垃圾填埋场衬垫系统沉陷机理及抗沉陷设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展和城市化水平的提高,城市生活垃圾产量日益增加,而目前为止填埋仍是垃圾处理的主要方式。由于垃圾体成分复杂,压缩性高且分布不均匀,填埋场容易发生局部沉陷甚至塌方等情况。下卧垃圾堆体发生局部沉陷时沉陷区上方的衬垫系统产生较大的内力和变形,可能破坏衬垫系统,造成渗滤液的渗漏,并带来填埋场污染事故甚至失稳破坏。鉴于目前对衬垫系统抗沉陷的设计都局限在工程经验或半经验的基础上,因而有必要开展衬垫系统抗沉陷的机理研究,并在此基础上提出合理的工程设计方法。
     本文首先根据模型试验和数值分析结果,基于主应力轴旋转理论修正了Terzaghi松动土压力公式中的侧向土压力系数,修正后的Terzaghi松动土压力公式计算结果与实测和数值分析结果吻合良好;同时考虑土拱效应,提出了基于位移相关的竖向土压力表达式。从而为局部沉陷条件下衬垫系统的合理受力与变形分析奠定了基础。
     结合所提出的位移相关竖向土压力的表达式,建立了填埋场平面应变和轴对称两种形式局部沉陷条件下衬垫系统受力变形的解析分析模型,模型考虑了衬垫系统大变形和沉陷区周围衬垫系统滑移对衬垫系统受力和变形的影响。编制了相应的Matlab计算程序,计算结果得到了FLAC数值分析结果的验证,并进行了参数分析。
     最后,根据工程的实际情况,结合Giroud(1990)抗局部沉陷的工程设计方法,提出了基于位移相关竖向土压力的填埋场衬垫系统抗局部沉陷的工程设计方法,并应用于实际工程。对于衬垫系统上方垃圾堆体小于30m的情况,Giroud(1990)传统设计方法计算结果偏保守,而当衬垫系统上方垃圾堆体大于30m时,该方法则偏不安全。由于本文提出的工程设计方法合理考虑了衬垫上方竖向土压力随竖向位移的变化,其分析结果更接近实际情况。
With the rapid economic development and urbanization, the generated quantity of Municipal Solid Waste (MSW) increased at a high speed in China. The construction of landfill is still the main measures to deal with MSW. Local subsidence often occurs in landfill due to the complexity, high compressibility of components of MSW and its non-uniformity distribution. Large internal force and deformation would be induced along geosynthetic liner system in subsidence areas subjected to the local subsidence, which would destroy the liner system and lead to leakage of leachate. Moreover, the high leachate level resulted by the leakage of the liner system may cause the instability of the MSW fill. Until recently, research on the liner system subjected to the local subsidence only based on the engineering experience, it is necessary to study its mechanism and proposed a reasonable design method for this problem.
     Firstly, based on model tests and numerical analyses, the lateral coefficient of earth pressure expression in Terzaghi loosen earth pressure formulate is modified, and its calculated results are in good agreement with the model tests and numerical simulations. Also, displacement-related vertical earth pressure expression is proposed considering arch effect.
     Secondly, based on tensile cable and large strain circle membrane theory, the analytical models of the liner systems considering the plane strain and axial symmetry local subsidence are presented respectively. The models can take into account the effects of large deformation of liner system, sliding of the liner system near by the subsidence area and the displacement-related vertical earth pressure. Good agreement between the computed results by the proposed MATLAB programs and the FLAC numerical analyses results validates the present analytical models. Parametric studies are also given.
     Finally, associate with Giroud (1990) resisting local subsistence design method, a new engineering design method of the liner system resisting local subsistence in landfill is proposed based on displacement-related vertical earth pressure theory, it is applied to a design case in practice. If the thickness of the MSW overlying on the liner system is smaller than 30 m, the Giroud (1990) design method is conservatively, otherwise, its predicted allowable tensile force of the liner system will be smaller than the true one due to it cannot taken into accout the displacement-related vertical earth pressure.
引文
Abbot P A. Arching for vertically buried prismatic structures [J]. Journal of Soil Mechnical Foundations Divison. 1967,93(SM5):233-255.
    Abdulla W A, Goodings D J. Modeling of sinkholes in weakly cemented sand [J]. Journal of Geotechnial Engineering 1996, Vol. 122, No. 12, pp: 998-1005.
    Adachi T, Kimura M, Kishida K,et al. The mechanical behavior of tunnel intersection through three-dimensional trapdoor tests [J]. Japan Society of Civil Engineers, 1999, (638): 285-299.
    Adachi T, Kimura M, Kishida K. Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor tests [J]. Tunnelling and Underground Space Technology, 2003,18: 171-183.
    Atkinson J H, Potts D M. Stability of a shallow cirvular tunnel in cohesionless soil [J]. Geotechnique. 1977,27(2): 203-215.
    Bergado D T, Teerawattanasuk C. 2D and 3D numerical simulation of renforced embankments on soft ground [J]. Geotextiles and Geomembranes,2008. 26(1) pp.39 -55.
    Blivet J C, Khay M, Villard P, Gourc J P. Design method for geosynthetic as reinforcement for embankment subjected to localized sinkholes [C]. International Conference on Geotechnical and Geological Engineering , Melbourne, Australia, 2000. pp:1-6.
    Briancon L, Villard P. Design of geosynthetic-reinforced platforms spanning localized sinkholes [J]. Geotextiles and Geomembranes, 2008,in press.
    Bridle R J, Jenner C G. Polymer geogrids for bridging mining voids [J]. Geosynthetics International. 1997, Vol.4, No.1, pp: 33-50.
    Debprah J G, Waleed A A. Stability charts for predicting sinkholes in weakly cemented sand over karst limestone [J]. Engineering Geology.2002,65:179-184.
    Finley C A, Holtz R D. Investigation and modeling of two composite landfill covers [J]. Geosynthetics International.2001, Vol.8, No.2, pp: 97-112.
    Getzier Z, Komovnik A and Mazurik A. Model study on arching above buried structures [J]. Journal of the Soil Mechanics and Foundations Division, ASCE.1968. Vol.94, No.(SM5), pp:1123-1141.
    Gesualdo A, Minutolo V, and Nunziante L. Failure in Mohr-Coulomb soil cavities[J]. Canadian Geotechnical Journal.2001, Vol38,1314-1320.
    Giroud J P. Biaxial tensile state of stress in grosynthetics[J]. Geotextiles and Geomembranes, 1990. 11(3)pp:319-325.
    Giroud J P. Determination of geosynthetic strain due to deflection [J]. Geosynthetics International, 1995. 2(3) .pp:635 -641.
    Giroud J P and Soderman K L .Comparison of geomembranes subjected to differential settlement [J]. Geosynthetics International. 1995, Vol. 2, No. 6, pp 953-969.
    Giroud J P, Bonaparte R, Beech J F and Gross B A. Design of soil layer-geosynthetic systems overlying voids [J]. Geotextiles and Geomembranes, 1990. 09(1) pp.11-50.
    Giroud J P. Determination of geosynthetic strain due to deflexion [J]. Geosynthetics International. 1995, Vo2, No.3, pp: 635-641.
    Giroud J P, Beech J F, and Soderman K L. Yield of scratched geomembranes [J]. Geotextiles and Geomembranes, 1994. 13(4) pp.231-246.
    Han J, Gabr M A. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil [J]. Journal of Geotechnial and Geoenvironmental Engineering. 2002, Vol.128, No.1,pp: 44-53.
    Handy R L. The arch in soil arching [J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318.
    Handy R L. Anatomy of an error [J]. Journal of Geotechnial and Geoenvironmental Engineering. 2004, Vol. 130, No.7, pp: 768-771.
    Harrop W K. Arch in soil arching [J]. Journal of Geotechnical Engineering, 1989, 115(3): 415-419.
    Jessberger H L, Stone K J L. Subsidence effects on clay barriers [J]. Geotechnique. 1991, 41 (2): 185-194.
    Jamei M, Villard P, Zaghouani K and Candilhac F. Prevention of risk due to karstic cavities detected in a recent motorway in Tunisia using geotextiles [J].Proceedings 8ICG, Geosynthetics.2006, 809-812.
    Jones C J F P, Cooper A. Road construction over voids caused by active gypsum dissolution with an example from Ripon North Yorshire England [J]. Enviromental Geology 48, 2005. pp: 384-394.
    Kellogg C G. Vertical earth loads on buried engineered works [J]. Journal of Geotechnical Engineering. 1993, 119 (3): 487-506.
    Koutsabeloulis N C, Griffiths D V. Numerical modelling of the trap door problem [J]. Geotechnique. 1989, 39(1): 77-89.
    Koerner R M, Hwu B L. Stability and tension considerations regarding cover soils on geomembrane lined slopes [J]. Geotextiles and Geomembranes,1991. 10 (4) pp. 335-356.
    Koerner R M, Koerner G R, Hwu B L. Three dimensional axi-symmetric geomembrane tension test [J]. ASTM Special Technical Publication, 1990. 170-184.
    Kim Y S and Won M S. An experimental study on the deformation properties assessment method of geosynthetic reinforcements [J]. KSCE Journal of Civil Engineering. 2001,9(5):363-369.
    Low B K, Tang S K, Choa V.Arching in piled embankments [J]. Journal of Geotechnical Engineering 1995,120(11): 1917-1937.
    Ladanyi B, Hoyaux B. A study of the trapdoor problem in a granular mass [J]. Canadian Geotechnical Journal. 1969, Vol 6, No 1,1-14.
    
    Marston A. The theory of external loads on closed conduits in the light of the latest experiments [J]. Bull.96 of the Iowa Engeneering Experiment Station, Iowa State College, Ames, Iowa, 1930
    Mark D L, Boardman B T, Bradford H C and David E D. Geosynthetic clay liners subjected to differential settlement [J].Journal of Geotechnial and Geoenvironmental Engineering 1997, Vol. 123, No.5,pp 402-410.
    Merry S M, Bray J D, Bourdeau P L. Axisymmetric tension testing of geomembranes [J]. Geotechnical Testing Journal, 1993, 16(3), 384-392.
    Merry S M, Bray J D, Bourdeau P L. Stress-strain compatibility of geomembranes subjected to subsidence [J]. Process Geosynthetics 1995 Conference. 799-812.
    Mckelvey J A. The anatomy of soil arching [J]. Geotextiles and Geomembranes, 1994. 13(5) pp. 317-329.
    Mcnulty J W. An experimental study of arching in sand [C]. US Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, 1965. pp:1-64.
    
    Ono K Yamada M. Analysis of the arching action in granular mass [J]. Geotechnique. 1993, 43(1):105-120.
    Papamichos E, Vardoulakts I and Hell L K. Overburden modeling above a compacting reservoir using a trapdoor apparatus [J]. Phys.Chem.Earth. 2001,26(1 ),69-74.
    Pirapakaran K, Sivakugan N. Arching within hydraulic fill stopes [J]. Geotechnical and Geological Engineering. 2007,25: 25-35.
    Qian X D, Koerner R M, Gray D H. Geotechnical aspects of landfill design and construction [M]. Upper Saddle River, N. J. Prentice Hall, 2002.
    Richard P S, Cetin S, Richard J T and Robert D H. Use of geosynthetics in 'piggyback landfills': a case study [J].Geotextiles and Geomembranes,1996. 14 pp.341-364.
    Rowe R K, Davis E H. The behavior of anchor plates in clay [J]. Geotechnique. 1982(a), 32(1):9 -23.
    Rowe R K, Davis E H. The behavior of anchor plates in sand[J]. Geotechnique. 1982(b), 32(1): 15 -41.
    Sarsby R W. Use of limited life geotextiles for basal reinforcement of embankments built on soft clay [J]. Geotextiles and Geomembranes,2007. 25(4/5),pp:302-310.
    Shiou S K, Karishma D, Lymari R. Design method for municipal soild waste landfill liner system subjected to sinkhole cavity under landfill site [J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2005, Vol.9, No.4, pp 281-291.
    Shijian Z, John S, Zhen C. Simulation of geomembrane response to settlement in landfills by using the material point method [J]. International Journal for Numerical and Analytical Methods in Geomechanics.1999, (23): 1977-1994.
    Sloan S W, Assadi A, Purushothaman N. Undrainde stability of a trapdoor [J]. Geotechnique. 1990, 40(1): 45-62.
    Sloan S W. Upper bound limit analysis using finite elements and linear programming [J]. International Journal Numerical Annual Methmatic Geomechnical. 1989, 13,263-282.
    Take W A, Valsangkar A J. Earth pressure on unyielding retaining walls of narrow backfill width [J].Canadian Geotechnical Journal.2001, Vol 38, No 6, 1220-1230.
    
    Terzaghi K. Stress distrbution in dry and saturated sand above a yielding trap-door [C].In: Proceeding 1st International Conference on Soil Mechanics and Foundation Engineering, 1936,307-316. Terzaghi K.Theoretical Soil Mechanics[M].Wiley,New York,1943.
    Tony L T Zhan.Chen Y M.Ling W A.Shear strength characterization of municipal solid waste at the Suzhou landfill,China[J].Engineering Geology 97(2008)97-111.
    Villard P,Giraud H.Three-Dimensional Modeling of the behavior of geotextile sheets as membranes[J].Textile Research Journal,1998.68(11)pp:797-806.
    Villard P,Gourc J P and Giraud H.A geosynthetic reinforcement solution to prevent the formation of localized sinkholes[J].Canadian Geotechnical Journal.2000,Vol 37,No 5,987-999.
    Wang M C,Feng Y X,Jao M.Stability of geosynthetic-reinforced soil above a cavity[J].Geotextiles and Geomembranes,1996.14 pp.95-109.
    曹卫平.桩承式路堤土拱效应及基于性能的设计方法研究[D].杭州:浙江大学,2007.
    黄炎.绳索的大变形问题[J].力学与实践,1999,2(21):49-51.
    加瑞,朱伟,钟小春.砂土拱效应的挡板下落试验及机理研究[J].岩土力学,2006,12(27):687-692.
    蒋波,应宏伟,谢康和.基于土拱效应的筒仓土压力研究[J].科技通报.2005,21(5):624-632.
    贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报.2003,38(4):398-402.
    克列因.散粒体结构力学[M].陈万佳译,北京:人民交通出版社,1983,234-248.
    李永刚,白鸿莉.垂直墙背挡土墙土压力分布研究[J].水利学报.2003,2(2):102-106.
    李海深.土工建筑中的土拱效应[J].湘潭矿业学院学报.1990,5(2):164-168.
    钱伟长,王志忠,徐尹格,等.圆薄膜中心部分受均布荷载产生的对称变形[J]_应用数学与力学.1981,2(6):599-612.
    应宏伟,蒋波,谢康和.平行竖墙间的土拱效应与侧土压力计算[J].水利学报.2006,37(11):1303-1308.
    吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J].成都科技大学学报.1995,83(2):15-19.
    尤昌龙.加筋土中的土拱[J].路基工程,1996,(4):47-51.
    周小文,濮家骝,包承纲.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报.1999,16(4):9-14.
    朱斌,陈云敏,柯瀚.扩建城市垃圾填埋场的地震稳定性分析[J].岩土力学.2006,9(6):19-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700