-410.
    [90]D. R. Jackson, S. A. Long, J. T. Williams, et al. Computer-aided design of rectangular microstrip antennas. Chapter 5 of Advances in Microstrip and Printed Antennas, edited by K. F. Lee and W. Chen, New York:John Wiley & Sons,1997.
    [91]M. Kara. The resonant frequency of rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Letters,1996,11 (2): 55-59.
    [92]M. Kara. A simple technique for the calculation of the bandwidth of rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Letters,1996,12(1):16-20.
    [93]M. Kara. Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates. Microwave and Optical Technology Letters,1996,12(3):131-136.
    [94]M. Kara. The calculation of the input resistance of rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Letters,1996,13(3):137-142.
    [95]M. Kara. An efficient technique for the computation of the input resistance of rectangular microstrip antenna elements with thick substrates. Microwave and Optical Technology Letters,1996,13(6):363-369.
    [96]M. Kara. Formulas for the computation of the physical properties of rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Letters,1996,12(4):234-239.
    [97]R. K. Mishra, A. Patnaik. Neural network-based CAD model for the design of square-patch antennas. IEEE Transactions on Antennas and Propagation,1998,46(12): 1890-1891.
    [98]R. K. Mishra, A. Patnaik. Design of circular microstrip antenna using neural networks. IETE Journal of Research,1998,44(1-2):35-39.
    [99]S. Sagiroglu, K. Guney, M. Erler. Resonant frequency calculation for circular microstrip antennas using artificial neural networks. International Journal of RF and Microwave Computer-Aided Engineering,1998,8(3):270-277.
    [100]D. Karaboga, K. Guney, S. Sagiroglu, et al. Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proceedings:Microwaves, Antennas and Propagation,1999,146(2):155-159.
    [101]S. Sagiroglu, K. Guney, M. Erler. Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons. International Journal of RF and Microwave Computer-Aided Engineering, 1999,9(3):277-286.
    [102]S.S. Pattnaik, D. C. Panda, S. Devi. Input impedance of rectangular microstrip patch antenna using artificial neural networks. Microwave and Optical Technology Letters,2002,32(5):381-383.
    [103]S. S. Pattnaik, D. C. Panda, S. Devi. Radiation resistance of coax-fed rectangular microstrip patch antenna with the use of artificial neural networks. Microwave and Optical Technology Letters,2002,34(1):51-53.
    [104]K. Guney, N. Sarikaya. Artificial neural networks for calculating the input resistance of circular microstrip antennas. Microwave and Optical Technology Letters, 2003,37(2):107-111.
    [105]S. S. Pattnaik, B. Khuntia, D. C. Panda, et al. Application of a genetic algorithm in an artificial neural network to calculate the resonant frequency of a tunable single-short ing-post rectangular-patch antenna. International Journal of RF and Microwave Computer-Aided Engineering,2005,15(1):140-144.
    [106]K. Guney, N. Sarikaya. A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas. IEEE Transactions on Antennas and Propagation,2007,55(3):659-668.
    [107]M. Kara. Empirical formulas for the computation of the physical properties of rectangular microstrip antenna elements with thick substrates, Microwave and Optical Technology Letters,1997,14(2):115-121.
    [108]A. Akdagli. CAD formulas for patch dimensions of rectangular microstrip antennas with various substrate thicknesses. Microwave and Optical Technology Letters, 2007,49(9):2197-2201.
    [109]V. V. Thakare, P. Singhal. Microstrip antenna design using artificial neural networks. International Journal of RF and Microwave Computer-Aided Engineering,2010, 20(1):76-86.
    [110]D. C. Panda, S. S. Pattnaik, S. Devi, et al. Application of FIR-neural network on finite difference time domain technique to calculate input impedance of microstrip patch antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2010,20(2):158-162.
    [111]K. Chemachema, A. Benghalia. Input impedance calculation for coax-fed rectangular microstrip antenna with and without airgaps using various algorithms. Proceedings of Progress in Electromagnetics Research Symposium,2011:924-927.
    [112]A. Petosa, A. Ittipiboon, N. Gagnon. Suppression of unwanted probe radiation in wideband probe-fed microstrip patches. Electronics Letters,1999,35 (5):355-357.
    [113]W. H. Hsu, K. L. Wong. A dual capacitively fed broadband patch antenna with reduced cross-polarization radiation. Microwave and Optical Technology Letters,2000, 26(3):169-171.
    [114]W. H. Hsu, K. L. Wong. Broadband probe-fed patch antenna with a U-shaped ground plane for cross-polarization reduction. IEEE Transactions on Antennas and Propagation, 2002,50(3):362-355.
    [115]Z.N. Chen, M. Y. W. Chia. Broad-band suspended probe-fed plate antenna with low cross-polarization levels. IEEE Transactions on Antennas and Propagation,2003,51(2): 345-346.
    [116]H. W. Lai, K. M. Luk. Wideband stacked patch antenna fed by meandering probe. Electronics Letters,2004,41(6):297-298.
    [117]H.W. Lai, K. M. Luk. Wideband patch antenna with low cross-polarisation. Electronics Letters,2004,40(3):159-160.
    [118]P. Li, H. W. Lai, K. M. Luk, et al. A wideband patch antenna with cross-polarization suppression. IEEE Antennas and Wireless Propagation Letters,2004,3: 211-214.
    [119]H. W. Lai, K. M. Luk. Design and study of wide-band patch antenna fed by meandering probe. IEEE Transactions on Antennas and Propagation,2006,54(2):564-571.
    [120]J. M. Lee, N.S. Kim, C. S. Pyo. A circular polarized metallic patch antenna for RFID reader. Proceedings of Asia-Pacific Conference on Communications,2005:116-118.
    [121]S. C. Kim, H. Park, D. Lee, et al. A novel Design of an UHF RFID Reader Antenna for PDA. Proceedings of Asia-Pacific Microwave Conference,2006:1471-1473.
    [122]T. N. Chang, J. M. Lin. A novel circularly polarized patch antenna with a serial multislot type of loading. IEEE Transactions on Antennas and Propagation,2007,55(11): 3345-3348.
    [123]Z. B. Wang, S. J. Fang, S. Q. Fu. A low cost miniaturized circularly polarized antenna for UHF radio frequency identification reader applications. Microwave and Optical Technology Letters,2009,51(10):2382-2384.
    [124]Nasimuddin, X. M. Qing, Z. N. Chen. Compact circularly polarized microstrip antenna for RFID handheld reader applications. Proceedings of Asia-Pacific Microwave Conference,2009:1950-1953.
    [125]Nasimuddin, Z. N. Chen, X.M. Qing. Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications. IEEE Transactions on Antennas and Propagation,2010,58(12):3821-3828.
    [126]H. L. Chung, X. M. Qing, Z.N. Chen. A broadband circularly polarized stacked probe-fed patch antenna for UHF RFID applications, International Journal of Antennas and Propagation,2007:1-8.
    [127]H. W. Kwa, X. M. Qing, Z. N. Chen. Broadband single-fed single-Patch circularly polarized antenna for UHF RFID applications. Proceeding of IEEE Antennas and Propagation Society International Symposium,2008:1-4.
    [128]Z. N. Chen, X. M. Qing, H. L. Chung. A universal UHF RFID reader antenna. IEEE Transactions on Microwave Theory and Techniques,2009,57(5):1275-1282.
    [129]X. Chen, G. Fu, S. X. Gong. Circularly polarized stacked annular-ring microstrip antenna with integrated feeding network for UHF RFID readers. IEEE Antennas and Wireless Propagation Letters,2010,9:542-545.
    [130]P. Y. Lau, K. K.O Yung, E. K. N. Yung. A low-cost printed CP patch antenna for RFID smart bookshelf in library. IEEE Transactions on Industrial Electronics,2010,57(5): 1583-1589.
    [131]张亚斌,黎滨洪,刘毅军.国际海事卫星地面终端天线阵单元的设计.上海交通大学学报,2004,38(5):722-724.
    [132]T. Noro, Y. Kazama. A novel wideband circular polarization microstrip antenna —combination of different shaped antenna element. Proceedings of IEEE AP-S International Symposium,2005:467-470.
    [133]李雁,张华.一种用于海事卫星通信的宽带圆极化微带天线设计.中国电子科学研究院学报,2007,2(5):544-547.
    [134]傅世强,房少军,吕善伟.一种低成本的海事卫星移动终端天线.电波科学学报,2008,23(2):310-314.
    [135]傅世强.圆极化微带天线及其在海事卫星通信中的应用:(博士学位论文).大连:大连海事大学,2010.
    [136]S. Q. Fu, S. J. Fang, Z. B. Wang, et al. A wideband circular polarization antenna for portable INMARSAT BGAN terminal applications. Microwave and Optical Technology Letters,2009,51(10):2354-2357.
    [137]韩力群.人工神经网络教程.北京:北京邮电大学出版社,2006.
    [138]侯媛彬,杜京义,汪梅.神经网络.西安:西安电子科技大学出版社,2007.
    [139]朱凯,王正林.精通MATLAB(?)神经网络.北京:电子工业出版社,2010.
    [140]C. Yildiz, K. Guney, M. Turkmen, et al. Neural models for coplanar strip line synthesis. Progress In Electromagnetics Research,2007,69:127-144.
    [141]K. Guney, C. Yildiz, S. Kaya, et al. Neural models for the V-shaped conductor-backed coplanar waveguides. Microwave and Optical Technology Letters,2011,49(6): 1294-1299.
    [142]史峰,王小川,郁磊,等.MATLAB神经网络30个案例分析.北京:北京航空航天大学出版社,2010.
    [143]R. B. C. Prudencio, T. B. Ludermir. Neural network hybrid learning:Genetic Algorithms & Levenberg-Marquardt. Proceedings of 26th annual conference of the Gesellschaft for Classification,2003:464-472.
    [144]李静.基于神经网络和遗传算法的Adhoc网络故障管理模型研究:(硕士学位论文).成都:电子科技大学,2005.
    [145]张长胜,欧阳丹彤,岳娜,等.一种基于遗传算法和LM算法的混合学习算法.吉林大学学报(理学版),2008,46(4):675-680.
    [146]H. Kabir, L. Zhang, M. Yu, et al. Smart modeling of microwave devices. IEEE Microwave Magazine,2010,11(3):105-118.
    [147]C. Yildiz, M. Turkmen. New and very simple CAD models for coplanar waveguide synthesis, Microwave and Optical Technology Letters,2004,41(1):49-53.
    [148]C. Yildiz, M. Turkmen. Synthesis formulas for conductor-backed coplanar waveguide. Microwave and Optical Technology Letters,2008,50(4):1115-1117.
    [149]C.M. Tsai, H. M. Lee, C. C. Tsai. Planar filter design with fully controllable second passband. IEEE Transactions on Microwave Theory and Techniques,2005,53 (11): 3429-3439.
    [150]甘本祓,吴万春.现代微波滤波器的结构与设计.北京:科学出版社,1973.
    [151]官雪辉.无线通信微波双频带通滤波器研究:(博士学位论文).上海:上海大学,2006.
    [152]徐兴福.ADS2008射频电路设计与仿真实例.北京:电子工业出版社,2009.
    [153]谢拥军,刘莹,李磊.HFSS原理与工程应用.北京:科学出版社,2009.
    [154]C. S. Kim, J. S. Park, D. Ahn. A novel 1-D periodic defected ground structure for planar circuits. IEEE Microwave and Guided Wave Letters,2000,10(4):131-133.
    [155]M. Haneishi, S. Yoshida. A design method of circularly polarized rectangular microstrip antenna by one-feed point. Electronics and Communications in Japan,1981, 64(4):46-54.
    [156]同济大学应用数学系主编.高等数学(第五版).北京:高等教育出版社,2002.
    [157]E.O. Hammerstad. Equations for microstrip circuits design. Proceedings of 5th Microwave Conference,1975:268-272.
    [158]M. V. Schneider. Microstrip lines for microwave integrated circuits. Bell System Technical Journal,1969,48(5):1421-1444.
    [159]S.S. Zhong, G. Liu, G. Qasim. Closed form expressions for resonant frequency of rectangular patch antennas with multidielectric layers. IEEE Transactions on Antennas and Propagation,1994,42(9):1360-1363.
    [160]M. Kara. Design considerations for rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Letters,1998,19(2): 111-121.
    [161]Z. F. Liu, P. S. Kooi, L. W. Li, et al. A method for designing broad-band microstrip antennas in multilayered planar structures. IEEE Transactions on Antennas and Propagation,1999,47(9):1416-1420.
    [162]R. B. Waterhouse. Design of probe-fed stacked patches. IEEE Transactions on Antennas and Propagation.1999,47(12):1780-1784.
    [163]G. Kumar, K. C. Gupta. Broadband microstrip antennas using additional resonators gap-coupled to the radiating edges. IEEE Transactions on Antennas and Propagation, 1984,32(12):1375-1379.
    [164]R. Chair, C. L. Mak, K. F. Lee, et al. Miniature wide-band half U-slot and half E-shaped patch antennas. IEEE Transactions on Antennas and Propagation,2005,53(8): 2645-2652.
    [165]Y. H. Ge, K. P. Esselle, T. S. Bird. A compact E-shaped patch antenna with corrugated wings. IEEE Transactions on Antennas and Propagation,2006,54(8): 2411-2413.
    [166]K. L. Wong, C. L Tang, J. Y. Chiou. Broad-band probe-fed patch antenna with a W-shaped ground plane. IEEE Transactions on Antennas and Propagation,2002,50(6): 827-831.
    [167]G. A. E. Vandenbosch, A. R. Van de Capelle. Study of the capacitively fed microstrip antenna element. IEEE Transactions on Antennas and Propagation,1994, 42(12):1648-1652.
    [168]B. Lee, S. Kwon, J. Choi. Polarisation diversity microstrip base station antenna at 2 GHz using T-shaped aperture-coupled feeds, IEE Proceedings Microwave, Antennas and Propagation,2001,148(5):334-338.
    [169]M. K. Meshram. Analysis of L-strip proximity fed rectangular microstrip antenna for mobile base station. Microwave and Optical Technology Letters,2007,49(8): 1817-1824.
    [170]H. Ghannoum, S. Bories, C. Roblin. Probe fed stacked patch antenna for UWB sectoral applications. Proceedings of IEEE International Conference on Ultra-Wideband,2005:97-102.
    [171]M.A. Matin, B.S. Sharif, C. C. Tsimenidis. Probe fed stacked patch antenna for wideband applications. IEEE Transactions on Antennas and Propagation,2007,55(8): 2385-2388.
    [172]M. T. Islam, M. N. Shakib, N. Misran, et al. Ultrawideband EH shaped stack patch antenna for wireless communications. Proceedings of IEEE Wireless and Microwave Technology Conference,2009:1-4.
    [173]W. F. Richards, Y. T. Lo, D. D. Harrison. An improved theory for microstrip antennas and applications. IEEE Transactions on Antennas and Propagation,1981,29(1): 38-46.
    [174]Z. N. Chen, M. Y. W. Chia. Experimental study on radiation performance of probe-fed suspended plate antennas. IEEE Transactions on Antennas and Propagation, 2003,51(8):1964-1971.
    [175]Z. B. Wang, S. J. Fang, S. Q. Fu, et al. Circularly polarized antenna with U-shaped strip for RFID reader operating at 902-928MHz. Proceedings of 8th International Symposium on Signals, Systems and Electronics,2010:546-548.
    [176]Z. B. Wang, S. J. Fang, S. Q. Fu, et al. Single-fed single-patch broadband circularly polarized antenna for UHF RFID reader applications. Proceedings of 2nd International Conference on Industrial and Information Systems,2010:87-89.
    [177]S. L. S. Yang, K. F. Lee, A. A. Kishk, et al. Design and study of wideband single feed circularly polarized microstrip antenna. Progress In Electromagnetics Research, 2008,80:45-61.
    [178]T. Sudha, T. S. Vedavathy, N. Bhat. Wideband single-fed circularly polarised patch antenna. Electronics Letters,2004,40(11):648-649.
    [179]A. Choumane, M. Mouhamadou, C. Decroze, et al. Creation of an isotropic multi-path propagation channel using SATIMO SG24 system. Proceedings of 5th European Conference on Antennas and Propagation,2011:1644-1645.
    [180]Y. S. Boo, Nasimuddin, Z. N. Chen, et al. Broadband circularly polarized microstrip antenna for RFID reader applications. Proceedings of Asia-Pacific Microwave Conference,2009:625-628.
    [181]H. Wang, D. G. Fang, L. Wang, et al. A modified T-shaped probe-fed circularly polarized microstrip patch antenna. Proceedings of Asia-Pacific Microwave Conference, 2008:1-4.
    [182]Nasimuddin, X. M. Qing, Z. N. Chen. Compact asymmetric-slit microstrip antennas for circular polarization. IEEE Transactions on Antennas and Propagation,2011,59(1): 285-288.
    [183]X. H. Tang, K. L. Lau, Q. Xue, et al. Miniature circularly polarised patch antenna. Electronics Letters,2010,46(6):391-392.
    [184]K. L. Lau, K. M. Luk, K. F. Lee. Design of a circularly-polarized vertical patch antenna. IEEE Transactions on Antennas and Propagation,2006,54(4):1332-1335.
    [185]F. S. Chang, K. L. Wong, T. W. Chiou. Low-cost broadband circularly polarized patch antenna. IEEE Transactions on Antennas and Propagation,2003,51(10): 3006-3009.
    [186]P. S. Hall, J. S. Dahele, J. R. James. Design principles of sequentially fed, wide bandwidth, circularly polarised microstrip antennas. IEE Proceedings Microwaves, Antennas and Propagation,1989,136(5):381-389.
    [187]M. N. Jazi, M. N. Azarmanesh. Design and implementation of circularly polarised microstrip antenna array using a new serial feed sequentially rotated technique. IEE Proceedings Microwaves, Antennas and Propagation,2006,153(2):133-140.
    [188]H. Evans, P. Gale, B. Aljibouri, et al. Application of simulated annealing to design of serial feed sequentially rotated 2X2 antenna array. Electronics Letters, 2000,36(24):1987-1988.
    [189]J. G. Kim, H. S. Lee, H. S. Lee, et al.60-GHz CPW-fed post-supported patch antenna using micromachining technology. IEEE Microwave and Wireless Components Letters,2005, 15(10):635-637.
    [190]S.C. Ortiz, T. Ivanov, A. Mortazawi. A CPW-fed microstrip patch quasi-optical amplifier array. IEEE Transactions on Microwave Theory and Techniques,2000,48(2): 276-280.
    [191]K. H. Y. Ip, G. V. Eleftheriades. A compact single layer injection-locked linear scanning array. IEEE Microwave and Wireless Components Letters,2002,12(1):15-17.
    [192]A. K. Bhattacharyya. Comparison between arrays of rotating linearly polarized elements and circularly polarized elements. IEEE Transactions on Antennas and Propagation,2008,56(9):2949-2954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700