超高压厚壁容器中的自增强机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在介绍超高压容器的概况和论述自增强技术国内外发展概况的基础上,采用弹塑性力学分析方法较为全面地阐述了理想弹塑性材料模型、应变硬化材料模型、考虑鲍辛格效应材料模型的超高压自增强容器应力计算公式,介绍了厚壁圆筒温度应力的估算方法。
     基于厚壁圆筒的应力最佳状态为目标,通过“最优化”设计方法建立其优化设计模型,并利用MATLAB软件编制了优化设计程序,开发出厚壁自增强圆筒优化设计人机界面。该程序具有人机对话功能,在程序运行界面中输入初始结构参数并选择操作参数,通过点击按钮运行优化程序,获取优化结果,并有计算具体点应力、显示应力分布图和强度校核等功能,较以往的确定自增强弹-塑性界面半径的方法,计算和收敛速度快,结果直观准确可靠,具有较强的可视化功能,计算结果易于保存和比较。
     采用有限元法对超高压自增强容器进行应力分析,利用ANSYS软件作为分析工具,通过反应器未作自增强处理与自增强处理的应力分析比较及其温度应力的分析,验证了超高压自增强容器具有高弹性承载能力、低平均应力和循环应力幅、应力沿壁厚方向分布更加均匀及材料的利用率较高等优点,另外内加热方式可以使其圆筒内壁应力降低,筒体的应力分布趋向均匀。较以往的手工分析,该方法具有分析效率高、分析范围广、分析结果更直观等优点。
     有限元法和最优化设计方法与传统的解析法相比,其分析结果更精确,更接近真实值,且分析的范围也更广。应用计算机辅助设计技术对厚壁自增强圆筒进行了程序设计、应力分析和比较,采用有限元分析方法得出的结果更接近实际工况,且验证了部分自增强理论。
     图39表6参60
Based on analyzing and discussing the overview of ultra-high pressure vessel and the development of autofrettage technology in abroad and domestic,ultra-high pressure autofrettaged vessel's stress formula of the the elastic-perfectly plastic material model, strain hardening material model and considering the Bauschinger effect material model were overviewed more comprehensive, and the thick-walled cylinder thermal stress'estimation method was introduced.
     Thick-walled cylinder's optimal design model was built through the 'optimization" design method, and its optimal design program was compiled by MATLAB software.Based on the thick-walled cylinder's best stress, the optimal design humane-machine interface of thick-walled cylinder was developed.This program has the man-machine dialogue function, optimal results were obtained on condition that the initial structural parameters were entered, the operating parameters in the running program interface were selected and the optimal design button was pressed.In addition,the program has the function of calculating specific point stress showing stress distribution and checking strength. It has faster computation, convergence speed, and more visual reliable accurate results, and stronger visualization function than the determination method of the elastic-plastic interface radius in the past, moreover the results is easier to store and compare.
     Ultra-high pressure autofrettaged vessel's stress was analysed by using the finite element method. With analytical tool of ANSYS software, the reactor's stress of not autofrettage processed and autofrettage processed were comparatived and thermal stress were analysed. The advantages of ultra-high pressure autofrettaged vessel were verified, for example higher elasticity carrying capacity, lower mean stress and cyclic stress amplitude, more uniform stress along the thickness direction, higher material utilization and so on. In addition, the inner heating thick-walled cylinder's wall stress can be reduced and the cylinder's stress is more uniform. The finite element method has higher analysis efficiency, wider analysis range and more intuitive than manual analysis in the past.
     According to be compared the finite element method and'optimization'design method to traditional design methods, the results were more accurate and closer to realistic value, and the analysis scope were broader. Base on being applied computer aided design technology, the program was designed, and the stress was analysed. Aimed at thick-walled autofrettaged cylinder and the conclusion are closer to actual working condition by using the finite element method. A part of autofrettage theory was verified.
     Figure 39 Table 6 Reference 60
引文
[1]邵国华,魏兆灿.超高压容器[M].北京:化学工业出版社,2002
    [2]W. R. D. Manning.Ultra-high Pressure Vessel Design [M]. Chemical and Process Engineering. 1969 (48):3-4
    [3]Alegre JM et al. Fatigue behavior of an autofrettaged high pressure vessel for the food industry[J]. Eng Fail Anal,2006,14(2):396-407
    [4]陈国理等.超高压容器设计[M].北京:化学工业出版社,1997
    [5][美]约翰·F·哈维.压力容器部件结构设计与材料[M].刘汉槎等泽.北京:化学工业出版社,1985
    [6]丁伯民等.化工设备[M].北京:化学工业出版社,2003
    [7]王志文.化工容器设计[M].北京:化学工业出版社,1990
    [8]朱瑞东,播乘志.自增强厚壁筒残余应力松弛的研究[J].石油化工设备,1999:3-5
    [9]尼科尔斯.压力容器技术进展(5)[M].李建国等泽.北京:机械工业出版社,1992
    [10]兰州石油机械研究所等.高压容器—国外化工与炼油设备发展概况之二[M].1971
    [11]Harvey, J. F.. "Theory and Design of Modern Pressure Vessels"[M]. Van Nostrand Reinhold Company,1974,59-61
    [12]ASME Boiler and Pressure Vessel Code Section VIII, Division 3, Appendix D,2001
    [13]华南工学院化机系高压容器研究室[M].多层式高压容器超压处理试验研究.1979
    [14]汪嘉春,徐秉业.铝合金厚壁圆筒二次机械自紧技术的实验研究[J].金属成形工艺,1996(14):32-34
    [15]Kendall DP. The Effeet of Material Removal on the Strength of Autofrettaged Cylinder[J]. AD701049.1989:41-47
    [16]余同希.塑性力学[M].北京:高等教育出版社,1989
    [17]R. Hill, The Mathematical Theory of Plasticity, Oxford University Press[M].1950
    [18]徐秉业,刘信声.结构塑性分析[M].北京:中国建筑工业出版社,1985
    [19]T. Z Blazinski. Applied elasto-plasticity of solids[M]. Hong-Kong:Macmillan,1983
    [20]徐秉业等.弹塑性力学及其应用.北京:机械工业出版社,1984
    [21]陈明祥.弹塑性力学[M].北京:科学出版社,2007
    [22]潘秉智等.自增强理论与实验研究(Ⅰ)[J].大庆石油学院学报,1990,12(1):14-16
    [23]张于贤,王红.关于厚壁圆筒自增强容器的理论研究[J].机械,2004,31(8):13-14
    [24]J. H. Park et al. An Elasto-Plastic Analysis of Autofrettaged Compound Cylinders[J]. Proceeding of Autumn KSME Conference.2006:37-42
    [25]朱瑞林.厚壁圆筒形压力容器自增强的理论研究[J].湘潭大学自然科学学报,1995(6):111-114
    [26]汀嘉春.厚壁圆筒一次和二次机械自紧技术的理论与实验研究[D].北京:清华大学博士论文,1992
    [27]侯键,冯广斌,韩育礼.自增强圆筒强度的计算方法及试验研究[J].南京理工大学学报,2000(12):536-539
    [28]韩育礼.允许少量永久变形的身管强度设计方法[J].兵工学报,1992,13(3):16-25
    [29]朱瑞林,张吴星.单层厚壁圆筒弹塑性与强度分析[J].湘潭大学自然科学学报,1999,21(3):79-83
    [30]王亚,朱瑞林.自增强压力容器的承载能力研究[J].化工装备技术,2006,27(3):29-33
    [31]J. H. Park et al. Machining Effect of the Autofrettaged Com-pound Cylinder under Varying Overstrain Level[J]. Journal of Material Processing Technology,2008,201 (1-3):491-496
    [32]PCT. Chen. Stress and deformation analysis of autofrettaged high pressure vessels[J]. ASME special publication, vol.110, PVP. New York:ASME United Engineering Center; 1986:61-70
    [33]张于贤,王红.自增强超高压油缸的设计与研究[J].机床与液压,2008,36(1):159-160
    [34]杨志峰等.超高压缸自紧增强实验研究[J].流体机械,2007,35(12):9-12
    [35]王艳,朱瑞林.不带过渡段的圆锥壳与圆筒连接时的强度研究[J].机械工程学报,2004,40(1):78-84
    [36]范钦珊.压力容器的应力分析与强度设计[M].北京:原子能出版社,1979
    [37]林玉娟等.厚壁管的自增强损伤残余应力计算模型[J].科学技术与工程,2009,9(24)7306-7309
    [38]黄小平等.厚壁管自增强残余应力计算模型(Ⅰ)[J].压力容器,2004,10(1):18-22
    [39]朱瑞林.圆筒形压力容器自增强若干问题研究[J].机械工程学报,2010,46(6):126-128
    [40]张藜等.超高压容器自增强残余应力计算[J].石油化工设备,2003,32(5):16-20
    [41]战人瑞等.爆炸自紧残余应力及对构件疲劳强度的影响[J].爆炸与冲击,2005,25(3):239-243
    [42]O.M.Sidebetton et al.Unloading of Thick-Walled Cylinder That Have Been Plastically Deformed[J].1976
    [43]R. Vincent Milligan. The Influence of The Bauschinger Effect in Reverse Yielding of Thick-Walled Cylinder[J]. AD717248,1970
    [44]Chen P C T. The Bauschinger and hardening effects on residual stresses in an autofrettage thick-walled cylinder [J]. Trans1 of ASME J. Press-Vessel Tech.,1986,108(2):108-112
    [45]章成器.优化设计方法在工程机械中的应用[M].上海:同济大学出版社,1993
    [46]郭仁生等.优化设计应用[M].北京:电子工业出版社,2003
    [47]N. Garret and V. Anderplatts. Numerical optimization Techniques for Engineering design with applications, Mc-Graw-Hill[M]. New York,1989
    [48]王红等.基于自增强原理的超高压缸的优化设计[J].机械设计与制造,2009(2):233-234
    [49]陈秀宁.机械优化设计[M].浙江:浙江大学出版社,1991
    [50]卜英勇.优化设计方法[M].湖南:中南工业大学出版社,1986
    [51]王沫然.MATLAB与科学计算[M].北京:电力工业出版社,2003
    [52]张学敏.MALAB基础及应用[M].北京:中国电力出版社,2009
    [53]飞思科技产品研发中心.MALAB65辅助优化计算与设计[M].北京:电力工业出版社,2003
    [54]董平.有限元法—基本方法与实施[M].北京:国防工业出版社,1979
    [55](美)布查克.有限元分析[M].董文军,谢伟松泽.北京:科学出版社,2002
    [56]何涛等ANSYS10.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社,2007
    [57]J. H. Park et al. Machining Analysis of the Autofrettaged Compound Cylinder[J]. Trans. of KSME(A),2007,31 (7):800-807
    [58]余伟炜,高炳军.ANSYS在机械与化工装备中的应用[M].北京:中国水利水电出版社,2006
    [59]张朝辉.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007
    [60]尚晓江等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700