基于超声波悬浮技术的电机转子支撑结构设计及转子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波悬浮技术是一种利用高频振动实现物体悬浮支撑的技术,由于其具有非接触、摩擦和磨损小、无需润滑、结构简单等优点,因此在高速旋转机械、精密陀螺、飞轮储能等领域具有广泛的应用前景。本文结合国家自然科学基金项目“超声波支承高速电机(项目编号:50977037)”,构造用于支承电机转子的超声波悬浮支撑结构,并研究转子在超声波悬浮支撑条件下的动力学特性。本文通过理论解析、有限元计算以及实验测试等方法对超声波近场悬浮机理进行了研究,针对转子两端受锥面支撑并且竖直布置的结构方案,设计制作了锥型双向支承的超声波悬浮支撑结构,并对电机转子的运行情况进行了初步的试验研究。本文主要研究内容如下:
     1.介绍压电材料的相关理论,分析压电振子的基本振动模式,通过机电等效方法分析压电振子的谐振特性,讨论了与能量转换过程相关的性能参数。在此基础上建立压电式超声换能器的机电等效模型,讨论影响换能器有效发射功率的因素,包括换能器的振动模态、各组成部分的材料、前后盖板的振速比等,为下一步的研究奠定基础。
     2.为进一步了解超声波近场悬浮作用的机理,建立了超声波悬浮支撑的声辐射力模型和气体挤压膜悬浮模型。采用理论分析和实验测试的方法得到悬浮间隙与承载能力的关系,并对两种模型的计算结果进行了比较,通过比较发现气体挤压膜悬浮模型更适合小悬浮间隙条件下悬浮力的计算。通过对气体挤压膜悬浮模型进行瞬态分析,获得悬浮间隙内的动压力变化情况,并经过周期平均处理得到悬浮力时间平均值;通过解析推导和数值计算获得了等效挤压数以及振动幅值比对超声波悬浮能力的影响规律,分析间隙气膜刚度、阻尼等力学效果与超声波振动之间的关系,为超声波悬浮支撑结构的设计与性能分析提供理论依据。
     3.通过实验和有限元方法测量和分析了圆锥辐射面压电换能器的谐振频率和振动模态。对圆锥型超声波悬浮支撑结构的性能进行分析和测试,获得了悬浮力与悬浮间隙之间的关系。从理论上分析了在超声波悬浮支撑条件下,悬浮间隙变化对于电机转子临界转速与振动模态的影响情况,设计制作了用于支承电机转子的超声波悬浮支撑结构,研究电机转子在超声波悬浮支撑条件下的运行情况,测试悬浮间隙与电机转子最高转速的关系,经研究发现通过减小悬浮间隙,能够增强间隙气膜的刚度支撑效果,并提高转子的最高转速。
The ultrasonic levitation is a technology which uses high frequency vibration toachieve suspending support. Because of its advantages of Non-contact,little frictionand wearness, requiring no lubrication and simple structure, there are broad prospectsfor the application field of High-speed rotating machinery, precision gyroscope andflywheel energy storage. This paper is based on the project of the National NaturalScience Foundation "Ultrasonic Supporting High-speed Motor (item number:50977037)", proposes constructing ultrasonic levitation support structure for themotor rotor, to study on the dynamic characteristics of the rotor supported by theultrasonic suspension. The paper studies the mechanism of near-field acousticlevitation through theoretical analysis, finite element calculations and experimentaltesting, for cone supporting the rotor both ends and vertical layout of the structure ofscheme, a two-way conical ultrasonic suspension support structure is designed andmanufactured, and a preliminary experiment of the operation of the motor rotor iscarried out. The main contents of this paper are given as follows:
     1. The relevant theory of the piezoelectric material is introduced,and thefundamental vibration mode of piezoelectric vibrator is analyzed. Electromechanicalequivalent method is employed to analyze the resonance characteristics ofpiezoelectric vibrator, and moreover, the performance parameters related to the energyconversion process are discussed. On this basis, the mechanical and electricalequivalent model of the piezoelectric ultrasonic transducer is created. There areinfluence factors of the transducer effective radiated power, including the vibrationmode of transducer, the materials of components, the vibration speed ratio of frontcover and rear cover. Such work will help lay the foundation for further study.
     2. The acoustic radiation force model and the gas squeeze film suspension modelfor ultrasonic suspension support are built, further to understand the mechanism of near-field acoustic levitation. Using the methods of experimental testing andtheoretical analysis, the relationship between the levitation gap and carrying capacityis obtained. Calculation results and the scope of the two models are compared, and thegas squeeze film suspension model is more suitable for the calculation of levitationforce in the conditions of small suspension gap by comparison. According to transientanalysis results of gas squeeze film model, the change of dynamic pressure within thelevitation gap is observed,and the time average of the levitation force is calculatedthrough the cycle average processing. Through the analytical derivation and numericalcalculation, it is found that equivalent squeeze number and vibration amplitude ratioexert great influence on the ultrasonic levitation ability, and the relationship betweenultrasonic vibration and the mechanical effect of stiffness and damping in the gap gasfilm is obtained, which provids a theoretical basis for structure design andperformance analysis of ultrasonic levitation supporting device.
     3. The resonance frequency and vibration mode of piezoelectric transducer withconical radiating surface is measured by experiments and analyzed by finite elementmethod. The performance of the conical-type ultrasonic levitation support structure isanalyzed and tested, during this process the relationship between the levitation forceand levitation gap is gained. Through theoretical analysis it is realised that the criticalspeed and vibration mode of the motor rotor is affected by the change of levitationgap in the ultrasonic levitation condition. a two-way ultrasonic suspension supportstructure is designed and manufactured, and the rotation state of motor rotor isinvestigated under the conditions of ultrasonic levitation support. The relationship oflevitation gap and the maximum speed of the motor rotor is tested, it is found thatthe stiffness of the gas film can be enhanced by reducing the suspended gap,andsimultaneously the maximum speed of the rotor is increased.
引文
[1]赵跃进.精密机械设计基础.北京理工大学出版社,2003.
    [2]池长青.气体动静压轴承的动力学及热力学.北京航空航天大学出版社,2008.
    [3]张冠坤,钟洪.液体动静压轴承原理计算和试验.科学普及出版社,1988.
    [4]刘迎澍,黄田.磁悬浮轴承研究综述[J].机械工程学报,2000(11).
    [5] S.Nagaya, K.Komura, N.Kashima, etc.Development of the composite superconductingmagnetic bearing for superconducting flywheel.Physica C,392-396(2003):719-722.
    [6]熊田明生.超声波减摩性能的研究[J].声学与电子工程,1986,5:24-29.
    [7] E.Matsuo, Y.Koike, K.Nakamura, S.Ueha and Y.Hashimoto.Holding characteristics ofplanar objects suspended by near-field acoustic levitation[J].Ultrasonics,2000,38:60~63.
    [8] Chang, Kuo-Tsi.A novel ultrasonic clutch using near-field acoustic levitation.Ultrasonics,2004, V43:49-55.
    [9]王育慷.超声波原理与现代应用探讨[J].贵州大学学报(自然科学版)2005,22(3):287.
    [10]刘镇清,黄瑞菊.薄板声-超声检测超声传播模式的实验研究[J].声学学报,2000(03).
    [11]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术.国防工业出版社,2007.
    [12]潘祥生,邢立华,李勋,张德远.聚焦式超声悬浮[J].北京航空航天大学学报,2006(01).
    [13]解文军,曹崇德,魏炳波.声悬浮的实验研究和数值模拟分析[J].物理学报,1999(02).
    [14]解文军.声悬浮优化设计理论及其应用研究[D].西北工业大学,2002.
    [15]解文军,魏炳波.声悬浮研究新进展[J].物理,2002(09).
    [16]孙运涛,陈超.基于近声场的超声悬浮试验.振动、测试与诊断,2011(05).
    [17] Sadayuki Ueha, Yoshiki Hashimoto, Yoshikazu Koike.Non-contact transportation usingnear-field acoustic levitation.Ultrasonics,2000(38)26-32.
    [18] Takeshi IDE, James Robert FRIEND, etc.A Low-Profile Design for the NoncontactUltrasonically Levitated Stage.Japanese Journal of Applied Physics,2005(44),4662-4665.
    [19] Shigeka Yoshimoto, Hiroyuki Kobayashi, Masaaki Miyatake.Float characteristics of asqueeze-film air bearing for a linear motion guide using ultrasonic vibration.TribologyInternational,2007(40):503-511.
    [20] Tadeusz AdamStolarski, M.M. Khonsari.Running Characteristics of Aerodynamic Bearingwith Self-Lifting Capability at Low Rotational Speed.Advances in Tribology,(2011)973740
    [21] Su Zhao, Joerg Wallaschek.Design and Modeling of A Novel Squeeze Film JournalBearing.International Conference on Mechatronics and Automation,2009.
    [22] Takaaki Oiwa, Masaya Kato.Squeeze air bearing based on ultrasonic oscillation: Motioncompensation using amplitude modulation.REVIEW OF SCIENTIFIC INSTRUMENTS,2004(75).
    [23]田丰君.基于夹心式压电换能器的超声波近场声悬浮支撑技术研究[D].吉林大学,2010
    [24]孙康,张福学.压电学.北京:国防工业出版社,1984.
    [25]李环亭,孙晓红,陈志伟.压电陶瓷材料的研究进展与发展趋势[J].现代技术陶瓷.2009(02).
    [26]王树彬,韩杰才,杜善义.压电陶瓷/聚合物复合材料的制备工艺及其性能研究进展.功能材料,1999(02).
    [27]徐芝纶.弹性力学.高等教育出版社,2006.
    [28] Smits Jan G, Dalke Susan I, Cooney Thomas K.The constituent equations of piezoelectricbimorphs.Sensors and Actuators,1991.
    [29]方岱宁,刘金喜.压电与铁电体的断裂力学.清华大学出版社,2008.
    [30]耿济栋,姚国兴.压电陶瓷阻尼振动的有限元模型分析[J].振动、测试与诊断,2006(03).
    [31]曲远方.现代陶瓷材料及技术.华东理工大学出版社,2008.
    [32]阎西林.晶体物理学.电子工业出版社,1995.
    [33]叶会英,浦昭邦.压电双晶片的能量传输特性分析[J].光学精密工程,2000(04).
    [34]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京大学出版社,2005.
    [35] Manabu Aoyagi, Yoshiro Tomikawa.Simplified Equivalent Circuit of Ultrasonic Motor andIts Application to Estimation of Motor Characteristics[J].Jpn. J.Appl.Phys,1995,58:2752-2755.
    [36] SMITS J G, BALLATO A. Dynamic admittance matrix of piezoelectric cantileverbimorphs.Journal of Microbiology,1994.
    [37] CHANG S H, ROGACHEVA N N, CHOU C C.Analysis of methods for determiningelctromechanical coupling coefficients of piezoelectric elemetns.IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control,1995.
    [38]程存弟,贺西平.功率超声振动系统研究进展[J].声学技术,1995(02).
    [39]张云电.夹心式压电换能器及其应用.科学出版社,2006.
    [40]林书玉.超声换能器的原理及设计.科学出版社,2004.
    [41]贺西平,程存弟,贺昇平.超声扭振系统的四端网络设计法[J].应用声学,1994(03).
    [42] YAN Zhongyu, LIN Zhongmao.Optimum design for sandwich-by analyzing effects ofstructureand material parameters of transducer on it’s performance.Acta Acoustica,1995.
    [43]常颖.超声波轴承悬浮与减摩作用机理及基础实验研究[D].吉林大学,2005.
    [44]钱祖文.非线性声学.科学出版社,2009.
    [45] Dale Ensminger.Ultrasonics:Fundamentals Technologies and Applications.CRC Press,2009.
    [46] Von O. V. Abramov, Abramov V. Abramov.High-Intensity Ultrasonics Theory and IndustrialApplications.Gordon and Breach Science Publishers,1998.
    [47] A A Doinikov.Acoustic radiation pressure on a rigid sphere in a viscous fluid.Proc.R.Soc.Lord,1994:447-466.
    [48]杜功焕.声学基础.南京大学出版社,2001.
    [49]李太宝著.计算声学声场的方程和计算方法.科学出版社,2005.
    [50] B. L. Smith and G. W. Swift.Measuring second-order time-average pressure.AcousticalSociety of America,2001, Volume110:717-723.
    [51] Y. Hashimoto, Y. Koike, and S. Ueha.Near-field acoustic levitation of planar specimensusing flexural vibration.Acoustical Society of America Journal,100:2057–2061,1996.
    [52] B. Chu, R.E. Apfel.Acoustic radiation pressure produced by a beam of sound.J. Acoust. Soc.Am,72(6)(1982).
    [53]钱祖文,刘佐民.摩擦学理论与设计.武汉理工大学出版社,2009.
    [54] George Em Karniadakis, Ali Beskok.Micro Flows Fundamentals and Simulation.SpringerVerlag New York,2006.
    [55]庄礼贤,尹协远.流体力学.中国科技大学出版社,2009.
    [56]王云飞.气体润滑理论与气体轴承设计.机械工业出版社,1999.
    [57]党根茂.气体润滑技术.东南大学出版社,1990.
    [58]周桂如.流体润滑理论.浙江大学出版社,1990.
    [59] E.O.J. Salbu. Compressible squeeze films and squeeze bearings. Journal of BasicEngineering,1964,86:355–366.
    [60]吴小庆.数学物理方程及其应用.科学出版社,2008.
    [61] Griffin, W.S, etal.A Study of Squeeze-film Damping.Journal of Basic Engineering.451-456,1966.
    [62]龙志强,罗昆.电磁型磁轴承的动态模型建立与分析[J].磁性材料及器件,2003(02).
    [63]曾攀,雷丽萍,方刚.基于ANSYS平台有限元分析手册结构的建模与分析.机械工业出版社,2011.
    [64]常颖,吴博达,程光明,杨志刚,田丰君.超声波轴承用压电换能器模态分析及实验研究.哈尔滨工业大学学报,2006(05).
    [65]宋道仁,肖鸣山.压电效应及其应用.科学普及出版社,1987.
    [66]张文.转子动力学理论基础.科学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700