超短激光脉冲载波包络相位的全光控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周期量级超短脉冲的载波包络相位(CEP)对与瞬时电场强度相关的非线性实验具有决定性的影响,尤为突出的是它在阿秒科学和光频标测量学领域发挥着举足轻重的作用。随着阿秒激光脉冲的不断窄化和相关应用研究的不断深入,测量并控制飞秒激光脉冲CEP,已经成为当今最前沿的研究内容之一。
     本工作致力于稳定周期量级超短脉冲CEP的研究,目标是探索控制超短激光脉冲载波包络相位的新方案与新技术,发展CEP稳定的周期量级超短脉冲系统。
     在稳定和控制超短激光脉冲CEP方面,我们主要着力于发展控制CEP的新方案。为此我们首先提出了基于级联光学参量放大(OPA)的CEP稳定方案。该方案巧妙地利用不同类型OPA的组合使用,实现了大能量、超宽频谱、CEP稳定的超短脉冲,同时还避免了白光注入类型的OPA方案中由于白光中剩余泵浦光对信号脉冲CEP影响严重的问题。该方案是目前实现超短脉冲CEP稳定的有效手段之一。
     我们首次在实验中发现了时空耦合调制不稳定性产生的多色锥状辐射现象。发现时空耦合调制不稳定性作用使基波与二次谐波发生强非线性相位锁定,平衡了二者之间的群速度色散和衍射,有效地提高了非线性转换效率。在此基础上,我们提出了利用时空耦合调制不稳定性参与的参量过程实现超短脉冲CEP自稳定的方案。该方案有效地利用了时空耦合调制不稳定性参与的参量过程具有指数增益的优点,可以实现极宽频谱范围内连续可调、高能量、CEP稳定的超短脉冲。使用这种极具潜力的新方案,我们在简单的OPA装置上实现了超短激光脉冲CEP的自稳定。
     本论文还提出并实现了利用调制上转换放大和泵浦光之间的差频实现超短脉冲CEP自稳定的方案。在该方案中,由于调制上转换放大的CEP在放大过程中保持不变并且具有能量高、光斑质量好以及宽频谱宽度等优点,所以其与泵浦光之间的差频信号具有CEP自稳定的特性,同时调节调制上转换放大的中心波长能够实现CEP稳定的差频信号在极宽频谱范围内连续可调。
     围绕着CEP稳定的周期量级超短脉冲系统的研究,我们发展了一系列关键性的技术。
     提出了利用全光方法获得CEP稳定的超短脉冲,随后利用光学参量啁啾脉冲放大(OPCPA)实现了构建CEP稳定的周期量级超短脉冲系统的新方案。全光方法可以获得CEP精确稳定的超短脉冲。OPCPA不仅能够有效地放大激光脉冲的能量,而且研究表明OPCPA过程不会影响信号光的CEP信息。该方案能够实现CEP稳定的周期量级强激光脉冲输出,这是目前获得CEP稳定的周期量级强激光源的有效方案之一。
     提出并证明了获得用于800nm钛宝石激光器OPCPA的精确同步的泵浦源的新技术。这项技术是基于连续光注入的非共线OPA技术。在参量作用时间内,连续光能够提供足够的光子有效抑制了荧光的参量放大从而获得大能量、光斑质量较好的信号输出。在此基础上,我们分别发展了基于1064nm的连续光、632.8nm连续光以及氦氖激光腔内放大等新技术。这些新技术能够有效地产生与800nm钛宝石激光器精确同步的泵浦光脉冲,二者之间的时间抖动不超过10fs。实验获得的无连续光背景的1064nm超短脉冲能量可以通过再生放大或者多通放大的手段获得进一步的提高,其532nm的倍频光可以为同源钛宝石激光器的OPCPA装置提供精确同步的高强度泵浦源。
The phase of the carrier frequency with respect to the pulse envelope in few-cycle laser pulses, which can be described by the concept of carrier-envelope phase (CEP) plays a crucial role in many nonlinear experiments correlated with electric field intensity, such as attosecond science and optical frequency metrology. As attosecond laser pulses become more and more narrow and its challenging applications, controlling and measuring the CEP of femtosecond laser pulses have now turn to one of the most fascinated research.
    The main purpose of this work is to explore novel schemes and techniques for stabilizing the CEP of ultrashort laser pulses. And the experimental work is concentrated on building up a CEP-stabilized intense few-cycle laser system.
    In order to stabilize the CEP of ultrashort laser pulses, we have proposed several innovative setups. The first one is based on cascaded optical parametric amplifier (OPA). The combination of different type OPAs not only realize the output of intense, broadband spectrum, CEP-stabilized ultrashort laser pulses, but also avoid the detrimental effects on the CEP of signal pulses in white-light seeded OPA. It is one of the effective methods for stabilizing the CEP of ultrashort laser pulses.
    We have observed for the first time colored conical emission due to the spatiotemporal modulational instability in second harmonic generation of ultrashort laser puses. As a consequence, the strong nonlinearity between fundamental waves and second harmonic has balanced their group velocity dispersion and diffraction, which lead to the great improvement of energy conversion. Therefore, we have proposed stabilizing the CEP of ultrashort pulses by use of modulational instability assisted OPA. This method take full advantage of modulational instability assisted OPA, facilitating the generation of widely tunable, CEP-stabilized intense ultrashort pulses.
    And we also proposed CEP self-stabilization by use of difference frequency generation between mudulational up-conversion amplification and pump pulses. Due to the white-light seeded amplification of colored conical emission, mudulational up-conversion amplification has very good beam quality and broadband spectrum with the same CEP as pump pulses. By tuning the central wavelength of mudulational up-conversion amplification, widely tunable of the CEP-stabilized difference frequency signal is realized.
    When stepping toward the goal of building up a CEP-stabilized intense few-cycle laser system, we have developed many key techniques for it.
    We have proposed a novel scheme for building CEP-stabilized intense few-cycle laser system by use of all-optical CEP-stabilizer and optical parametric chirped pulse amplifier (OPCPA). All-optical CEP-stabilizer achieved absolute stabilize of CEP of ultrasgort pulses. OPCPA can not only boost the energy of laser pulses, but also preserve its CEP in the whole process. It is one of the most effective methods for uilding CEP-stabilized intense few-cycle laser system.
    And we have also proposed generation of accurate synchronized pump pulses for OPCPA operated on 800 nm Ti:sapphire lasers by use of continues-wave (CW) seeded NOPA. The continues-wave provides sufficient photons in the parametric interaction time, which greatly restrain the fluorescence amplification. Due to the good beam quality of the CW laser beam, the output signal exhibits large single pulse energy and good beam quality. We have developed 1064 nm CW laser, 632.8 nm laser and intracavity of He-Ne laser as the seed pulse for NOPA, respectively. These scheme can generate accurate synchronized pump pulses with 800 nm Ti:sapphire lasers. The time jitter of the generated pump pulse with respect to the 800 nm pulse was measured about 10 fs in a few seconds. The generated background-free 1064 nm pulse can be further amplificted and the frequency doubled to produce an accurately synchronized pump source for OPCPA for the same Ti:sapphire laser.
引文
1. A. H. Zewail, "Laser femtochemistry", Science, 242, 1645 (1988).
    2. J. A. Valdmanis and R. L. Fork, "Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain", IEEE J. Quantum Electron. 22, 112 (1986).
    3. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorbermirrorassisted Kerr-lensmode-locked Tisapphire laser producing pulses inthe two-cycle regime", Opt. Lett. 24, 631 (1999).
    4. U. Morgner, F. X. Krtner, S. H. Cho, Y. Chen, H. A. Haus, J. G Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Sub-two-cycle pulsesfrom a Kerr-lens mode-locked Tisapphire laser", Opt. Lett. 24, 411 (1999).
    5. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, "Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser", Opt. Lett. 18, 977(1993).
    6. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics", Science 286, 1507 (1999).
    7. S. Sartania, Z. Cheng, M. Lenzner, G Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, "Generation of 0.1-TW5-fs optical pulses at a 1-kHz repetition rate", Opt. Lett. 22, 1562(1997).
    8. A. Poppe, G Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hansch, and F. Krausz, "Controlling the phase evolution of few-cycle light pulses", Phys. Rev. Lett. 85,740 (2000).
    9. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier", Science 291,1923 (2001).
    10. A. BaltuSka, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz "Attosecond control of electronic processes by intense light fields", Nature 421, 611(2003).
    11. J. Reichert, R. Holzwarth, T. Udem, and T.W. Hansch, "Measuring the frequency of light with mode-locked lasers", Opt. Commun. 172, 59 (1999).
    12. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy", Phys. Rev. Lett. 85, 2264 (2000).
    13. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phen6mena?" Science 288, 824 (2000).
    14. R. J. Gordon, L. Zhu, and T. Seideman, "Using the Phase of Light as a Photochemical Tool", J. Phys. Chem. A, 105, 4387 (2001).
    15. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis", Science 288, 635 (2000).
    16. M. Kakehata, H. Takada, T. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, H. Takahashi, K. Okubo, S. Nakamura, and Y. Koyamada, "Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies", Optics Express 12, 2070 (2004).
    17. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, "Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation", Appl. Phys. B, 79, 673(2004).
    18. A. Baltuska, T. Fuji, and T. Kobayashi, "Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers", Phys. Rev. Lett. 88, 133901(2002).
    19. C. P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, "Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti: sapphire oscillator", Opt. Lett. 29, 1369 (2004).
    20.韩海年,魏志义,张军,聂玉昕,“飞秒钛宝石激光脉沖的载波包络相移测量研究”,物理学报,54,155(2005).
    21. Zeng Zhi-Nan, Li Ru-Xin, Yu Wei, and Xu Zhi-Zhan, "A Novel Method for Measuring the Absolute Phase of a Few—Cycle High Intensity Laser", Chin. Phys. Lett. 19, 1112(2002).
    1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics", Science 286, 1507 (1999).
    2. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipocs, "All-solid-state cavity-dumped sub-5-fs laser", Appl. Phys. B65, 175 (1997).
    3. U. Morgner, F. X. Krtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. lppen, V. Scheuer, G. Angelow, T. Tschudi, "Sub-two-cycle puisesfrom a Kerr-lens mode-locked Tisapphire laser", Opt. Lett. 24,411 (1999).
    4. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G Angelow, T. Tschudi, "Semiconductor saturable-absorber mirrorassisted Kerr-lensmode-locked Tisapphire laser producing pulses inthe two-cycle regime", Opt. Lett. 24,631 (1999).
    5. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipcs, K. Ferencz, Ch. Spielmann, S. Sartania, F. Krausz, "Compression of high-energy laser pulses below 5 fs", Opt. Lett. 22,522 (1997).
    6. T. Brabec, and F. Krausz, "Intense few-cycle laser fields: frontiers of nonlinear optics", Rev. Mod. Phys. 72, 545 (2000).
    7. M. Drescher, M. Hentschel, R. Kienberger, G Tempea, C. Spielmann, G A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier", Science 291, 1923 (2001).
    8. A. Baltu(?)ka, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, "Attosecond control of electronic processes by intense light fields", Nature 421, 611 (2003).
    9. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hansch, and F. Krausz, "Controlling the phase evolution of few-cycle light pulses", Phys. Rev. Lett. 85, 740 (2000).
    10. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis", Science 288, 635 (2000).
    11. F. W. Helbing, G. Steinmeyer, U. Keller, R. S. Windeler, J. Stenger, and H. R. Telle, "Carrier-envelope offset dynamics of mode-locked lasers", Opt. Lett. 27, 194(2002).
    12. Y. Kobayashi and K. Torizuka, "Carrier-phase control among subharmonic pulses in a femtosecond optical parametric oscillator", Opt. Lett. 26, 1295 (2001).
    13. T. Nakajima, and S. Watanabe, "Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime", Phys. Rev. Lett. 96, 213001 (2006).
    14. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hansch, "Route to phase control of ultrashort light pulses", Opt. Lett. 21, 2008 (1996).
    15. F. Krausz, "From femtochemistry to attophysics", Phys. World 14, 41 (2001).
    16. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?" Science 285, 824 (2000).
    17. J. Reichert, R. Holzwarth, T. Udem, and T. W. Hansch, "Measuring the frequency of light with mode-locked lasers", Opt. Commun. 172, 59 (1999).
    18. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, "Absolute-phase phenomena in photoionization with few-cycle laser pulses", Nature (London) 414, 182 (2003).
    19. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy", Phys. Rev. Lett. 85, 2264 (2000).
    20. R. J. Gordon, L. Zhu, and T. Seideman, "Using the Phase of Light as a Photochemical Tool", J. Phys. Chem. A, 105, 4387 (2001).
    21. E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese and C. de Lisio, "Nonadiabatic three-dimensional model of high-order harmonic generation in the few optical-cycle regime", Phys. Rev. A61, 063801 (2000).
    22.郑颖辉,熊辉,彭滟,徐晗,曾志男,杨旋,陈晓伟,李儒新,曾和平,徐至展,“7 fS超快强激光驱动Ar原子产生支持单个阿秒脉冲的高次谐波连续谱”,光学学报,26,1439(2006).
    23. M. T. Asaki, C.-Po Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, "Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser", Opt. Lett. 18,977(1993).
    24. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, "Accurate measurement of large optical frequency differences with a mode-locked laser," Opt. Lett. 24, 881 (1999).
    25. A. Poppe, OR. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T.W. Hansch, and F. Krausz, "Few-cycle optical waveform synthesis," Appl. Phys. B, 72, 373 (2001).
    26. U. Morgner, R. Ell, G Metzler, T. R. Schibli, F. X. Kartner, J. G Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86,5462 (2001).
    27. S. A. Diddams, D. J. Jones, T. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb", Phys. Rev. Lett. 84, 5102 (2000).
    28. F. W. Helbing, G Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, "Carrier-envelope-offset dynamics and stabilization of femtosecond pulses", Appl. Phys. B 74, S35 (2002).
    29. T. Fuji, A. Apolonski, and F. Krausz, "Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation", Opt. Lett. 29, 632 (2004).
    30. A. Baltuska, T. Fuji, and T. Kobayashi, "Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers", Phys. Rev. Lett. 88, 133901 (2002).
    31. A. Dubietis, R. Danielius, G. Tamosauskas, and A. Piskarskas, "Combining effect in a multiple-beam-pumped optical parametric amplifier", J. Opt. Soc. Am. B15, 1135 (1998).
    32. T. Brabec and F. Krausz, "Nonlinear Optical Pulse Propagation in the Single-Cycle Regime", Phys. Rev. Lett. 78, 3282 (1997).
    33. S. M. Gallagher, A. W. Albrecht, J. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, "Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals", J. Opt. Soc. Am. B 15, 2338 (1998).
    34. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihara, T. Homma, and H. Takahashi, "Singleshot measurement of the carrier-envelope phase changes by spectral interferometry,", Opt. Lett. 26, 1436 (2001).
    35. C. P. Hauri, W. Kornelis, F. W. Heibing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, "Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation", Appl. Phys. B 79, 673(2004).
    36.段作梁、陈建平、方宗豹,王兴涛,李儒新,林礼煌,徐至展,“1KHz飞秒激光脉冲在空气中传输成丝的演化过程”,物理学报,53,0473(2004).
    37. O. G.. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, "Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air", Opt. Lett. 22, 1332 (1997).
    38. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, "Conical emission from self-guided femtosecond pulses in air", Opt. Lett. 21, 62(1996).
    39. A. Couairon, "Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses", Phys. Rev. A 68, 015801 (2003).
    40.郑颖辉,熊辉,彭滟,徐晗,曾志男,杨旋,陈晓伟,李儒新,曾和平,徐至展,“7fs超快强激光驱动Ar原子产生支持单个阿秒脉冲的高次谐波连续谱”,光学学报,26,1439(2006).
    41. M. Kakehata, H. Takada, T. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, H. Takahashi, K. Okubo, S. Nakamura, and Y. Koyamada, "Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies", Optics Express 12, 2070 (2004).
    42. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. Hansch,and F. Krausz, "Phase-controlled amplification of few-cycle laser pulse," IEEE J. Selected Topics in Quantum Electron. 9, 972 (2003).
    43. C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hansch, "Carrier envelope phase noise in stabilized amplifier systems", Opt. Lett. 30,2487 (2005).
    44. P. Dietrich, F. Krausz, P.B. Corkum, "Determining the absolute carrier phase of a few-cycle laser pulse", Opt. Lett. 25,16 (2000).
    45. M. Kakehata, Y. Kobayashi, H. Takada, K. Torizuka, "Single-shot measurement of a carrier-envelope phase by use of a time-dependent polarization pulse", Opt. Lett 27,1247(2001).
    46. G G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, "Measurement of the phase of few-cycle laser pulses", Phys. Rev. Lett. 91,253004 (2003).
    47. M. Mehendale, S.A. Mitchell, J.-P. Likforman, D.M. Villeneuve, P.B. Corkum, "Method for single-shot measurement of the carrier envelope phase of a few-cycle laser pulse", Opt. Lett. 25,1672 (2000).
    48. A. Baltuska, T. Fuji, T. Kobayashi, "Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier", Opt. Lett. 27, 1241 (2002).
    49. P. Agostini, F. Fabre, G Mainfray, G Petite, and N. K. Rahman, "Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms", Phys. Rev. Lett. 42,1127(1979).
    50. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification", Appl. Phys. Lett. 74,2268 (1999).
    51. M. Zavelani-Rossi, G Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G Angelow, V. Scheuer, and T. Tschudi, "Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors", Opt. Lett. 26,1155 (2001).
    52. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control", Opt. Lett. 27,306 (2002).
    53. S. T. Cundiff, J. Ye, and J. L. Hall, "Optical frequency synthesis based on mode-locked lasers," Rev. Sci. Instrum. 72,3749 (2001).
    54. S. T. Cundiff, "Phase stabilization of ultrashort optical pulses," J. Phys. D: Appl. Phys. 35, R43 (2002).
    55. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547 (1996).
    56. J. K. Ranka, R. S.Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25,25 (2000).
    57. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Optical properties of high-delta air-silica microstructure fibers," Opt. Lett. 25, 796 (2000).
    58. R. Ell, U. Morgner, F. X. Kartner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a tisapphire laser," Opt. Lett. 26, 373 (2001).
    59. A. Bartels and H. Kurz, "Generation of a broadband continuum by a tisapphire femtosecond oscillator with a 1-GHz repetition rate," Opt. Lett. 27, 1839 (2002).
    60. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Amer. 72, 156 (1982).
    1. A. Baltuska, T. Fuji, and T. Kobayashi, "Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers", Phys. Rev. Lett. 88, 133901 (2002).
    2. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control", Opt. Lett. 27, 306 (2002).
    3. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun. 56, 219 (1985).
    4. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, "Petawatt laser pulses", Opt. Lett., 24, 160 (1999).
    5. A. Dubeitis, G. Jonusauskas and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal", Opt. Comm. 88, 437 (1992).
    6. C. C. Wang, G. W. Racette, "Measurement of parametric gain accompany optical difference frequency generation", Appl. Phys. Lett. 6, 169 (1965).
    7. R. H. Kingston, "Parametric amplification and oscillation at optical frequencies", Proc. IRE 50, 472 (1962).
    8. N. M. Kroll, "Parametric amplification in spatially extended media and the application to the design of tunable oscillators at optical frequencies", Phys. Rev. 127, 1207 (1962).
    9. S. A. Akhmanov et al., "Concerning one possibility of amplification of light waves", Sov. Phys. JETP, 16, 252 (1963).
    10. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interaction between light waves in a nonlinear dielectric", Phys. Rev. 127, 1918 (1962).
    11. J. A. Giordmaine, R. C. Miller, "Tunable coherent parametric oscillation in LiNbO_3 at optical frequencies", Phys. Rev. Lett. 14, 973 (1965).
    12. A. Dubietis, R. Danielius, G. Tamosauskas, and A. Piskarskas, "Combining effect in a multiple-beam-pumped optical parametric amplifier", J. Opt. Soc. Am. B15, 1135 (1998).
    13. E. B. Treacy, "Optical pulse compression with diffraction gratings", IEEE J. Quantum Electron. 5, 454 (1969).
    14. O. E. Martinez, "Grating and prism compressors in the case of finite beam size", J. Opt. Soc. Am. B3, 929 (1986).
    15.郑颖辉,熊辉,彭滟,徐晗,曾志男,杨旋,陈晓伟,李儒新,曾和平,徐至展,“7 fs超快强激光驱动Ar原子产生支持单个阿秒脉冲的高次谐波连续谱”,光学学报,26,1439(2006).
    16. M. Kakehata, H. Takada, T. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, H. Takahashi, K. Okubo, S. Nakamura, and Y. Koyamada, "Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies", Optics Express 12, 2070 (2004).
    17. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. Hansch, and F. Krausz, "Phase-controlled amplification of few-cycle laser pulse," IEEE J. Selected Topics in Quantum Electron. 9, 972 (2003).
    18. C. Gohle, J. Rauschenberger, T. Fuji, T. Udem, A. Apolonski, F. Krausz, and T. W. Hansch, "Carder envelope phase noise in stabilized amplifier systems", Opt. Lett. 30, 2487 (2005).
    19. I. N. Ross, J. L. Collier, P. Matousek, C. N. Danson, D. Neely, R. M. Allott, D. A. Pepler, C. Hernandez-Gomez, and K. Osvay, "Generation of terawatt pulses by use of optical parametric chirped pulse amplification", Appl. Optics, 39, 2422(2000).
    20. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification", Opt. Comm. 144,125 (1997).
    21. H.Yoshida et al., "Broadband high-gain pre-amplifier system based on optical parametric chirped pulse amplifier for PW laser", CLEO/PACIFIC Rim Technical Digest, 180 (2001).
    22. P.Matousek, B.Rus, and I.N.Ross, "Design of a multi-petawatt optical parametric chirped pulse amplifier for the iodine laser", ASTERIX IV, IEEE. J. Quantum Electron 36, 158 (2000).
    23. A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, "High energy femtosecond pulse amplification in a quasi-phase matched parametric amplifier", Opt. Lett. 23,210 (1998).
    24. C. P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, "Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator", Opt. Lett. 29,1369 (2004).
    1. I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, "Optical Parametric Chirped-Pulse Amplifier as an Alternative to Ti: Sapphire Regenerative Amplifiers", Appl. Opt. 41, 2923 (2002).
    2. X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin, and B. Tang, "Multiterawatt laser system based on optical parametric chirped pulse amplification", Opt. Lett. 27, 1135 (2002).
    3. I. Jovanovic, C. A. Ebbers, C. P. J. Barty, "Hybrid chirped-pulse amplification", Opt. Lett. 27, 1622 (2002).
    4. H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka, "High-power and high-contrast optical parametric chirped pulse amplification in b -BaB 20 4 crystal", Opt. Lett. 28, 257 (2003).
    5. L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zueget, "High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses", Opt. Lett. 28, 1245 (2003).
    6. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification", Appl. Phy. Lett. 74, 2268 (1999).
    7. H. Tan, W. S. Warren, and E. Schreiber, "Generation and amplification of ultrashort shaped pulses in the visible by a two-stage noncollinear optical parametric process", Opt. Lett. 26, 1812 (2001).
    8. C. Lee, J. Zhang, J. Y. Huang, and C. Pan, "Generation of femtosecond laser pulses tunable from 380 nm to 465 nm via cascaded nonlinear optical mixing in a noncollinear optical parametric amplifier with a type-I phase matched BBO crystal", Opt. Express 11,1702 (2003).
    9. K. Osvay, I. N. Ross, "Broadband sum-frequency generation by chirp-assisted group-velocity matching", J. Opt. Soc. Am. B 13,1431 (1996).
    10. J. Biegert, J. Diels, "Compression of pulses of a few optical cycles through harmonic generation", J. Opt. Soc. Am. B 18,1218 (2001).
    11. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, and S. Kohler, R. Holzwarth l, A. Baltuskal, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express. 13, 6550 (2005), http://www.opticsexpress.org/abstract.cfm?id=85322.
    12. Taisuke Miura, Katsuyuki Kobayashi, Kazuya Takasago, Zhigang Zhang, Kenji Torizuka, and Fumihiko Kannari, "Timing jitter in a kilohertz regenerative amplifier of a femtosecond-pulse TiAl_ 2O_3 laser," Opt. Lett. 25, 1795 (2000).
    13. Shixiang Xu, Hui Zhai, Zhixiong Xu, Yan Peng, Kun Wu, and Heping Zeng, "Accurate all-optical synchronization of 1064 nm pulses with 794nm femtosecond pulses for optical parametric chirped pulse amplification," Opt. Express, 14, 2487 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2487.
    1. A. Baltuska, T. Fuji, and T. Kobayashi, "Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers", Phys. Rev. Lett. 88, 133901 (2002).
    2. K. Wu, Y. Peng, A. Xu, and H. Zeng, "All-optical control of the carrier-envelope phase with multi-stage optical parametric amplifiers verified with spectral interference", Appl. Phys. B 83, 537 (2006).
    3. X. Fang and T. Kobayashi, "Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber", Opt. Lett. 29, 1282 (2004).
    4. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control", Opt. Lett. 27, 306(2002).
    5. A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, "Attosecond control of electronic processes by intense light fields", Nature 421, 611(2003).
    6. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihara, T. Homma, and H. Takahashi, "Singleshot measurement of the carrier-envelope phase changes by spectral interferometry,", Opt. Lett. 26, 1436 (2001).
    7. M. Kakehata, H. Takada, T. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, H. Takahashi, K. Okubo, S. Nakamura, and Y. Koyamada, "Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies", Optics Express 12, 2070 (2004).
    8. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. Hansch, and F. Krausz, "Phase-controlled amplification of few-cycle laser pulse," IEEE J. Selected Topics in Quantum Electron. 9, 972 (2003).
    9. A. Baltuska, T. Fuji, T. Kobayashi, "Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier", Opt. Lett. 27, 1241 (2002).
    10.姚建铨,《非线性光学频率变换及激光调谐技术》,北京,科学出版社,1995年3月。
    1. K. Wu, Y. Peng, A. Xu, and H. Zeng, "All-optical control of the carder-envelope phase with multi-stage optical parametric amplifiers verified with spectral interference", Appl. Phys. B 83, 537 (2006).
    2. K. Tai, A. Hasegawa, and A. Tonita, "Observation of modulational instability in optical fibers", Phys. Rev. Lett. 56, 135 (1986).
    3. L. W. Liou, X. D. Cao, C. J. McKinstrie, and G. P. Agrawal, "Spatiotemporal instabilities in dispersive nonlinear media", Phys. Rev. A 46, 4202 (1992).
    4. H. Fang, R. Malendevich, R. Schiek, and G. I. Stegeman, "Spatial modulational instability in one-dimensional lithium niobate slab waveguides", Opt. Lett. 25, 1786 (2000).
    5. J. F. Corney and O. Bang, "Modulational instability in periodic quadratic nonlinear materials", Phys. Rev. Lett. 87, 133901 (2001).
    6. S. Trilio, C. Conti, P. Di Trapani, O. Jedrkiewicz, J. Trull, G. Valiulis, and G. Bellanca, "Colored conical emission by means of second-harmonic generation", Opt. Lett. 27, 1451 (2002).
    7. H. Zeng, J. Wu, H. Xu, K. Wu, and E Wu, "Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium", Phys. Rev. Lett. 87, 143903 (2004).
    8. H. Zeng, K. Wu, H. Xu, and J. Wu, "Seeded amplification of colored conical emission via spatiotemporal modulational instability", Appl. Phys. Lett. 87, 061102 (2005).
    9. A. Hasegawa, Plasma instabilities and nonlinear effects, Heidelberg, Springer-Verlag, (1975).
    10. T. B. Benjamin and J. E. Feir, "The disintegration of wave trains on deep water", J. Fluid Mech. 27,417 (1967).
    11. L. A. Ostrovskii, Sov. Phys. JETP 24, 797 (1967).
    12. S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, Laser Handbook, North-Holland, Amsterdam, (1972).
    13. G P. Agrawal, Nonlinear fiber optics, San Diego, Academic Press, (2001).
    14. R. A. Fuerst, D. -M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, "Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear optical medium", Phys. Rev. Lett. 78, 2756 (2004).
    15. S. Minardi, J. Yu, G Blasi, A. Varanavicius, G Valiulis, A. Berzanskis, A. Piskarskas, and P. Di Trapani, "Red solitons: Evidence of spatiotemporal instability inx~(2) spatial soliton dynamics", Phys. Rev. Lett. 91, 123901 (2003).
    16. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G I. Stegeman, L. Torner, and C. R. Menyuk, "Observation of two-dimensional spatial solitary waves in a quadratic medium", Phys. Rev. Lett. 74, 5036 (1995).
    1. H. Zeng, K. Wu, H. Xu, and J. Wu, "Seeded amplification of colored conical emission via spatiotemporal modulational instability", Appl. Phys. Lett. 87, 061102(2005).
    2. H. Zeng, J. Wu, H. Xu, K. Wu, and E Wu, "Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium", Phys. Rev. Lett. 87, 143903 (2004).
    3. A. Baltuska, T. Fuji, and T. Kobayashi, "Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers", Phys. Rev. Lett. 88, 133901 (2002).
    4. S. Trillo, C. Conti, P. Di Trapani, O. Jedrkiewicz, J. Trull, G. Valiulis, and G Bellanca, "Colored conical emission by means of second-harmonic generation", Opt. Lett. 27,1451 (2002).
    5. T. Whilhelm, J. Piel, and E. Riedle, "Sub-20- fs pulses tunable across the visible f rom a blue-pumped single-pass noncollinear parametric converter", Opt. Lett. 22,1494(1997).
    6. A. Shirakawa and T. Kobayashi, "Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm ~(-1) bandwidth", Appl. Phys. Lett. 72,147(1998).
    7. A. Baltuska, T. Fuji, and T. Kbayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control", Opt. Lett. 27, 306 (2002).
    8. P. Tzankov, T. Fiebig, and I. Buchvarov, "Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification", Appl. Phys. Lett. 82,517(2003).
    9. G. Cerullo, M. Nisoli, and S. De Silvestri, "Generation of 11 fs pulses tunable across the visible by optical parametric amplification", Appl. Phys. Lett. 71, 3616(1997).
    10. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, "Third-Harmonic Generation and Self-Channeling in Air Using High-Power Femtosecond Laser Pulses", Phys. Rev. Lett. 89, 143901 (2002).
    11. P. Di Trapani, G Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, "Spontaneously Generated X-Shaped Light Bullets", Phys. Rev. Lett. 91, 093904 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700