黄牛NPY和HCRTR1基因的克隆表达及其遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下丘脑是调节能量稳态、食欲和生殖的重要中枢,摄食行为是通过位于下丘脑内的神经环路调控的,其内存在着复杂的食欲调节网络。神经肽Y(NPY)是中枢神经系统中一种非常重要的参与食欲调控的肽。其神经元在脑内分布广泛,在下丘脑内主要分布在弓状核区域,并形成相互投射的神经环路。
     本研究采用PCR-SSCP及测序方法研究了四个品种黄牛群体共338个个体(其中秦川牛68头、南阳牛100头、郏县红牛130头、晋南牛40头)HCRTR1基因和NPY基因的单核苷酸多态性,分析了基因多态位点与牛部分经济性状的相关性。此外,对秦川牛NPY和HCRTR1基因进行了克隆、表达研究,得到如下结果:
     1 HCRTR1基因在我国4个牛群体中的遗传多样性
     本研究采用PCR-SSCP和测序方法首次分析了HCRTR1基因编码区全长在我国4个牛群体中的遗传多态性。在该区域共检测到11个SNP位点,其中4个SNP位点的碱基突变导致了氨基酸的改变,在322 bp处G>A的突变造成缬氨酸变成亮氨酸,481 bp处T>A突变造成色氨酸变成精氨酸,631 bp处C>T突变造成精氨酸变成色氨酸,736 bp处C>T突变造成精氨酸变成色氨酸。其余8处的碱基替换在氨基酸水平上均为同义突变。本研究对牛HCRTR1基因11个SNP位点所在4个牛群体进行Hardy-Weinberg平衡检验,结果发现只有部分SNP位点处于平衡状态。
     2 HCRTR1基因多态位点与牛生长发育性状的关系
     利用最小二乘拟合线性模型,对HCRTR1基因多态位点与牛部分经济性状进行显著性检验,结果表明,HCRTR1基因第2外显子位点不同基因型与秦川牛、南阳牛体重和体尺性状间最小二乘均值差异均不显著。对于郏县红牛而言,B、C和D型牛体斜长和管围显著长于A型牛(P<0.05);对于胸围和尻长,D型牛显著大于A型(P<0.05);在郏县红牛1~3岁和4~8岁时,B和D型牛的体高和体重显著高于A型牛(P<0.05)。相同时间内,D型牛体格的绝对生长发育最快,而A型牛最慢,主要表现在体高、体斜长、胸围、管围、尻长和体重性状上。384、420和423 bp处SNP位点多态信息含量为0.2778,郏县红牛的选育过程中适合作为分子标记用于辅助选择。
     3 NPY基因在我国4个牛群体中遗传多样性
     本研究利用PCR-SSCP与测序方法首次分析了NPY基因编码区全长及编码区侧翼序列在我国4个牛群体中的遗传多态性。检测到5个SNP位点,其中位于NPY基因第2外显子29 bp处C>A突变引起了氨基酸的改变,由苏氨酸突变为天冬酰氨。第1外显子的78 bp处C>G突变在氨基酸水平上为同义突变,另外3处的突变发生在非编码区。NPY基因5个SNP位点所在4个牛群体Hardy-Weinberg平衡检验结果表明,大部分SNP位点处于非平衡状态。多态信息含量分析结果表明,除秦川牛NPY基因3’端71 bp和南阳牛第2内含子1 725 bp为低度多态座位外,其它位点均为中度多态,适合作为分子标记。
     4 NPY基因多态性与牛生长发育性状的关系
     利用最小二乘拟合线性模型,对NPY基因多态位点不同基因型与牛部分经济性状进行显著性检验,结果表明,在NPY基因第3外显子及侧翼序列位点检测到4种基因型,在南阳牛6、12和18月龄时,A型牛体斜长、胸围均显著大于B型牛(P<0.05),发育到24月龄时,A型牛这两项体尺指标仍然大于B型牛,尽管没有达到显著水平。NPY基因3’端71 bp处的SNP位点多态信息含量为0.3457,适合作为选育体格较大的南阳牛一个分子标记。
     5秦川牛NPY和HCRTR1基因的克隆、表达
     本试验利用Overlap-PCR技术在国内首次扩增获得秦川牛NPY和HCRTR1基因全长CDS序列。NPY基因编码区全长为294 bp,与GenBank公布序列的同源性为100%。HCRTR1基因CDS序列全长为1 278 bp,编码425个氨基酸,与GenBank中海福特牛该基因的序列比对发现存在4处突变,分别为237 bp:G>C;273 bp:T>C;276 bp:C>T和480 bp:T>C。这4处突变均为同义突变。
     将NPY和HCRTR1两个基因分别克隆至pET32a+原核表达载体,构建重组质粒,转化大肠杆菌BL21(DE3)后诱导融合蛋白表达。经Western-blot检测证实了NPY蛋白的表达。电泳检测分析发现NPY基因在大肠杆菌中高效表达,表达蛋白以可溶性蛋白和包涵体两种形式存在。该融合蛋白的分子量约为30 kD,与预测的NPY融合蛋白大小相吻合。而HCRTR1基因在大肠杆菌中没有表达。
     利用his trap亲和层析柱纯化NPY融合蛋白后,用纯化的蛋白免疫家兔获得抗血清,ELISA检测表明该血清具有很高的特异性和效价,表明NPY融合蛋白具有很好的抗体免疫原性。
     以获得的抗血清作为一抗,免疫组织化学分析结果表明,牛NPY蛋白在下丘脑弓状核神经细胞的细胞膜和细胞质表达。
The hypothalamus being the central feeding and energy equation organ mediates regulation of dietary intake via synthesis of various orexigenic and anorectic neuropeptides. Neuropeptide Y was the key factor of nervous central in appetite regulation and distributed mainly in arcurate nucleus. HCRTR1 was the peripheral peptide and involved in appetite regulation. By now, fewer papers about bovine NPY and HCRTR1 gene were reported.
     PCR-SSCP and sequencing assay technologies were applied to detect SNPs of NPY and HCRTR1 gene in four Chiense cattle breeds (Nanyang cattle, 100; Jiaxian cattle, 130; Qinchuan cattle, 68; and Jinnan cattle, 40). The associations between these polymorphisms and some cattle economic traits were analyzed using general linear model (GLM) with software SPSS 12.0. Cloning and expression of NPY and HCRTR1gene in E.coli were also studied in Qinchuan cattle. This work would lay a foundation for cattle breeding. Results were obtained as follows:
     1 Polymorphisms of HCRTR1 gene in four breeds of Chinese cattle
     338 cattle from four Chinese four cattle breeds were used for SNPs discovery in the complete coding region of HCRTR1 gene using PCR-SSCP and sequencing methods. Eleven SNPs were detected in the complete coding region of HCRTR1 gene. The variations at 322, 481, 631 and 736 bp caused amino acid replacements and variations at the other 7 SNPs were synonymous. Not all of the loci were at Hardy-Weinberg equilibration(P>0.05).
     2 Effects of HCRTR1 gene polymorphisms on traits in cattle
     No significant association was found between genotypes of exon 2 and the growth traits of Qinchuan and Nanyang cattle(P>0.05). For Jiaxian cattle, the value of body length and cannon circumference in B, C and D genotype was larger than that in A genotype (P<0.05). The value of heart girth and rump length in D genotype was larger than that in A genotype (P<0.05). The value of withers height and body weight in B and D genotype was larger than that in A genotype at the age of 1-8 years old (P<0.05). From above, cattle in D genotype grew faster than those in A genotype. SNPs at 384, 420 and 423bp can be fit for genetic markers in Jiaxian cattle breeding.
     3 Polymorphisms of NPY gene in four breeds of Chinese cattle
     338 cattle from four Chinese cattle breeds were used for SNPs discovery in the region of exon 1, 2, 3 and their bandary sequence of NPY gene using PCR-SSCP and sequencing methods. Five SNPs were discovered. The variations at the 29th bp of exon 2 caused amino acid replacement: from threonine to asparagines. Most of loci were not at Hardy-Weinberg equilibration(P <0.05)in these four populations. PIC of the locus at 71th bp in the 3’end of NPY gene in Qinchuan cattle and the locus at 1725th bp in intron 2 of NPY gene in Nanyang cattle were low polymorphic and the other loci were moderate polymorphic.
     4 Effects of polymorphisms of NPY gene on traits in cattle
     In locus of exon3 region, the value of body length and heart girth of Nanyang cattle in A genotype was longer than that in B genotype at the age of six, twelve and eighteen months age (P <0.05). At the age of 24 months the value of this two traits in A genotype was still larger than that in B genotype though the significant level can’t be attained to. The SNP at 71th bp of 3’end of NPY gene can be used as a genetic marker for breeding.
     5 Cloning and expression of NPY and HCRTR1 gene in Qinchuan cattle
     The coding sequence of NPY and HCRTR1 gene of Qinchuan cattle was amplified by overlap-PCR and confirmed with sequencing assay. The recombinant expressive plasmid pET32a+-NPY and pET32a+-HCRTR1 were transduced into E.coli strain BL21(DE3) and were induced to express by IPTG. In result, the recombinant plasmid pET32a+-NPY were over-expressed in E.coli as solubility and inclusion body with molecular weight 30 kD or so. But the recombinant plasmid pET32a+-HCRTR1 were not expressed in E.coli. We immunized rabbit using the purified fusion protein. The result of animal experiment showed that the fusion protein could stimulate animals to produce special and sensitive antibody. Using the obtained antiserum as a testing reagent combining with immunity histochemistry technology, we identified NPY as a coding protein which expressed specially in cellular cytoplast and cellular membrane of neuron in hypothalamic arcuate nucleus of cattle.
引文
[1] Sarika Arora, Anubhuti. Role of neuropeptides in appetite regulation and obesity[J]. Neuropeptides, 2006, 40(6):375-401.
    [2] Bina KG, Cincotta AH. Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice[J]. Neuroendocrinology, 2000,71(1):68-78.
    [3] Pau KY, Spies HG. Neuroendocrine signals in the regulation of gonadotropin-releasing hormone secretion[J]. The Chinese journal of physiology, 1997, 40(4):181-96.
    [4] Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y-a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide[J]. Nature, 1982, 296(5858):659-660.
    [5] Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide[J]. Proceedings of the National Academy of Sciences, 1982, 79(18):5485-5489.
    [6] Minth CD, Andrews PC, Dixon JE. Characterization, sequence, and expression of the cloned human neuropeptide Y gene[J]. The Journal of biological chemistry, 1986, 261(26):11974-11979.
    [7] Baker E, Hort YJ, Ball H, et al. Assignment of the human neuropeptide Y gene to chromosome 7p15.1 by nonisotopic in situ hybridization[J]. Genomics, 1995, 26(1): 163-164.
    [8] Karvonen MK, Pesonen U, Koulu M, et al. Association of a leucine(7)-to-proline(7) polymorphism in the signal peptide of neuropeptide Y with high serum cholesterol and LDL cholesterol levels[J]. Nature medicine, 1998, 4(12):1434-1437.
    [9] Niskanen L, Karvonen MK, Valve R, et al. Leucine 7 to proline 7 polymorphism in the neuropeptide Y gene is associated with enhanced carotid atherosclerosis in elderly patients with type 2 diabetes and control subjects[J]. The Journal of clinical endocrinology and metabolism, 2000, 85(6):2266-2269.
    [10] Niskanen L, Voutilainen-Kaunisto R, Terasvirta M, et al. Leucine 7 to proline 7 polymorphism in the neuropeptide y gene is associated with retinopathy in type Ⅱ diabetes[J]. Experimental and clinical endocrinology & diabetes, 2000, 108(3):235-236.
    [11] Karvonen MK, Koulu M, Pesonen U, et al. Leucine 7 to proline 7 polymorphism in the preproneuropeptide Y is associated with birth weight and serum triglyceride concentration in preschool aged children[J]. The Journal of clinical endocrinology and metabolism, 2000, 85(4):1455-1460.
    [12] Kauhanen J, Karvonen MK, Pesonen U, et al. Neuropeptide Y polymorphism and alcohol consumption in middle-aged men[J]. American journal of medical genetics, 2000, 93(2):117-121.
    [13] Mottagui-Tabar S, Prince JA, Wahlestedt C, et al. A novel single nucleotide polymorphism of the neuropeptide Y (NPY) gene associated with alcohol dependence[J]. Alcoholism, clinical and experimental research, 2005, 29(5):702-707.
    [14] Koehnke MD, Schick S, Lutz U,et al. Severity of alcohol withdrawal symptoms and the T1128C polymorphism of the neuropeptide Y gene[J]. Journal of neural transmission, 2002, 109(11):1423-1429.
    [15] Ilveskoski E, Kajander OA, Lehtimaki T,et al. Association of neuropeptide y polymorphism with the occurrence of type 1 and type 2 alcoholism[J]. Alcoholism, clinical and experimental research, 2001, 25(10):1420-1422.
    [16] Okubo T, Harada S. Polymorphism of the neuropeptide Y gene: an association study with alcohol withdrawal[J]. Alcoholism, clinical and experimental research, 2001, 25(6 Suppl):59S-62S.
    [17] Pandey SC, Carr LG, Heilig M, et al. Neuropeptide y and alcoholism: genetic, molecular, and pharmacological evidence[J]. Alcoholism, clinical and experimental research, 2003, 27(2):149-154.
    [18] Spence JP, Liang T, Habegger K, et al. Effect of polymorphism on expression of the neuropeptide Y gene in inbred alcohol-preferring and -nonpreferring rats[J]. Neuroscience, 2005, 131(4):871-876.
    [19] Karvonen MK, Valkonen VP, Lakka TA, et al. Leucine7 to proline7 polymorphism in the preproneuropeptide Y is associated with the progression of carotid atherosclerosis, blood pressure and serum lipids in Finnish men[J]. Atherosclerosis, 2001, 159(1):145-151.
    [20] Erkkila AT, Lindi V, Lehto S, et al. Association of leucine 7 to proline 7 polymorphism in the preproneuropeptide Y with serum lipids in patients with coronary heart disease[J]. Molecular genetics and metabolism, 2002, 75(3):260-264.
    [21] Jarvisalo MJ, Jartti L, Karvonen MK, et al. Enhanced endothelium-dependent vasodilation in subjects with Proline7 substitution in the signal peptide of neuropeptide Y[J]. Atherosclerosis, 2003, 167(2):319-326.
    [22] Heikkinen AM, Niskanen LK, Salmi JA, et al. Leucine7 to proline7 polymorphism in prepro-NPY gene and femoral neck bone mineral density in postmenopausal women[J]. Bone, 2004, 35(3):589-594.
    [23] Helisalmi S, Valve R, Karvonen MK, et al. The leucine (7)-to-proline (7) polymorphism in the signal peptide of neuropeptide Y is not associated with Alzheimer's disease or the link apolipoprotein E[J]. Neuroscience letters, 2000, 287(1):25-28.
    [24] Jia C, Liu Z, Liu T, et al. The T1128C polymorphism of neuropeptide Y gene in a chinese population[J]. Archives of Medical Research, 2005, 36(2):175-177.
    [25] Bray MS, Boerwinkle E, Hanis CL. Sequence variation within the neuropeptide Y gene and obesity in Mexican Americans[J]. Obesity research, 2000, 8(3):219-226.
    [26] Bray MS, Boerwinkle E, Hanis CL. Linkage analysis of candidate obesity genes among the Mexican-American population of Starr County, Texas[J]. Genetic epidemiology, 1999, 16(4):397-411.
    [27] Kallio J, Pesonen U, Kaipio K, et al. Altered intracellular processing and release of neuropeptide Y due to leucine 7 to proline 7 polymorphism in the signal peptide of preproneuropeptide Y in humans[J]. FASEB Journal, 2001, 15(7):1242-1244.
    [28] Ding B, Kull B, Liu Z, et al. Human neuropeptide Y signal peptide gain-of-function polymorphism is associated with increased body mass index: possible mode of function[J]. Regulatory peptides, 2005, 127(1-3):45-53.
    [29] Heilig M, Zachrisson O, Thorsell A, et al. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with prepro NPY gene polymorphism[J]. Journal of psychiatric research, 2004, 38(2):113-121.
    [30] 关新民.《医学神经生物学》[M].北京:人民卫生出版社,2002.
    [31] Miner JL, Della-Fera MA, Paterson JA, et al. Lateral cerebroventricular injection of neuropeptide Y stimulates feeding in sheep[J]. American journal of physiology, 1989, 257(2): 383-387.
    [32] Stanley BG, Leibowitz SF. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior[J]. Proceedings of the national academy of sciences, 1985, 82(11):3940-3943.
    [33] Sahu A, Kalra PS, Kalra SP. Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus[J]. Peptides, 1988, 9(1):83-86.
    [34] Miner JL. Recent advances in the central control of intake in ruminants[J]. Journal of animal science, 1992, 70(4):1283-1289.
    [35] Clark JT, Kalra PS, Kalra SP. Neuropeptide Y stimulates feeding but inhibits sexual behavior in rats[J]. Endocrinology, 1985, 117(6):2435-2442.
    [36] Stephens TW, Basinski M, Bristow PK, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product[J]. Nature, 1995, 377(6549):530-532.
    [37] Pettersson M, Ahren B. Insulin secretion in rats: effects of neuropeptide Y and noradrenaline[J]. Diabetes research. 1990, 13(1):35-42
    [38] Holst JJ, Orskov C, Knuhtsen S, et al. On the regulatory functions of neuropeptide Y (NPY) with respect to vascular resistance and exocrine and endocrine secretion in the pig pancreas[J]. Acta physiologica scandinavica, 1989, 136(4):519-526.
    [39] Ahren B, Martensson H, Falck B. Effects of neuropeptide Y on insulin and glucagon secretion in the pig[J]. Neuropeptides, 1991, 20(1):49-55.
    [40] Ahren B. Neuropeptide Y and pancreatic polypeptide: effects on thyroid hormone secretion in the mouse[J]. European journal of pharmacology, 1986, 126(1-2):97-102.
    [41] Peng C, Huang YP, Peter RE. Neuropeptide Y stimulates growth hormone and gonadotropin release from the goldfish pituitary in vitro[J]. Neuroendocrinology, 1990, 52(1):28-34.
    [42] Malven PV, Haglof SA, Jiang H. Serum concentrations of luteinizing hormone, growth hormone, and prolactin in untreated and estradiol-treated ovariectomized ewes after immunoneutralization of hypothalamic neuropeptide Y[J]. Journal of animal science, 1995, 73(7):2105-2112.
    [43] Milgram SL, Mcdonald JK, Noe BD. Interactions between Norepinephrine and neuropeptide Y in regulating pancreatic islet hormone secretiona[J]. Annals of the New York academy of sciences, 1990, 611(1):518–521.
    [44] Grunditz T, Hakanson R, Rerup C, et al. Neuropeptide Y in the thyroid gland: neuronal localization and enhancement of stimulated thyroid hormone secretion[J]. Endocrinology, 1984, 115(4):1537-1542.
    [45] Crowley WR, Tessel RE, O'Donohue TL, et al. Effects of ovarian hormones on the concentrations of immunoreactive neuropeptide Y in discrete brain regions of the female rat: correlation with serum luteinizing hormone (LH) and median eminence LH-releasing hormone[J]. Endocrinology, 1985, 117(3):1151-1155.
    [46] Harfstrand A, Eneroth P, Agnati L, et al. Further studies on the effects of central administration of neuropeptide Y on neuroendocrine function in the male rat: relationship to hypothalamic catecholamines[J]. Regulatory peptides, 1987, 17(3):167-179.
    [47] Holzwarth MA, Cunningham LA, Kleitman N. The role of adrenal nerves in the regulation of adrenocortical functions[J]. Annals of the New York academy of sciences, 1987, 512:449-64.
    [48] Kuramoto H, Kondo H, Fujita T. Neuropeptide tyrosine (NPY)-like immunoreactivity in adrenalchromaffin cells and intraadrenal nerve fibers of rats[J]. The anatomical record, 1986, 214(3):321-328.
    [49] Hackenthal E, Aktories K, Jakobs KH, et al. Neuropeptide Y inhibits renin release by a pertussis toxin-sensitive mechanism[J]. American journal of physiology, 1987, 252(3):F543-550.
    [50] Pau KY, Khorram O, Kaynard AH, et al. Simultaneous induction of neuropeptide Y and gonadotropin-releasing hormone release in the rabbit hypothalamus[J]. Neuroendocrinology, 1989, 49(2):197-201.
    [51] 方秀斌.《神经肽与神经营养因子》[M].北京:人民卫生出版社,2002.
    [52] Gehlert DR. Introduction to the reviews on Neuropeptide Y[J]. Neuropeptides, 2004, 38 (4): 135-140.
    [53] Wahlestedt C, Reis DJ. Neuropeptide Y-related peptides & their receptors: Are the receptors potential therapeutic drug targets? [J]. Annual review of pharmacology and toxicology, 1993, 32:309–352.
    [54] Fetissov SO, Kopp J, Ho kfelt T. Distribution of NPY receptors in hypothalamus[J]. Neuropeptides, 2004, 38 (4):175–188.
    [55] Marsh DJ, Hollopeter G, Kafer KE, et al. Role of the Y5 neuropeptide Y receptor in feeding and obesity[J]. Nature medicine, 1998, 4(6):718-721.
    [56] Mashiko S, Ishihara A, Iwaasa H, et al. A pair-feeding study reveals that a Y5 antagonist causes weight loss in diet-induced obese mice by modulating food intake and energy expenditure[J]. Molecular pharmacology, 2007, 71(2):602-608.
    [57] Henry M, Ghibaudi L, Gao J, et al. Energy metabolic profile of mice after chronic activation of central NPY Y1, Y2, or Y5 receptors[J]. Obesity research, 2005, 13(1):36-47.
    [58] Mashiko S, Ishihara A, Iwaasa H, et al. Characterization of neuropeptide Y (NPY) Y5 receptor-mediated obesity in mice: chronic intracerebroventricular infusion of D-Trp(34)NPY[J]. Endocrinology, 2003, 144(5):1793-1801.
    [59] Turnbull AV, Ellershaw L, Masters DJ, et al. Selective antagonism of the NPY Y5 receptor does not have a major effect on feeding in rats[J]. Diabetes, 2002, 51(8):2441-2449.
    [60] Block MH, Boyer S, Brailsford W, et al. Discovery and optimization of a series of carbazole ureas as NPY5 antagonists for the treatment of obesity[J]. Journal of medicinal chemistry, 2002, 45(16):3509-3523.
    [61] Kanatani A, Hata M, Mashiko S, et al. A typical Y1 receptor regulates feeding behaviors: effects of a potent and selective Y1 antagonist, J-115814[J]. Molecular pharmacology, 2001, 59(3):501-505.
    [62] Wieland HA, Hamilton BS, Krist B, et al. The role of NPY in metabolic homeostasis: implications for obesity therapy[J]. Expert opinion on investigational drugs, 2000, 9(6):1327-1346.
    [63] Gehlert DR. Role of hypothalamic neuropeptide Y in feeding and obesity[J]. Neuropeptides, 1999, 33(5):329-338.
    [64] Kushi A, Sasai H, Koizumi H, et al. Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice[J]. Proceedings of the national academy of sciences of the United States of America, 1998, 95(26):15659-15664.
    [65] Schaffhauser AO, Stricker-Krongrad A,Brunner L, et al . Inhibition of food intake by neuropeptide Y Y5 receptor antisense oligodeoxynucleotides[J]. Diabetes, 1997, 46(11):1792-1798.
    [66] Pedrazzini T, Seydoux J, Konstner P, et al. Cardiovascular response, feeding behaviour and locomotor activity in mice lacking the NPY Y1 receptor[J]. Nature medicine, 1998, 4(6): 722-726.
    [67] Williams G, Joanne A, Harrold Cutler DJ. The hypothalamus and the regulation of energy homeostasis: Lifting the lid on the black box[J]. The proceedings of the nutrition society, 2000, 59(3):385-396.
    [68] Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior[J]. Cell, 1998, 92(4):573-585.
    [69] Voisin T, Rouet-Benzineb P, Reuter N, et al. Orexins and their receptors: structural aspects and role in peripheral tissues[J]. Cellular and molecular life sciences, 2003, 60(1): 72-87.
    [70] Sakurai T. Orexins and orexin receptors: implication in feeding behavior[J]. Regulatory peptides, 1999, 85(1): 25-30.
    [71] Sakurai T,Furuya K,Kajiwara N,et al. Structure and function of human prepro-orexin gene[J]. The journal of biological chemistry, 1999, 274 (25):771-776.
    [72] Spinazzi R, Rucinski M, Neri G, et al. Preproorexin and orexin receptors are expressed in cortisol-secreting adrenocortical adenomas, and orexins stimulate in vitro cortisol secretion and growth of tumor cells[J]. The journal of clinical endocrinology and metabolism, 2005, 90(6): 3544-3549.
    [73] Blanco M, Lopez M, GarcIa-Caballero T, et al. Cellular localization of orexin receptors in human pituitary[J]. The journal of clinical endocrinology and metabolism. 2001, 86(7): 1616-1619.
    [74] Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains[J]. Nature medicine, 2000, 6(9): 991-997.
    [75] De Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity[J]. Proceedings of the national academy of sciences of the United States of America, 1998, 95(1): 322-327.
    [76] Dyer CJ, Touchette KJ, Carroll JA, et al. Cloning of porcine prepro orexin cDNA and effects of an intramuscular injection of synthetic porcine orexin B on feed intake in young pigs[J]. Domestic animal endocrinology, 1999, 16(3): 145-148.
    [77] Sartin JL, Dyer C, Matteri R, et al. Effect of intracerebroventricular orexin-B on food intake in sheep[J]. Journal of animal science, 2001, 79(6): 1573-1577.
    [78] Ohkubo T, Tsukada A, Shamoto K. cDNA cloning of chicken orexin receptor and tissue distribution: sexually dimorphic expression in chicken gonads[J]. Journal of molecular endocrinology, 2003, 31(3): 499-508.
    [79] Mazzocchi G, Malendowicz LK, Gottardo L, et al. Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade[J]. The journal of clinical endocrinology and metabolism, 2001, 86(2): 778-782.
    [80] Mondal MS, Nakazato M, Date Y, et al. Characterization of orexin-A and orexin-B in the microdissected rat brain nuclei and their contents in two obese rat models[J]. Neuroscience letters, 1999, 273(1):45-48.
    [81] Mondal MS, Nakazato M, Date Y, et al. Widespread distribution of orexin in rat brain and itsregulation upon fasting[J]. Biochemical and biophysical research communications, 1999, 256(3):495-499.
    [82] Trivedi P, Yu H, MacNeil DJ, et al. Distribution of orexin receptor mRNA in the rat brain[J]. FEBS Letters, 1998, 438(1-2) :71-751.
    [83] Rodgers R J, Halford J C, Nunes de Souza R L, et al. SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats[J]. The european journal of neuroscience, 2001, 13(7):1444-1452.
    [84] Szekely M,Petervari E,Balasko M,et al. Effects of orexins on energy balance and thermo regulation[J]. Regulatory peptides, 2002, 104 (1):47-53.
    [85] Kim HY, Hong E, Kim JI, et al. Solution structure of human orexin-A: regulator of appetite and wakefulness[J]. Journal of biochemistry and molecular biology, 2004, 37(5):565-573.
    [86] Kunii K, Yamanaka A, Nambu T, et al. Orexins Phypocretins regulate drinking behaviour [J]. Brain Research, 1999, 842(1): 256-261.
    [87] Backberg M, Hervieu G, Wilson S, et al. Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake[J]. The European journal of neuroscience, 2002, 15(2):315-328.
    [88] Zhu Y, Miwa Y, Yamanaka A, et al. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins[J]. Journal of pharmacological sciences, 2003, 92(3):259-266.
    [89] Shibahara M, Sakurai T, Nambu T, et al. Structure, tissue distribution, and pharmacological characterization of Xenopus orexins[J]. Peptides, 1999, 20(10):1169-1176.
    [90] Smart D, Jerman J. The physiology and pharmacology of the orexins[J]. Pharmacology and therapeutics, 2002, 94(1-2):51-61.
    [91] Smart D, Jerman JC, Brough SJ, et al. Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR[J]. British journal of pharmacology, 1999, 128(1):1-3.
    [92] Smart D, Sabido-David C, Brough SJ, et al. SB-334867-A: the first selective orexin-1 receptor antagonist[J]. British journal of pharmacology, 2001, 132(6):1179-1182.
    [93] Duxon MS, Stretton J, Starr K, et al. Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX1) receptors, with downstream 5-HT2C receptor involvement[J]. Psychopharmacology (Berl), 2001, 153(2):203-209.
    [94] Smart D, Jerman JC, Brough SJ, et al. The hypocretins are weak agonists at recombinant human orexin-1 and orexin-2 receptors[J]. British journal of pharmacology, 2000, 129(7):1289-1291.
    [95] Darker JG, Porter RA, Eggleston DS, et al. Structure-activity analysis of truncated orexin-A analogues at the orexin-1 receptor[J]. Bioorganic and medicinal chemistry letters, 2001, 11(5):737-740.
    [96] Smart D, Haynes AC, Williams G, et al. Orexins and the treatment of obesity[J]. European journal of pharmacology, 2002, 440(2-3):199-212.
    [97] Hervieu GJ, Cluderay JE, Harrison DC, et al. Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord[J]. Neuroscience, 2001, 103(3):777-797.
    [98] 赵玉岩,郭磊,都健,等. 高果糖膳食对大鼠下丘脑增食欲素系统的影响[J]. 中华内分泌代谢杂志,2004,20(1):82-83.
    [99] 赵玉岩,郭磊,都健,等. 高脂肪膳食对大鼠增食欲素及瘦素系统的影响[J]. 中国临床营养杂志,2004,12(2):108-112.
    [100] 赵玉岩,郭磊,都健,等. 增食欲素系统在大鼠胰腺中的表达及其调控[J]. 中华医学杂志,2004,84(7):600-602.
    [101] 隋森芳.《膜分子生物学》[M].北京:高等教育出版社, 2003.
    [102] 杨铭.《结构生物学与药学研究》[M]. 北京:科学出版社, 2003.
    [103] Strader CD, Fong TM, Tota MR, et al. Structure and function of G protein-coupled receptors[J]. Annu Rev Biochem, 1994,63: 101-132.
    [104] Bisello A, Greenberg Z, Behar V, et al. Role of glycosylation in expression and function of the human parathyroid hormone/ parathyroid hormone-related protein receptor[J]. Biochemistry, 1996, 35(49): 15890-15895.
    [105] Ingram CD, Ciobanu R, Coculescu IL, et al. Vasopressin neurotransmission and the control of circadian rhythms in the suprachiasmatic nucleus[J]. Progress in brain research, 1998, 119: 351-364.
    [106] Lundstrom I, Svensson S. Biosensing with G-protein coupled receptor systems[J]. Biosensors & bioelectronics, 1998, 13(6):689-695.
    [107] Lindemann B. Receptors and transduction in taste[J]. Nature, 2001, 413(6852):219-225.
    [108] Shichida Y, Imai H. Visual pigment: G-protein-coupled receptor for light signals[J]. Cellular and molecular life sciences. 1998, 54(12):1299-1315.
    [109] Wieland HA, Eckard CP, Doods HN, et al. Probing of the neuropeptide Y-Y1-receptors interaction with anti-receptor antibodies[J]. European journal of biochemistry. 1998, 255(3):595-603.
    [110] Vallano ML. Developmental aspects of NMDA receptor function[J]. Critical reviews in neurobiology. 1998, 12(3):177-204.
    [111] Horton RM, Hunt HD, Ho SN, et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension[J]. Gene, 1989, 77(1):61-68.
    [112] Lebedenko EN, Birikh KR, Plutalov OV, et al. Method of artificial DNA splicing by directed ligation (SDL) [J]. Nucleic acids research, 1991, 19(24): 6757–6761.
    [113] 黄留玉.《PCR最新技术原理、方法及应用》[M].北京:化学工业出版社,2005.
    [114] Brookes AJ. The essence of SNPs[J]. Gene, 1999, 234(2):177-186.
    [115] Cargill M, Altshuler D, Ireland J et al. Characterization of single nucleotide polymorphisms in coding regions of human genes[J]. Nature genetics, 1999, 22(3):231-238.
    [116] Pui-Yan Kwok. Single Nucleotide Polymorphisms: methods and protocols [M]. USA: Human Press, 2003.
    [117] 张成岗,贺福初.《生物信息学方法与实践》[M].北京::科学出版社,2002.
    [118] Jalving R, van Slot R, van Oost BA. Chicken single nucleotide polymorphism identification and selection for genetic mapping[J]. Poultry science, 2004, 83(12):1925-1931.
    [119] Taillon-Miller P, Gu Z, Li Q, et al. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms[J]. Genome research, 1998, 8(7):748-754.
    [120] Fahrenkrug SC, Freking BA, Smith TP, et al. Single nucleotide polymorphism (SNP) discovery in porcine expressed genes[J]. Animal genetics, 2002, 33(3):186-195.
    [121] 吴慧光,许尚忠,孙少华,等.基于生物信息学的SNPs候选位点的筛查[J].中国畜牧兽医,2006,33(8):39-42.
    [122] Thorsson GA, smith AV, Krishnan L, et al. The interbational hapmap project website[J]. Genome research, 2005, 15(11): 1592-1593.
    [123] 王娟.人类基因组 SNPs 的研究现状及应用前景[J].生命科学,2006,18(4):397-401.
    [124] 陈炜,张戈,张思仲.人类基因组多态数据库Go!Poly及其应用[J].中华医学遗传学杂志,2001,18(6):482-485.
    [125] Gibbs RA, Belmont JW, Hardenbol P, et al. The international hapmap project[J]. Nature, 2003, 426(6968):789-796.
    [126] 陈竺,黄薇,傅刚,等. 人类基因组计划现状与展望[J]. 自然杂志,2000,22(3):125-133.
    [127] Assassi S, Tan FK. Genetics of scleroderma: update on single nucleotide polymorphism analysis and microarrays[J]. Current opinion in rheumatology, 2005, 17(6): 761-767.
    [128] 章文波,陈红艳.《实用数据统计分析及SPSS12.0应用》[M]. 北京:人民邮电出版社,2006.
    [129] Meerabux J, Iwayama Y, Sakurai T, et al. Association of an orexin 1 receptor 408Val variant with polydipsia–hyponatremia in schizophrenic subjects[J]. Biological psychiatry, 2005, 58(5): 401-407.
    [130] 张润锋,陈 宏,蓝贤勇,等. 西安荷斯坦奶牛群5个基因座位遗传[J]. 畜牧兽医学报, 2005,36(6):545-549.
    [131] Vaiman D, Mercier D, Moazami-Goudarzi K, et al. A set of 99 cattle microsatellites characterization synteny mapping and polymorphism[J]. Mammalian genome, 1994, 5(5): 288-297.
    [132] 高雪. 《牛生长发育性状的分子标记研究》[D].西北农林科技大学博士学位论文, 2004.
    [133] 余新沛,吕成伟,葛争鸣,等.中国白族人群MBL基因SNP及其单倍型与基因型的研究[J].中国免疫学杂志,2006,22(8):738-742.
    [134] 成伟,葛争鸣,李江川,等.中国白族、佤族和拉祜族人群MBL基因启动子区SNP的研 究[J].细胞与分子免疫学杂志,2005,21(1):110-113.
    [135] 叶月芳,周韧,谢云,等.浙江地区汉族人群caspase8-10基因四个单核苷酸多态性位点的单倍型研究[J].中华医学遗传学杂志,2006,23(2):222-226.
    [136] 吕成伟,陈政良,王方勇,等.中国蒙古族人MBL基因启动子区SNP的研究[J].免疫学杂志, 2004,20(2):91-94.
    [137] 吕成伟,陈政良,刁志宏,等.广东地区汉族人MBL基因启动子区SNP的研究[J].第一军医大学学报,2003,23(11):1165-1168.
    [138] 洪忻,丁伟良,谈永飞,等.用聚合酶链反应-直接测序分型法研究江苏汉族人群HLA2DQA1和DQB1基因多态性[J].中华医学遗传学杂志,2006,23(4):463-465.
    [139] 苏虹,王保龙,张秀军,等.强直性脊柱炎患者MICA基因第2、3和4外显子的多态性及其与HLA2B抗原的连锁不平衡[J].中华医学遗传学杂志,2006,23(4):446-448.
    [140] 韩秀敏,娄毅,朱鲜阳,等.圆锥动脉干畸形患者TBX1基因单倍型分析[J].中华医学杂志,2006,86(22):1553-1557.
    [141] 金士正,吴国光,蓝欲晓,等.广东汉族人群人类白细胞抗原-A,B及DRB1基因多态性和单倍型分布[J].广东医学,2006,27(9):1289-1291.
    [142] Swartz JR. Advances in escherichia coli production of therapeutic proteins[J]. Current opinion in biotechnology[J], 2001,12(2):195-201.
    [143] Kiefhaber T, Rudolph R, Kohler HH, et al. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation[J]. Biotechnology. 1991,9(9):825-829.
    [144] 袁广胜,余少平,潘光堂,刘永学. 人源孤儿 G 蛋白偶联受体 hGPCRc 的分子克隆及其初步鉴定[J]. 中国生物化学与分子生物学报,2005,21(2):204-208.
    [145] 周海军,黄晓玮,周严,等.人 HGLP cDNA 的克隆和原核表达[J].科学通报,2001,46(2):116-120.
    [146] 刘永学,余少平.孤儿 G 蛋白偶联受体及其作为新药靶点的重要意义[J]. 中国药理学通报,2003,19(6):601-604.
    [147] Wise A, Gearing K, Rees S. Target validation of G-protein coupled receptors[J]. Drug discovery today, 2002, 7(4):235-246.
    [148] Wilson S, Bergsma D. Orphan G-protein coupled receptors: novel drug targets for the pharmaceutical industry[J]. Drug discovery today, 2000, 17(2):105-114.
    [149] Anderer FA. Preparation and properties of an artificial antigen immunologically related to tobacco mosaic virus. Biochimica et biophysica acta, 1963, 71:246-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700