高分子燃料电池PdSn@Pt/C、Pt/Ag-C电催化剂制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子燃料电池是一种直接以电化学反应方式将燃料的化学能转变为电能的发电装置,是一种绿色能源技术。对解决目前世界面临的“能源短缺”和“环境污染”这两大难题具有重要意义,被认为是21世纪的最为重要的能源动力之一。其中,低温燃料电池如质子交换膜燃料电池(PEMCF)、直接甲醇燃料电池(DMFC),具有工作温度低,启动快,能量转化率高等特点,是未来电动汽车、野外电站、便携式电源的理想替代电源,是燃料电池优先发展的类型。
     而实际上,燃料电池的性能与理论性能还有很大的差距,存在着一些技术上的难题,如:醇氧化的动力学过程非常缓慢;液体醇通过聚合物电解质膜渗透到阴极产生混合电位导致电池系统效率降低;燃料电池阴极氧还原动力学过程缓慢,具有较高的过电位等。因此制备和寻找高活性的电催化剂是提高燃料电池性能降低其使用成本的重要途径,也成为研究者们孜孜以求的目标。
     本论文的工作主要围如何获得高活性低铂催化剂这一主题,制备低铂催化剂。采用X-射线粉末衍射(XRD)、透射电镜(TEM)、X-射线能量色散谱(EDX)等手段对催化剂结构进行了表征。采用循环伏安法、线性扫描法、计时电法等电化学方法研究了催化剂在酸性溶液中的氧还原反应及甲醇氧化反应。具体见如下的三部分:
     第一部分高活性碳载PdSn@Pt核壳结构催化剂催化氧还原
     通过两步合成法制得一种低成本高活性的核壳结构催化剂。X-射线衍射(XRD)和透射电子显微镜(TEM)测试结果表明,该催化剂微粒分散良好,具有大的比表面积,平均粒径为5.6 nm。循环伏安及线性扫描结果表明,该催化氧还原活性明显高于商业Pt/C催化剂。其具有如此好的催化性能源于金属Pt和PdSn之间的协同效应。
     第二部分高效碳载PdSn@Pt核壳结构催化剂催化甲醇氧化
     改良的方法制得了一种用贵金属铂量最低,同时具有高活性的核壳结构的催化剂PdSn@Pt/C催化甲醇。这种核壳结构通过透射电子显微镜,X-射线衍射,X-射线光电子能谱以及循环伏安得以确认。其催化甲醇的活性是商业PtRu/C活性的3.64倍,PdSn@Pt/C催化剂具有这么好的催化活性归因于几种金属间的协同作用。该合成方法简单经济,适合于大规模的工业生产。
     第三部分高效Pt/Ag-C催化剂催化甲醇氧化
     Pt/Ag-C催化剂的制备与表征。采用置换反应的方法将铂沉积到碳载Ag/C上,得到了一种低价、高活性的甲醇氧化催化剂。电化学测试结果发现:Pt/Ag-C催化剂具有比PtAg/C和Pt/C催化剂更大的电化学活性。此外,Pt/Ag-C电极在催化氧化甲醇过程中产生的单位质量峰电更是高达1.20 A·mg~(-1)Pt,是PtRu/C催化剂的3.2倍,是Pt/C催化剂的18.5倍。该研究进一步改进了制备低铂催化剂方法,对减小铂用量制备优异的燃料电池催化剂带来了希望。
High Polymer Fuel cell is adevice that can turn chemical energy into electrieal energy through eleetroehemieal reaetion without combustion and is of great importance in solving the seareity of energy sourees and environmental pollution,so it is regarded as one of the most important power resources in the 21 century. Low temperature fuel cells such as PEMFC、DMFC can work at low temperature with the adventages of quiek start and high energy effieieney. They can be potentially used for eleetric car、field power plant and potable equipment.
     However,there is large distance between the practical DMFC performance and the theoretieal performance. For example, the crossover of liquid alcohol through the polymer electrolyte membrane into the cathodic compartment results in a decrease in the efficiency of the system. At the same time, oxygen reduction reaction (ORR) has a sluggish kinetics and results in high overpotential. Synthesizing and searehing for eleetroeatlasyts with high activity are the mportant aooroach to improve DMFC performance, which also become to be the endlessly goal for researehers.
     The thesis mainly focuses on high utilization of platinum in the catalysts. To match this requirement, a series of low-Pt catalysts for ORR and methanol oxidation are designed and prepared by several methods. And the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX), etc. It was found that these catalysts showed quite good activity for ORR and methanol oxidation in fuel cells. The thesis is consists of three parts and the research details are as follows:
     PartⅠ: High performance carbon-supported core@shell PdSn@Pt electrocatalysts for oxygen reduction reaction
     A low-cost and high performance PdSn@Pt/C catalyst with core–shell structure is prepared by two-stage route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) examinations show that the composite catalyst particles distribution is quite homogeneous and has a high surface area and the PdSn@Pt/C catalyst has an average diameter of ca. 5.6 nm. The oxygen reduction reaction (ORR) activity of PdSn@Pt/C was higher than commercial Pt/C catalyst. Catalytic activity is studied by cyclic voltammetry. High electrocatalytic activities could be attributed to the synergistic effect between Pt and PdSn
     PartⅡ: An effective carbon-supported pseudo-core@shell electrocatalysts for methanol oxidation
     A core-shell nanostructure of PdSn@Pt/C catalyst is synthesized with minimal use of Pt and shows exceptionally high catalytic activity towards the electrooxidation of methanol. The core@shell nanostructure is confirmed by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. The Pt mass activity of PdSn@Pt/C catalyst for methanol oxidation is about 3.64 times as large as the PtRu/C catalyst. High electrocatalytic activities could be attributed to the synergistic effect between Pt and PdSn. The present synthesis route is very facile and economical, which may be suitable for large-scale production of catalysts with low-cost and high activity.
     PartⅢ: An effective carbon supported Pt-Ag catalyst for methanol oxidation
     A high performance Pt/Ag-C catalyst for methanol oxidation is prepared by deposited Pt onto the carbon supported Ag/C nanoparticles using replacement reaction. Electrochemical results show that the Pt/Ag-C catalyst has much larger Pt active than that of the PtAg/C and Pt/C catalyst. Furthermore, the mass specific anodic peak current is 1.20 A mg-1Pt for methanol oxidation on the Pt/Ag-C electrode, an increase by a factor of 3.2 times and 18.5 times as compared to Pt/C and PtAg/C, respectively. The studies sheds light on the advanced way to reducing Pt loading while has excellent electrocatalysts activities for polymer fuel cells.
引文
[1]衣宝廉.燃料电池原理技术应用[M].化学工业出版社, 2003.
    [2]毛宗强.燃料电池.北京:化学工业出版社, 2005,1~6.
    [3] L. Carrette, K. A. Friedrich, U. Stimming. ChemPhysChem. 2000, 1, 162.
    [4] M. Winter, R. J. Brodd. Chem.Rev. 2004, 104, 4245.
    [5] Z. L. Zhan, S. A. Barnett. Science. 2005, 308, 844.
    [6]沈培康.加快燃料电池产业化进程的建议,电池,2002, 32, 183.
    [7]张生.原位法制备质子交换膜燃料电池用Pt/MWNTs和PtCo/C电极的研究[D].哈尔滨工业大学, 2007.
    [8]http://image.baidu.com/i?tn=baiduimage&ct=201326592&lm=-1&cl=2&fr=ala0&word=%C8%BC%C1%CF%B5%E7%B3%D8%D4%AD%C0%ED%CD%BC
    [9]梁营.直接甲醇燃料电池阳极碳纳米管和碳黑负载Pt基催化剂的研究[D].厦门大学, 2007.
    [10]王荣方.低温燃料电池低铂/非铂催化剂的合成与性能研究[D].华南理工大学, 2008.
    [11]田植群.低温燃料电池用纳米催化剂新型制备技术的研究[D].华南理工大学, 2004.
    [12]张燕.直接甲醇燃料电池阴极叶琳催化剂的制备和表征[D].山东理工大学, 2008.
    [13]朱科.质子交换膜燃料电池Pt/C电催化剂和膜电极的研究[D].天津大学,2005.
    [14]姜鲁华.直接醇类燃料电池阳极铂基电催化剂的研究[D].中国科学院大连化学物理研究所. 2005.
    [15] Seott K.,Taama W. M.,ArgyroPoulos P., J. Power Sources,1999, 79, 43.
    [16] Takeshi Kobayashi,Juniehiro Otomo,Ching-ju Wen,etal. J. Power Sourees,2003,124, 34.
    [17] Riee C.,Ha S.,Masel R. I.,etal.,J. Power Sourees,2002,111, 83.
    [18] Liu Jiang, Barnett, Seott A.,Solid State Ionies,2003,158, 11.
    [19] Yuan Xiao-Zi,Ma Zi-Feng,He Qing-Gang,etal.,Eleetroehem. Commun. 20035, 189.
    [20] Zhang J.,Wilkinson D. P., J. Eleetrochem. Soc.,2000,147, 4058.
    [21] Peled E.,Livshits V.,Duvdevani T.,J. Power Sources,2002,106, 245.
    [22] A.C.C.Tseung. Past, present and future of fuel cells [J]. BATTERY BIMONTHL Y. 2002,32, 130.
    [23] Phil Gilreath , Brij N.Singh, Parviz Rastgoufard. Fuel Cell Teehnology: Eeonomie,Soeial,and Politieal Aspeets [J]. IEEE. 2003.
    [24]黄悼,屠海令,张翼强等.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社.2000.
    [25]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,2002.
    [26]陈士忠,吴玉厚.质子交换膜燃料电池(PEMFC)的实验性能研究[J].电机技术. 2004,2, 44.
    [27]李文震.直接甲醇燃料电池阴极碳载铂催化剂的研究[D].中国科学院大连化学物理研究所. 2003.
    [28] Koffi R.C.,Coutanceau C.,Garnier E.,Leger E.,Leger J. M.,Lamy C., Eleetrochim.Aeta,2005,50, 4117.
    [29] Glass J. T.,Cahen G. L.,Stoner G. E.,Taylor E. J. T., J. Eleetroehem. Soc.,1987, 134, 58.
    [30] Xiong L.,Manthlram A. E., J. Eleetrochem. Soe.,2005,152, A697.
    [31] Soderberg J. N.,Sirk A. H. C.,Campbell S. A.,Birss V. I.,J. Electroehem. Soc.,2005,152, A2017.
    [32] Stamenkovic V.,Sehmidt T. J.,Ross P. N.,Markovie N. M. , J. Phys. Chem. B,2002,106, 11970.
    [33] Paulus U. A.,Wokaun A.,Seherer G. G.,Schmidt T. J.,Stamenkovic V.,Radmilovic V.,Markovie N. M.,Ross P. N. , J. Phys. Chem. B,2002,106, 4181.
    [34] Drillet J. F.,Ee A.,Friedemann J.,K?tz R.,Schnyder B.,Sehmidt V. M. Eleetroehim. Acta. 2002,47, 1983.
    [35] Hwang J. T.,Chung J. S., Eleetrochim. Aeta,1993,38, 2715.
    [36] Toda T.,Igarashi H.,Watanabe M., J. Electrochem. Soc.,1998,145, 4185.
    [37] Antolini E.,Passos R. R.,Tieianelli E. A., Electrochim. Acta,2002,48, 263.
    [38] Liu J. H.,Jeon M. K.,Woo S. I., Appli Surf.Sci., 2006, 252, 258.
    [39] Xiong L. F.,He T., Electrochem. Commun., 2006, 8, 1671.
    [40] Neegat M.,Shukla A. K.,Gandhi S. , J. Appl. Electrochem. 200l, 31, 373.
    [41]Seeliger W.,Hamnett A.,Eleetrochemie. Acta.,1992,37, 763.
    [42] Faubert G.,Cote R.,Dodelet J.P.,etal.,Eleetroehimi. Aeta.,1999, 44, 2589.
    [43] Sun G.Q.,Wang J.T.,Savinell R.F.,J. Appl. Eleetroehem.,1998, 28, 1087.
    [44] Convert P.,Coutaneeau C.,Crouigneau P.,etal.,J. AppI. Eleetochem.,2001,31, 945.
    [45] Tatsuhiro Okada,Satoshi Gotou,Masaya Yoshida,etal.,J.Inorg.organometallic Polymers,1999,9, 199.
    [46] Tamizhmani G.,dodelet J.P.,J. Electroehem. Soe.,1994, 141, 41.
    [47] Faubert G.,Cote R.,Guay D.,etal.,Eleetroehim. Acta,1998, 43, 1969.
    [48] Gojkovi?S. L. J.,GuPta S.,Savinell R. F.,J.Eleetroanal.Chem.1999, 462, 63.
    [49] Chen K.Y.,Shen P.K.,Tseung A.C.C.,J.Eleetroehem.Soe.,1995, 142, L185.
    [50] Gasteiger H.A.,Markovie N. M,Ross P. N.,etal.,J. Phys. Chem.,1995, 99, 8290.
    [51] Gasteiger H.A.,Markovic N. M.,Ross P. N.,etal.,J.Phys.Chem. 1993, 97, 12020.
    [52] Gasteiger H. A.,Markovie N. M.,Ross P.N.,J. Phys.Chem. 1995, 99, 16757.
    [53] Goètz M,Wendt H.,Eleetroehim. Acta,1998, 43, 3637.
    [54] Shen P. K.,Chen K.Y.,Tesung A.C.C., J. Electroehem. Soe.,1995, 142, L85.
    [55] Gasteiger H.A.,Markovi C.N.M,Ross P.N.,etal.,J. Phys. Chem. 1994, 98, 617.
    [56] Wang, R.H., Tian, C.G., Wang, L., Wang, B.L., Zhang, H.B.; Fu, H.G., Chem. Commun., 2009, 41, 3104.
    [57] Raghuveer V.,Ravindranathan K.,Xanthopoulose N.,etal.,Solid State Ionies,2001, 140, 263.
    [58] Shobba T.,S. Mayann M.,C. A. Sequeir C., J.Power Sources,2002, 108, 261.
    [59] Xue X., T. Lu, C. Liu, t al., Electrochim.Acta, 2005, 50, 3470.
    [60] Chetty R., W. Xia, S. Kundu, etal., Langmuir, 2009, 25, 3853.
    [61] Cui Z., C. Liu, J. Liao, et al., Electrochim.Acta, 2008, 53, 7807.
    [62] Kawaguchi, T., W. Sugimoto, Y. Murakami, et al. .J.Catal., 2005, 229, 176.
    [63] Denis M.C., Lalande G., Guay D., et al., Science, 1988, 280, 1735.
    [64] Denis M.C., Gouearec P., Guay D., et al., J. Appl. Electrochem. 2000, 30, 1243.
    [65] Ticianelli E. A., Derouin C. R., Srinivasan S., J. Electroanal. Chem., 1988, 251, 275.
    [66] Witham C. K., Chun W., Valdez T. I., Narayanan S. R.,.Electrochem. Solid-State Lett., 2000, 3, 479.
    [67] Wang Y., Ren J. W., Deng K., et al. , Chem. Mater. 2000, 12, 1622.
    [68] Roychowdhury C., Matsumoto F., Mutolo P.F., et al., Chem. Mater., 2005, 17, 5871.
    [69] Zhao X.S., Li W.Z., Jiang L.H., et al. , Carbon, 2004, 42, 3263.
    [70] Jiang L., Zhou Z., Li W., et al. , Energy & Fuels, 2004, 18, 866.
    [71] Li W., Wang X., Chen Z., et al. , J. Phys. Chem. B., 2006, 110, 15353.
    [72] Li W., Liang C., Zhou W., et al., J. Phys. Chem. B., 2003, 107, 6292.
    [73] Li X., Chem W., Zhao J., et al. , Carbon, 2005, 43, 2168.
    [74] Li W., Zhou W., Li H., et al. , Electrochim. Acta, 2004, 49, 1045.
    [75] Machida K., Fukuoka A., Ichkkawa M., et al., J. Electrochem. Soc. 1991, 138, 1958.
    [76] Dickinson A. J., Carrette L. P. L., Collins J. A., et al., Electrochim. Acta, 2002, 47, 3733.
    [77] Ordó?ez L.C., Roquero P., Sebastian P.J., et al., International Journal of Hydrogen Energy, 2007, 32, 3147.
    [78] Xiong L., He T., Electrochem. Commun., 2006, 8, 1671.
    [79] Ordó?ez L.C., Roquero P., Sebastian P.J., et al., Catalysis Today, 2005, 107-108, 46.
    [80] Thompson S.D., Jordan L. R., Shukla A. K., Forsyth M., J. Electroanal. Chem., 2001, 515, 61.
    [81] Gloaguen F., Leger J. M., Lamy C., J. Appl. Electrochem., 1997, 27, 1052.
    [82] Lee C. H., Lee C. W., Jung D. H., et al., J. New Mater. Electrochem. Sys., 1999, 2,125.
    [83] Lin C.S., Khan M.R, Lin S.D., J. Colloid Int. Sci., 2006, 299, 678.
    [84] Yano H., Kataoka M., Yamashita H., et al., Langmuir, 2007, 23, 6438.
    [85] Chen W. X., Lee J. Y., Liu Z. L., Chem. Commun., 2002, 21, 2588.
    [1]. Xu L. M, Liao S. J., Yang L. J., Liang Z. X., Fuel Cells, 2009, 2, 101.
    [2] Gasteiger H. A., Panels J. E., Yan S. G., J. Power Sources, 2004, 127, 162.
    [3] Williams M. C., Strakey J. P., Surdoval W. A., J. Power Sources 2005, 143, 191.
    [4] Taniguchi A., Akita T., Yasuda K., Miyazaki Y., J. Power Sources 2004, 130, 42.
    [5] Alvisi M., Galtieri G.., Giorgi L., Giorgi R., Serra E., Signore M. A., Surf. Coat. Technol. 2005, 200, 1325.
    [6] Towne S., Viswanathan V., Holbery J., Rieke P., J. Power Sources 2004, 130, 61.
    [7] Yoo E., Nagashima Y., Yamazaki T., Matsumoto T., Nakamura J., Polym. Adv. Technol. 2006, 17, 540.
    [8] Zheng J., Yang J., Lee J. Y., Zhou W., J. Phys. Chem. B 2006, 110, 24606.
    [9] Shao M., Sasaki K., Marinkovic N. S., Zhang L., Adzic R. R., Electrochem. Commun. 2007, 9, 2848.
    [10] Kang J., Ma W., Wu J., Pan M., Catal. Commun. 2009, 10, 1271.
    [11] Wang H., Xu C., Cheng F., Zhang M., Wang S., Jiang S. P., Electrochem. Commun. 2008, 10, 1575.
    [12] Zhou W. P., Adzic R. R., J. Am. Chem. Soc. 2009, 131, 17298.
    [13] Zhang J., Mo Y., Vukmirovic M. B., Klie R., Sasaki K., Adzic R. R., J. Phys. Chem. B 2004, 108, 10955.
    [14] Xiao L., Zhuang L., Liu Y., Lu J., Abru?a H. D., J. Am. Chem. Soc. 2009, 131, 602.
    [15] Tsiakaras P. E., J. Power Sources 2007, 17, 107.
    [16] Kim J., Momma T., Osaka T., J. Power Sources 2009, 189, 909.
    [17] Casella I. G., Contursi M., J. Electroanal. Chem. 2006, 588, 147.
    [18] Zhu M. Y., Sun G. Q., Xin Q., Electrochim. Acta 2009, 54, 1511.
    [19] Shao M. H., Sasaki K., Adzic R. R., J. Am. Chem. Soc. 2006, 128, 3526.
    [20] Garcia A. C., Paganin V. A., Ticianelli E. A., Electrochim. Acta 2008, 53, 4309.
    [21] Wang R. F., Li H., Feng H. Q., Wang H., Lei Z. Q., J. Power Sources 2010, 195, 1099.
    [22] Huang T., Zhang D., Xue L. G., Cai W. B., Yu A. S., J. Power Sources 2009, 192, 285.
    [23] Wang J. X., Markovic N. M., Adzic R. R., J. Phys. Chem. B 2004, 108, 4127.
    [24] Paulus U. A., Schmidt T. J., Gasteiger H. A., Behm R. J., J. Electroanal. Chem. 2001, 495, 134.
    [25] Stamenkovic V. R., Fowler B., Mun B. S., Wang G. F., Ross P. N., Lucas C. A., Markovic N. M., Science 2007, 315, 493.
    [26] Zhang J., Mo Y., Vukmirovic M. B., Klie, R. Asaki S. K., Adzic R. R., J. Phys. Chem. B 2004, 108, 10955.
    [27] Zhou W. P., Yang X. F., Vukmirovic, M. B. Koel B. E., Jiao J., Peng G. W., Mavrikakis M., Adzic R. R., J. Am. Chem. Soc. 2009, 131, 12755.
    [28] Greeley J., Stephens I. E. L., Bondarenko A. S., Johansson T. P., Hansen H. A., Jaramillo T. F., Rossmeisl J., Chorkendorff I., N?rskov J. K., Nat. Chem. 2009, 1, 552.
    [29] Stamenkovic V., chmidt T. J., Ross P. N., Markovic N. M., J. Phys. Chem. B 2002, 106, 11970.
    [30] Lee K., Savadogo O., Ishihara A., Mitsushima S., Kamiya N., Ota K., J. Electrochem. Soc. 2006, 153, A20.
    [31] Lim B. K., Jiang M. J., Camargo P. H. C., Cho E. C., Tao J., Lu X. M., Zhu Y. M., Xia Y. N., Science 2009, 324, 1302.
    [32] Shao M. H., Sasaki K., Adzic R. R., J. Am. Chem. Soc. 2006, 128, 3526.
    [33] Gasteiger H. A., Kocha S. S., Sompalli B., Wagner F. T., Appl. Catal. B 2005, 56, 9.
    [34] Umeda M., Kokubo M., Mohamedi M., Uchida I., Electrochim. Acta 2003, 48, 1367.
    [35] Peuckert M., Coenen F. P., Bonzel H. P., Electrochim. Acta 1984, 29, 1305.
    [1] AricòA. S., Srinivasan S., Antonucci V. Fuel Cells 2001, 1, 133.
    [2] Zhao Y., Fan L. Z., Zhong H. Z., Li Y. F., Yang S. H. Adv. Funct. Mater. 2007, 17, 1537.
    [3] Ksar F., Surendran G.., Ramos L., Keita B., Nadjo L., Prouzet E., Beaunier P., Hagège A., Audonnet F., Remita H. Chem. Mater. 2009, 21, 1612.
    [4] Bianchini C., Shen P. K. Chem. Rev. 2009, 109, 4183.
    [5] Chetty R., Kundu S., Xia W., Bron M., Schuhmann W., Chirila V., Brandl W., Reinecke T., Muhler M. Electrochim. Acta 2009, 54, 4208.
    [6] Zhang X. B., Yan J. M., Han S., Shioyama H., Xu Q. J. Am. Chem. Soc. 2009, 131, 2778.
    [7] Mayrhofer K. J. J., Hanzlik M., Arenz M. Electrochim. Acta 2009, 54, 5018.
    [8] Mayrhofer K. J. J., Juhart V., Hartl K., Hanzlik M., Arenz M. Angew. Chem. Int. Ed. 2009, 48, 3529.
    [9] Shimizu K., Cheng I. F., Wai C. M. Electrochem. Commun. 2009, 11, 691-694
    [10] Lee M. H., Doa J. S. J. Power Sources 2009, 188, 353.
    [11] Zhao H. B., Li L., Yang J., Zhang Y. M. Electrochem. Commun. 2008, 10, 1527.
    [12] Guo J. S., Sun G. Q., Sun S. G.., Yan S. Y., Yang W. Q., Qi J., Yan Y. S., Xin Q. J. Power Sources 2007, 168, 299.
    [13] Watanabe M., Motoo S. J. Electroananl. Chem. 1975, 60, 267.
    [14] Munk J., Christensen P. A., Hamnett A., Skou E. J. Electroanal. Chem. 1996, 401, 215.
    [15] Rodríguez-Nieto F. J., Morante-Catacora T. Y., Cabrera C. R. J. Electroanal. Chem. 2004, 571, 15.
    [16] Wang Z. B., Zuo P. J., Wang G. J., Du C. Y., Yin G. P. J. Phys. Chem. C 2008, 112, 6582.
    [17] Wang R. F., Zhang Z., Wang H., Lei Z. Q. Electrochem. Commun. 2009, 11, 1089.
    [18] Holderer O., Epicier T., Esnouf C., Fuchs G. J. Phys. Chem. B 2003, 107, 1723.
    [19] Schmid G.. Chem. Rev. 1992, 92, 1709.
    [20] Alayoglu S., Nilekar A. U., Mavrikakis M., Eichhorn B. Nature 2008, 7, 333.
    [21] Yang J. H., Lee J. Y., Zhang Q. B., Zhou W. J., Liu Z. L. J. Electrochem. Soc. 2008, 155, B776.
    [22] He C. Z., Kunz H. R., Fenton J. M. J. Electrochem. Soc. 1997, 144, 970.
    [23] Zhu J., Cheng F. Y., Tao Z. L., Chen J. J. Phys. Chem. C 2008, 112, 6337.
    [24] Guo J. W., Zhao T. S., Prabhuram J. Chen, R.; Wong C. W. Electrochim. Acta 2005, 51, 754.
    [25] Liu F., Lee J. Y., Zhou W. J. J. Phys. Chem. B 2004, 108, 17959.
    [26] Tian Z. Q., Jiang S. P., Liang Y. M., Shen P. K. J. Phys. Chem. B 2006, 110, 5343.
    [27] Perez J., Gonzalez E. R., Ticianelli E. A. Electrochim. Acta 1998, 44, 1329.
    [28] Pozio A., Francesco M. D., Cemmi A., Cardellini F., Giorgi L. J. Power Sources, 2002, 105, 13.
    [29] Su F. B., Poh C. K., Tian Z. Q., Xu G. W., Koh G. Y., Wang Z., Liu Z. L., Lin. J. Y. Energy Fuels 2010, 24, 3727.
    [30] Liu Z. L., Ling X. Y., Su X. D., Lee J. Y. J. Phys. Chem. B 2004, 108, 8234.
    [31] Tiwari J. N., Pan F. M., Tiwari R. N., Nandi S. K. Chem. Commun. 2008, 48, 6516.
    [32] Guo S. J., Dong S. J., Wang E. K. ACS nano. 2010, 4, 547.
    [33] Yu L., Kuo H., Chuin-Tih C. H., Y. J. Am. Chem. Soc. 2007, 129, 9999.
    [34] Wu G.., Li L., Xu B.Q. Electrochim. Acta 1998, 44, 1329.
    [35] Kim Y. J., Hong W. H., Woo S. I., Lee H. K. J Power Sources 2006, 159, 491.
    [1]黄成德,韩佐青,李晓峰等,电源技术, 2000,24, 243.
    [2]吕玲红,金丽华,王均涛,电源技术, 2001,25, 69.
    [3] Dick L. A., Mcfarland A. D., Haynes C. L.J Phys Chem B, 2002, 106, 853.
    [4] Lu Y., Liu G. L., Lee L. P. Nano Lett, 2005, 5, 5.
    [5] Zhang J. T., Li X. L., Sun X. M., et al. J Phys Chem B, 2005, 109, 12544.
    [6] Fleming J. G., Lin S. Y., El-Kady I. et al. Nature, 2002, 417, 52.
    [7] Ullah M. H., Kim II., Ha C. S. Mater Lett, 2006, 60, 1496.
    [8] Su M., Li S. Y., D Appl Phys Lett, 2003, 82, 3562.
    [9] Zhao G., Stevens S. E. Biometals, 1998, 11, 27.
    [10] Marini M., Niederhausern S., Iseppi R., et al. Bio-macromolecules, 2007, 8, 1246.
    [11] Dias H. V. R., Batdorf K. H., Fianchini Mmmmmm,et al. J Inorg Biochem, 2006, 100, 158.
    [12] Ramstedt M., Cheng N., Azzaroni O., et al. Langmuir, 2007, 23, 3314.
    [13]柯扬船.聚合物-无机纳米复合材料[M].北京:化学工业出版社, 2003.
    [14]张昊然,李清彪,孙道华,等.纳米级银颗粒的制备方法[J].贵金属, 2005, 26, 51.
    [15]于兵川,吴洪特,张万忠,等.纳米银的研究合成进展[J].化工科技市场, 2005, 30.
    [16]徐冬梅,张可达,王平,等.微乳液法制备纳米粒子[J].化学研究与应用, 2002, 14, 501.
    [17] Zhang H.R.,Li Q.B.,Sun D. H.,et al. Precious Metals, 2005, 26, 51.
    [18] Peng Z. F.,Wang G. Z. ,Zhang L. D.,et al. Chinese Journal of Materials Research, 1997, 11, 104.
    [19] Yu B. C., Wu H.T., Zhang W. Z.,et al. Chemical Technology Market, 2005, 3, 30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700