核因子-κB对人眼小梁细胞生长及分泌功能影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:
     小梁细胞位于前房角的小梁网组织中,含有多种细胞因子受体,能分泌基质金属蛋白酶(MMP)及细胞外基质(ECM)等多种成分,是维持小梁网结构及功能,保持房水外引流通畅的重要因素。小梁细胞功能障碍可导致房水外流阻力增大,眼压升高引发青光眼。研究发现原发性开角型青光眼患者的小梁细胞数量明显低于正常人,小梁网组织中ECM含量增加。因此,深入研究调节小梁细胞增殖、凋亡和分泌功能的分子机制,对明确青光眼的发病机制以及指导青光眼的治疗具有重要的意义。
     NF-κB是一个广泛存在于细胞中具有多向调节作用的核转录因子,在细胞生长分化、增殖、凋亡、免疫应答、炎症反应等生理及病理过程中发挥重要的调节作用。NF-κB的活化是炎症反应的中心环节,NF-κB的过度活化与许多急慢性炎性相关疾病的发生发展密切相关。在青光眼的发生、发展及临床治疗过程中,时常伴有炎症的发生,尤其是在外伤、葡萄膜炎所致的继发性青光眼的发病过程中,前房炎症反应所产生的大量炎症介质及细胞因子,必然会刺激小梁细胞NF-κB的活化。压力应激反应可导致细胞NF-κB的活化,研究发现原发性青光眼小梁网NF-κB的表达也明显高于正常人,而NF-κB的活化对青光眼的进程将会产生何种影响,目前仍不清楚。
     NF-κB的活化对细胞生存至关重要,NF-κB可通过直接调控与细胞增殖相关基因及抗凋亡基因的表达,参与细胞增殖与凋亡的调控。此外,NF-κB还可以调控多种基质金属蛋白酶的表达。临床上长期应用糖皮质激素可导致继发性青光眼的发生,而糖皮质激素是NF-κB的拮抗剂,长期应用激素使NF-κB活性被过度抑制,继而引发小梁细胞的凋亡是否是激素性青光眼的发病机制,目前亦尚不清楚。
     为此,本研究拟以NF-κB为切入点,通过培养人眼小梁细胞,将NF-κB的活性亚基P65/RelA基因转染入小梁细胞,观察NF-κB在小梁细胞中的过度表达对小梁细胞的增殖、凋亡,以及基质金属蛋白酶和TIGR基因转录和表达的影响。另一方面,采用圈套策略,即应用与NF-κB顺式作用元件序列同源的寡核苷酸序列抑制小梁细胞NF-κB的活化,观察其对小梁细胞增殖、凋亡,以及基质金属蛋白酶和TIGR基因的表达变化的影响。本课题试图阐述NF-κB在小梁细胞功能障碍中的作用,了解NF-κB在不同活性情况下对小梁细胞的影响,讨论其与青光眼发生的可能性。
     材料方法:
     人眼小梁细胞原代培养及鉴定:利用角膜移植术的供体眼组织,应用组织块培养法培养小梁细胞,采用免疫组化SP法,进行纤维连接蛋白(FN)、层粘连蛋白(LN)、Ⅳ型胶原、TIGR蛋白及Ⅷ因子相关抗原鉴定。
     细胞分组:采用培养在三到五代的小梁细胞进行实验,随机分为5组,正常对照组(C),空质粒对照组(P65-C),P65质粒组(P65),随机圈套对照组(ODN-C),NF-κB圈套核苷酸组(ODN)
     P65质粒及NF-κB圈套核苷酸细胞转染:采用脂质体转染方法,利用荧光显微镜及Westem Bolt法检测转染效果。
     P65质粒转染后小梁细胞培养液TNF-a含量检测:转染后24小时用ELISA法检测细胞培养液中TNF-α的含量。
     NF-κB对小梁细胞增殖及凋亡的影响:分别应用MTT及~3H-TdR掺入实验检测小梁细胞的增殖情况,用Tunel法检测小梁细胞的凋亡。
     NF-κB对小梁细胞基质金属蛋白酶(MMP)及其抑制剂(TIMP)表达的影响:应用RT-PCR方法检测小梁细胞MMP-1,MMP-2,MMP-3及TIMP-1,TIMP-2 mRNA的表达情况。
     NF-κB对小梁细胞TIGR基因表达调控的影响:应用RT-PCR及Western Blot法分别检测TIGR基因mRNA及蛋白质表达。
     结果:
     人眼小梁细胞培养成功,免疫组化鉴定LN、FN、Ⅳ型胶原及TIGR基因表达为阳性,Ⅷ因子相关抗原为阴性。
     P65质粒转染后24小时,小梁细胞P65的表达明显升高,细胞培养上清液中TNF-α含量显著升高。
     P65高表达抑制小梁细胞的增殖及DNA合成,促进小梁细胞凋亡增加。NF-κB圈套核苷酸同样抑制小梁细胞的增殖及DNA合成,并且促进小梁细胞凋亡的增加。
     P65高表达促进小梁细胞MMP-1及MMP-3 mRNA的表达,对MMP-2及TIMP-1,TIMP-2的表达无影响。NF-κB圈套核苷酸抑制小梁细胞MMP-1及MMP-3 mRNA的表达,对MMP-2及TIMP-1,TIMP-2的表达无影响。
     P65高表达抑制小梁细胞TIGR基因mRNA及蛋白质的表达,NF-κB圈套核苷酸促进小梁细胞TIGR基因mRNA及蛋白质的表达。
     结论:
     P65促进小梁细胞分泌炎症介质TNF-α,提示NF-κB过度活化可引发小梁细胞出现过度炎症反应。
     P65在小梁细胞中的过度表达抑制小梁细胞的增殖及DNA合成,并且促进小梁细胞凋亡的发生。提示前房过度炎症反应可能影响小梁细胞的存活,炎症继发性青光眼的发生可能与NF-κB过度活化密切相关。
     NF-κB圈套核苷酸抑制小梁细胞的增殖及DNA合成,并且促进小梁细胞凋亡的发生,说明NF-κB在正常情况下具有维持小梁细胞数量及功能平衡的作用。提示NF-κB活性过度受抑可能是糖皮质激素性青光眼的发生机制之一。
     NF-κB活化可促进小梁细胞MMP-1及MMP-3的表达,抑制NF-κB的活化则会抑制小梁细胞MMP-1及MMP-3的表达,说明NF-κB在调控小粱网细胞外基质平衡机制中占有重要的地位。提示长期应用NF-κB抑制剂,可能会导致小梁细胞MMP-1及MMP-3的分泌下降,造成小梁网ECM的过度堆积。
     NF-κB的活化和抑制可促使小梁细胞TIGR基因表达改变,说明NF-κB对青光眼相关基因TIGR的表达具有反相调控作用。提示NF-κB功能受抑可能是激素性青光眼小梁网TIGR蛋白表达增高的原因之一。
Background and Objective:
     Trabecular meshwork(TM) cells,located in the TM tissues of the chamber angle of eye,contain multiple cytokines and could secret various substances,such as matrix metalloproteinases(MMPs) and extracellular matrix(ECM) components.It plays an important role in maintaining TM structure and function,and facilitating aqueous outflow. Dysfunctions of TM cells would increase aqueous outflow resistance and lead to elevation of intraocular pressure and development of glaucoma.Previously researchers have reported significant loss of TM cells and obviously increased extracellular matrix in TM tissues of patients with primary open-angle glaucoma,compared with normal controls.So,we suggest that if the molecular mechanisms of glaucoma pathogenesis,such as TM cells proliferation, apoptosis and secretion,could be clearly elucidated,glaucoma could be effectively treated.
     Nuclear factor-κB(NF-κB) regulates the transcription of a wide array of gene products that are involved in many pathological and physiological pathways,such as cell differentiation,proliferation and apoptosis,and immune/inflammatory responses. Activation of NF-κB may be a pivotal event in proinflammatory signal transduction.But, its excessive activation would lead to many diseases with severe chronic/acute inflammatory responses.Inflammatory responses commonly occur during the glaucoma onset,development and treatment,especially in that caused by trauma and uveitis.High levels of inflammatory mediators and cytokines,produced in inflammatory responses in anterior chamber,would inevitably initiate the activation of NF-κB,which also could be induced by stress reactions.It have been found that the expression of NF-κB of TM cells in patients with primary glaucoma is significantly higher than that in normal controls. Unfortunately,the effects of NF-κB activation on glaucoma still remain unclear.
     NF-κB,critical to cell survival,could mediate anti-apoptosis and cell proliferation by regulating the expressions of relative genes.Additionally,it also participates in controlling MMP gene activity.In clinic,chronic administration of glucocorticoid could result in secondary glaucoma.Because glucocorticoid belongs to one of antagonists of NF-κB,we suggest that glucocorticoid abuse could heavily inhibit the activity of NF-κB and consequently induce TM cells apoptosis.However,no experimental evidences show that the cascade processes described above are responsible for the occurrence of glucocorticoidinduced glaucoma.
     In our research,to evaluate the effects of NF-κB on TM cells' proliferation and apoptosis,and the transcription and expression of MMP and TIGR genes,we transfected RelA/P65 subunit gene into cultured TM cells and used oligodeoxynucleotides(ODNs), homologous to the sequence of cis-elements of NF-κB,to inhibit the activation of NF-κB in TM cells,according to the decoy strategy.At the same time,we tried to explain NF-κB role in TM cells dysfunction,and to evaluate the effect of different NF-κB activity on TM cells and its relationship with glaucoma occurrence.
     Materials and Methods:
     1.Primary culture and identification of TM cells:TM cells were cultured using tissue-explant technique with eye tissues of donors in corneal grafting.SP immunocytochemical method was used to identify fibronectin(FN),laminin(LN), CollagenⅣ,TIGRand FactorⅧ-related antigens.
     2.Cell grouping:The cells were divided into five groups,i.e.,normal control group (C),control plasmid group(P65-C),pRSV-RelA/P65 plasmid group(P65) and Random-decoy-ODNs control group(ODN-C) and NF-κB decoy-ODNs group(ODN)
     3.Transfection of P65 and NF-κB decoy-ODNs:After pRSV-RelA/P65 plasmid and NF-κB decoy-ODNs were transfected with liposome,the transfection efficiency was estimated by fluorescence microscope and Western Blot analysis.
     4.Detection of TNF-αlevel in pRSV-RelA/P65 plasmid transfected TM cells:At 24 hours after transfection,TNF-αlevel was measured by ELISA in the culture supematant of P65-transfected TM cells.
     5.Effect of NF-κB on TM cells' proliferation and apoptosis:MTT assay and ~3H-TdR incorporation were applied respectively for the detection of TM cells' proliferation,while Tunel method for their apoptosis.
     6.Effect of NF-κB on the expressions of MMPs and their tissue inhinitors(TIMPs) in TM cells:RT-PCR was adopted to evaluate the expressions of mRNAs of MMPs(MMP-1, -2 and-3) and TIMPs(TIMP-1,-2 and-3).
     7.Effect of NF-κB on TIGR gene expression and regulation:The levels mRNA and protein expression of TIGR were detected respectively by RT-PCR and Western Blot.
     Results:
     1.We successfully cultured TM cells in DMEM.medium.Immunochemical analysis revealed that these cells were positive for LN,FN,CollagenⅣand TIGR gene expression, and negative for FactorⅧ-related antigens.
     2.At 24 hours after P65 gene transfection,the expression of P65 was dramatically leveled up,meanwhile,TNF-αlevel was also significantly increased in the culture supernatant of TM cells.
     3.Both relatively high expression of P65 and NF-κB decoy-ODNs could inhibit proliferation and DNA synthesis of TM cells,and consequently induce cell apoptosis.
     4.High P65 expression also had an evident expression-promoting effect on the mRNAs of MMP-1 and-3,while,NF-κB decoy-ODNs had an inhibitory one.At the same time,Both of them had no obvious effect on the expressions of MMP-2 and TIMP-1 and-2.
     5.The gene and protein expression of TIGR could be downregulated by High P65 expression,and upregulated by NF-κB decoy-ODNs.
     Conclusions:
     1.P65 obviously promotes TNF-αsecretion in TM cells,which indicates that excessive NF-κB activation may lead to the high-level inflammatory responses.
     2.Upregulated NF-κB expression would inhibit the proliferation and DNA synthesis of TM cells cultured in vitro and promote their apoptosis,which suggests that exuberant inflammatory responses in anterior chamber have a negative effect on TM cells survival and excessive activation of NF-κB may is one of the pathways involved in secondary glaucoma.
     NF-κB decoy-ODNs also suppress TM cells proliferation and DNA synthesis,and induce apoptosis,which suggests that NF-κB could maintain normal TM cell numbers and functions and chronic inhibition of NF-κB may cause glucocorticoid-induced glaucoma.
     NF-κB activation/inhibition could upregulate/downregulate the expressions of MMP-1 and-3 in TM cells,which indicates that NF-κB plays a critical role in ECM maintenance and chronic administration of NF-κB inhibitor may result in the decrease of secretion of MMP-1 and-3,and ECM accumulation in TM cells.
     NF-κB activation/inhibition also could cause changes of TIGR gene expression,which suggests that NF-κB plays a key role in regulating the expression of glaucoma-related TIGR gene and the inhibition of NF-κB function could lead to the increase of expression of TIGR protein in TM of glucocorticoid-induced glaucoma.
引文
[1]Pang IH,Hellberg PE,Fleenor DL,et al.Expression of Matrix Metalloproteinases and Their Inhibitors in Human Trabecular Meshwork Cells.Invest.Ophthalmol.Vis.Sci.2003;44(8):3485-3493.
    [2]Ferrer E.Trabecular meshwork as a new target for the treatment of glaucoma.Drug News Perspect.2006 Apr;19(3):151-8.
    [3]Lutjen-Drecoll E.Functional morphology of the trabecular meshwork in primate eyes.Prog Retin Eye Res.1999 Jan;18(1):91-119.
    [4]Yue BY.The extracellular matrix and its modulation in the trabecular meshwork.Surv Ophthalmol.1996 Mar-Apr;40(5):379-90.
    [5]Cho-Chung YS,Park YG,Lee YN.Oligonucleotides as transcription factor decoys.Curr-Opin-Mol-Ther.1999 Jun;1(3):386-92.
    [6]Baeuerle PA,Baltimore D.NF-kappa B:ten years after.Cell,1996,87(1):13-20.
    [7]Siebenlist U,Franzoso G,Brown K.Structure,regulation and function of NF-kappaB.Annu Rev Cell Biol,1994;10:405-55.
    [8]Liu SF,Malik AB.NF-kappa B activation as a pathological mechanism of septic shock and inflammation.Am J Physiol Lung Cell Mol Physiol.2006Apr;290(4):L622-L645.
    [9]Yamamoto Y,Gaynor RB.Role of the NF-kappaB pathway in the pathogenesis of human disease states.Curr Mol Med,2001,1(3):287-96.
    [10]Sappington RM,Calkins DJ.Pressure-induced regulation of IL-6 in retinal glial cells:involvement of the ubiquitin/proteasome pathway and NFkappaB.Invest Ophthalmol Vis Sci.2006 47(9):3860-9.
    [11]Wang,N,Chintala,SK,Fini,ME,et al.Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype.Nat Med.2001;7,304-309
    [12]Wang,N,Chintala,SK,Fini,ME,et al.Ultrasound Activates the TM ELAM-1/IL-1/NF-κB Response:A Potential Mechanism for Intraocular Pressure Reduction after Phacoemulsification.Invest-Ophthalmol-Vis-Sci.2003;44:1977-1981
    [13]Bond M,Chase AJ,Baker AH,et al.Inhibition of transcription factor NF-kB reduces matrix metalloproteinase-1,-3 and -9 production by vascular smooth muscle cells.Cardiovascular Research,2001;50:556-565
    [14]Weih F,Warr G,Yang H,et al.Multifocal defects in immune responses in RelB-deficient mice.J Immunol,1997,158(11):5211-8.
    [15]Joyce D,Albanese C,Steer J,et al.NF-kappaB and cell-cycle regulation:the cyclin connection.Cytokine Growth Factor Rev.2001 Mar;12(1):73-90.
    [16]Karin M.NF-kappaB and cancer:mechanisms and targets.Mol Carcinog.2006Jun;45(6):355-61.
    [17]Fautsch MP,Bahler CK,Vrabel AM,et al.Perfusion of his-tagged eukaryotic myocilin increases outflow resistance in human anterior segments in the presence of aqueous humor.Invest-Ophthalmol-Vis-Sci.2006 Jan;47(1):213-21
    [18]李美玉主编,《青光眼学》,人民卫生出版社,2004,8月P19
    [19]贺翔鸽,李美玉.人眼小梁细胞培养及免疫组化特性研究.中华眼科杂志.1998;34(4):280-2
    [20]葛坚,卓业鸿.人眼小梁细胞体外培养及生物学特性研究.眼科学报,1996;12:64-9
    [21]钟丽春,李梅,李美玉.人眼小梁细胞体外培养与细胞鉴定.眼科学报,1998;14:190-4
    [22]Kersey JP,Broadway DC.Corticosteroid-induced glaucoma:a review of the literature.Eye.2006 Apr;20(4):407-16.
    [1]Vermeulen L,Vanden Berghe W,Haegeman G.Regulation of NF-kappaB transcriptional activity.Cancer Treat Res.2006;130:89-102.
    [2]国华,梁华平,吕凤林,徐祥等.圈套寡核苷酸影响腹腔巨噬细胞炎症介质表达的实验研究.中华创伤杂志,2003;19(5):303-7
    [3]杨文军.梁华平.徐祥等.核因子-κB靶向性寡核苷酸“圈套”策略对创伤性炎症大鼠肝脏损伤的作用.中华实验外科杂志,2003;20(10):905-7
    [4]国华,梁华平,吕凤林,徐祥等.圈套寡核苷酸抑制NIH3T3细胞α2 Ⅰ型胶原基因表达的研究.中华烧伤杂志,2003;19(3):175-8
    [5]Lutjen-Drecoll E.Functional morphology of the trabecular meshwork in primate eyes.Prog Retin Eye Res.1999 Jan;18(1):91-119.
    [6]李美玉主编,《青光眼学》,人民卫生出版社,2004,8月P22-25.
    [7]Siebenlist U,Franzoso G,Brown K.Structure,regulation and function of NF-kappa B.Annu Rev Cell Biol,1994,10(405-55.
    [8] Liu SF, Malik AB.NF-kappa B activation as a pathological mechanism of septic shock and inflammation.Am J Physiol Lung Cell Mol Physiol. 2006 Apr; 290(4):L622-L645.
    [9] Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell, 1996, 87(1): 13-20.
    [10] Saika S, Miyamoto T, Yamanaka O,et al.Therapeutic effect of topical administration of SN50, an inhibitor of nuclear factor-kappaB, in treatment of corneal alkali burns in mice.Am J Pathol. 2005 May; 166(5): 1393-403.
    [11] Yang CH, Fang IM, Lin CP,et al.Effects of the NF-kappaB inhibitor pyrrolidine dithiocarbamate on experimentally induced autoimmune anterior uveitis.Invest Ophthalmol Vis Sci. 2005 Apr;46(4): 1339-47.
    [12] Jin XH, Ohgami K, Shiratori K,et al.Inhibition of nuclear factor-kappa B activation attenuates hydrogen peroxide-induced cytotoxicity in human lens epithelial cells. Br J Ophthalmol. 2006 Oct 4: 1-12
    [13] Sappington RM, Calkins DJ.Pressure-induced regulation of IL-6 in retinal glial cells: involvement of the ubiquitin/proteasome pathway and NFkappaB. Invest Ophthalmol Vis Sci. 2006 47(9):3860-9.
    [14] Wang, N, Chintala, SK, Fini, ME, et al. Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nat Med.2001 ;7,304-309
    [15] Wang, N, Chintala, SK, Fini, ME, et al.Ultrasound Activates the TM ELAM-1/IL-1/NF-ΚB Response: A Potential Mechanism for Intraocular Pressure Reduction after Phacoemulsification. Invest-Ophthalmol-Vis-Sci. 2003;44:1977-1981
    [16] Hayashi R, Wada H, Ito K,et al., Effects of glucocorticoids on gene transcription.Eur J Pharmacol. 2004 Oct 1;500(1-3):51-62.
    [17] Nagai S, Kurimoto M, Washiyama K,et al. Inhibition of cellular proliferation and induction of apoptosis by curcumin in human malignant astrocytoma cell lines.J Neurooncol. 2005 Sep;74(2): 105-11.
    [18] Subhashini J,Mahipal SV,Reddanna P. Anti-proliferative and apoptotic effects of Celecoxib on human chronic myeloid leukemia in vitro. Cancer Lett. 2005 Jun 16;224(1):31-43.
    [19] Takao J, Yudate T, Das A,et al.Expression of NF-kappaB in epidermis and the relationship between NF-kappaB activation and inhibition of keratinocyte growth. Br J Dermatol. 2003 Apr;148(4):680-8
    [20] Karin M.NF-kappaB and cancer: mechanisms and targets.Mol Carcinog. 2006 Jun;45(6):355-61.
    [21] Ricca A,Biroccio A,Trisciuoglio D,et al.relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells. Br J Cancer. 2001 Dec 14; 85(12):1914-21
    [22] Pikarsky E, Ben-Neriah Y. NF-kB inhibition: A double-edged sword in cancer?. European Journal of Cancer,2006;42(6):779-84
    [23] Ahn KS, Hahn BS, Kwack K,et al. Platycodin D-induced apoptosis through nuclear factor-kappaB activation in immortalized keratinocytes. Eur J Pharmacol. 2006 May 10; 537(1-3): 1-11.
    [24] Zheng L, Sinniah R, I-Hong Hsu S. Renal cell apoptosis and proliferation may be linked to nuclear factor-kappaB activation and expression of inducible nitric oxide synthase in patients with lupus nephritis.Hum Pathol. 2006 Jun;37(6):637-47.
    [25] Perkins, N. D. 2004. NF-kappaB: tumor promoter or suppressor? Trends Cell Biol. 14:64-69.
    [26] Lesley A. Stark* and Malcolm G. Dunlop Nucleolar Sequestration of RelA (p65) Regulates NF-ΚB-Driven Transcription and Apoptosis, Molecular and Cellular Biology, 2005;25(4):5985-6004.
    [27] Campbell KJ, Witty JM, Rocha S, Cisplatin mimics ARF tumor suppressor regulation of RelA (p65) nuclear factor-kappaB transactivation. Cancer Res. 2006 Jan 15;66(2):929-35
    [28] Biswas DK, Martin KJ, McAlister C,et al. Apoptosis caused by chemotherapeutic inhibition of nuclear factor-kappaB activation. Cancer Res. 2003 Jan 15;63(2):290-5
    [29] Qin ZH,Cen RW,Wang YM,et al.Nuclear factor kB nuclear translocation upregulates c-Myc and P53 expression during NMDA receptor-mediated apoptosis in rat striatum.J Neurosci, 1999; 19:4023-33
    [30] Grilli M,Pizzi M,Memo M,et al.Neuroprotection by aspirin and sodium salicylate through blockade of NF-kB activation. Science,1996;274:1383-5
    [31]Yamamoto Y,Gaynor RB.Role of the NF-kappaB pathway in the pathogenesis of human disease states.Curr Mol Med,2001,1(3):287-96.
    [32]Wang CY,Mayo MW,Komeluk RG,et al.NF-kappaB antiapoptosis:induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8activation.Science,1998,281(5383):1680-3.
    [33]Campbell KJ,Perkins ND.Regulation of NF-kappaB function.Biochem Soc Symp.2006;(73):165-80.
    [34]Baldwin AS.Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB.J Clin Invest,2001,107(3):241-6.
    [1]Nagase H,Visse R,Murphy G.Structure and function of matrix metalloproteinases and TIMPs.Cardiovasc Res.2006 Feb 15;69(3):562-73.
    [2]Sivak JM,Fini ME.MMPs in the eye:emerging roles for matrix metalloproteinases in ocular physiology.Prog Retin Eye Res.2002 Jan;21(1):1-14
    [3]Clark AF.New discoveries on the roles of matrix metalloproteinases in ocular cell biology and pathology.Invest Ophthalmol Vis Sci.1998;39:2514-16
    [4]Pang IH,Hellberg PE,Fleenor DL,et al.Expression of Matrix Metalloproteinases and Their Inhibitors in Human Trabecular Meshwork Cells.Invest Ophthalmol Vis Sci.2003;44:3485-93
    [5]李美玉主编,《青光眼学》,人民卫生出版社,2004,8月P19-20
    [6]Fautsch,M.P.,Bahler,C.K.,Jewison,D.J.,et al.Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment.Invest.Ophthalmol.Vis.Sci.2000;41:4163-4168.
    [7]Bradley JM,Vranka J,Colvis CM,et al..Effect of matrix metalloproteinases activity on outflow in perfused human organ culture.Invest Ophthalmol Vis Sci.1998Dec;39(13):2649-58.
    [8]Fleenor DL,Pang IH,Clark AF.Involvement of AP-1 in interleukin-1alpha-stimulated MMP-3 expression in human trabecular meshwork cells.Invest Ophthalmol Vis Sci.2003;44(8):3494-501.
    [9]Oh D J,Martin JL,Williams AJ,et al.Effect of latanoprost on the expression of matrix metalloproteinases and their tissue inhibitors in human trabecuiar meshwork cells. Invest Ophthalmol Vis Sci. 2006 Sep;47(9):3887-95.
    [10] Parshley DE, Bradley JM, Fisk A,et al.Laser trabeculoplasty induces stromelysin expression by trabecular juxtacanalicular cells. Invest Ophthalmol Vis Sci. 1996 Apr;37(5):795-804.
    [11] Bond M,Chase AJ,Baker AH,et al.Inhibition of transcription factor NF-kB reduces matrix metalloproteinase-1,-3 and -9 production by vascular smooth muscle cells. Cardiovascular Research,2001;50:556-565.
    [12] Xu J, Zutter MM, Santoro SA, et al. A three-dimensional collagen lattice activates NF-kappaB in human fibroblasts: role in integrin alpha2 gene expression and tissue remodeling. J Cell Biol. 1998 Feb 9;140(3):709-19.
    [13] Gaton DD, Sagara T, Lindsey JD,et al. Matrix metalloproteinase-1 localization in the normal human uveoscleral outflow pathway.Invest Ophthalmol Vis Sci. 1999 Feb;40(2):363-9.
    [14] Ehrich D, Tripathi B, Tripathi R,et al. Effects of interleukin-1 beta and dexamethasone on the expression of matrix metalloprotease mRNA by trabecular cells exposed to elevated hydrostatic pressure.Acta Ophthalmol Scand. 2005 Feb;83(1):104-8.
    [15] el-Shabrawi Y, Eckhardt M, Berghold A, et al. Synthesis pattern of matrix metalloproteinases (MMPs) and inhibitors (TIMPs) in human explant organ cultures after treatment with latanoprost and dexamethasone.Eye. 2000 Jun;14 ( Pt 3A):375-83.
    [16] Fuchshofer R, Welge-Lussen U, Lutjen-Drecoll E. The effect of TGF-beta2 on human trabecular meshwork extracellular proteolytic system.Exp Eye Res. 2003 Dec;77(6):757-65.
    [17] Conley SM, Bruhn RL, Morgan PV,et al. Selenium's effects on MMP-2 and TIMP-1 secretion by human trabecular meshwork cells.Invest Ophthalmol Vis Sci. 2004 Feb;45(2):473-9.
    [18] Okada Y, Matsuo T, Ohtsuki H. Bovine trabecular cells produce TIMP-1 and MMP-2 in response to mechanical stretching. Jpn J Ophthalmol. 1998 Mar-Apr;42(2):90-4.
    [19] Shearer T, Crosson CE. Activation of extracellular signal-regulated kinase in trabecular meshwork cells.Exp Eye Res. 2001 Jul;73(1):25-35.
    [20] Alexander JP, Acott TS. Involvement of protein kinase C in TNFalpha regulation of trabecular matrix metalloproteinases and TIMPs. Invest Ophthalmol Vis Sci. 2001;42(12):2831-8.
    [21] Borghaei RC, Sullivan C, Mochan E.Identification of a cytokine-induced repressor of interleukin-1 stimulated expression of stromelysin 1 (MMP-3)J Biol Chem. 1999;274(4):2126-31.
    [22] Hosseini M, Rose AY, Song K,et al. IL-1 and TNF induction of matrix metalloproteinase-3 by c-Jun N-terminal kinase in trabecular meshwork. Invest Ophthalmol Vis Sci. 2006 Apr;47(4): 1469-76.
    [23] Chase AJ,Bond M,Crook MF,et al.Role of nuclear factor-kB activation in metalloproteinase-l,-3,an -9 Secretion by human macrophages in vitro and rabbit foam cells. Arterioscler Thromb Vasc Biol.2002;22:765-71
    [24] Ye S, Whatling C, Watkins H, et al. Human stromelysin gene promoter activity is modulated by transcription factor ZBP-89.FEBS Lett. 1999 May 7;450(3):268-72.
    [25] Borghaei RC, Rawlings PL Jr, Javadi M, et al. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter.Biochem Biophys Res Commun. 2004 Mar 26;316(1):182-8.
    [26] Lambert E, Dasse E, Haye B,et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol. 2004 Mar;49(3): 187-98.
    [27] Maskos K, Bode W. Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases.Mol Biotechnol. 2003 Nov;25(3):241-66.
    [1] Gong G, Kosoko-Lasaki O, Haynatzki GR, Genetic dissection of myocilin glaucoma.Hum Mol Genet. 2004;13(1):R91-102.
    [2] Fingert JH, Stone EM, Sheffield VC,et al. Myocilin glaucoma. Surv Ophthalmol. 2002 Nov-Dec;47(6):547-61.
    [3] Ueda J, Yue BY. Distribution of myocilin and extracellular matrix components in the corneoscleral meshwork of human eyes. Invest Ophthalmol Vis Sci. 2003; 44(11):4772-9.
    [4] Borras T, Rowlette LL, Tamm ER,et al. Effects of elevated intraocular pressure on outflow facility and TIGR/MYOC expression in perfused human anterior segments.Invest Ophthalmol Vis Sci. 2002 Jan;43(1):33-40.
    [5] Tamm ER, Russell R The role of myocilin/TIGR in glaucoma: results of the Glaucoma Research Foundation catalyst meeting in Berkeley, California, March 2000.J Glaucoma. 2001 Aug;10(4):329-39.
    [6] Lutjen-Drecoll E, May CA, Polansky JR, et al. Localization of the stress proteins B-crystallin and trabecular meshwork inducible glucocorticoid response protein in normal and glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci 39: 517-525, 1998.
    [7] Fautsch MP, Bahler CK, Jewison DJ,et al. Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment.Invest Ophthalmol Vis Sci. 2000 Dec;41(13):4163-8.
    [8] Fautsch MP, Bahler CK, Vrabel AM, et al. Perfusion of his-tagged eukaryotic myocilin increases outflow resistance in human anterior segments in the presence of aqueous humor. Invest Ophthalmol Vis Sci. 2006 Jan;47(1):213-21.
    [9] Joe MK, Sohn S, Hur W, Moon Y, et al. Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells.Biochem Biophys Res Commun. 2003 Dec 19;312(3):592-600.
    [10] Jacobson N, Andrews M, Shepard AR,et al. Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet. 2001 Jan 15; 10(2): 117-25.
    [11] Tamm ER. Myocilin and glaucoma: facts and ideas.Prog Retin Eye Res. 2002 Jul;21(4):395-428.
    [12] Kersey JP, Broadway DC. Corticosteroid-induced glaucoma: a review of the Hterature.Eye. 2006 Apr;20(4):407-16.
    [13] Sbepard AR, Jacobson N,Fingert JH,et al. Delayed secondary glucocorticoid responsiveness of MYOC in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2001;42(13):3173-81.
    [14] Kirstein L, Cvekl A, Chauhan BK,et al. Regulation of human myocilin/TIGR gene transcription in trabecular meshwork cells and astrocytes: role of upstream stimulatory factor.. Genes Cells. 2000 Aug;5(8):661-76.
    [1]Sen R,Baltimore D.Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism.Cell,1986,47(6):921-8.
    [2]Siebenlist U,Franzoso G,Brown K.Structure,regulation and function of NF-kappa B.Annu Rev Cell Biol,1994,10(405-55.
    [3]Xiao W.Advances in NF-kappaB signaling transduction and transcription.Cell Mol Immunol.2004 Dec;1(6):425-35
    [4]Wang L,Reinach P,Lu L.TNF-alpha promotes cell survival through stimulation of K+ channel and NFkappaB activity in comeal epithelial cells.Exp Cell Res.2005 Nov 15;311(1):39-48.
    [5]Tomarev SI.Eyeing a new route along an old pathway.Nat Med.2001Mar;7(3):294-5.
    [6]Todaro M,Zerilli M,Triolo G,et al.NF-kappaB protects Behcet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteins.Arthritis Rheum.2005 Jul;52(7):2179-91.
    [7]Jin XH,Ohgami K,Shiratori K,et al.Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats.Invest Ophthalmol Vis Sci.2006 Jun;47(6):2562-8
    [8]Zheng L,Szabo C,Kern TS.Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB.Diabetes.2004 Nov;53(11):2960-7.
    [9]Karin M,Ben-Neriah Y.Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity.Annu Rev Immunol,2000,18(621-63.
    [10]Huxford T,Huang DB,Malek S,et al.The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation.Cell,1998,95(6):759-70.
    [11]Liu SF,Malik AB.NF-kappa B activation as a pathological mechanism of septic shock and inflammation.Am J Physiol Lung Cell Mol Physiol.2006 Apr;290(4):L622-L645.
    [12]Weih F,Warr G,Yang H,et al.Multifocal defects in immune responses in RelB-deficientmice.J Immunol,1997,158(11)-5211-8.
    [13]Liang Y,Zhou Y,Shen P.NF-kappaB and its regulation on the immune system.Cell Mol Immunol.2004 Oct;1(5):343-50.
    [14]Yamamoto Y,Gaynor RB.Role of the NF-kappaB pathway in the pathogenesis of human diseasestates.Curr Mol Med,2001,1(3).287-96.
    [15]Campbell KJ,Perkins ND.Regulation of NF-kappaB function.Biochem Soc Symp.2006;(73):165-80.
    [16]Shishodia S,Aggarwal BB.Nuclear factor-kappaB activation:a question of life or death.J Biochem Mol Biol.2002 Jan 31;35(1):28-40.
    [17]Karin M.NF-kappaB and cancer:mechanisms and targets.Mol Carcinog.2006Jun;45(6):355-61.
    [18]Baldwin AS.Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB.J Clin Invest,2001,107(3):241-6.
    [19]NAM NH.Naturally occurring NF-kappaB inhibitors.Mini Rev Med Chem.2006Aug;6(8):945-51
    [20]NF-kappaB in human disease:current inhibitors and prospects for de novo structure based design of inhibitors.Curr Med Chem.2005;12(3):357-74.
    [21]Sun Z,Andersson R.NF-kappaB activation and inhibition:a review.Shock.2002Aug;18(2):99-106.
    [22]Wu XY,Han SP,Ren MY,et al.The role of NF-kappaB activation in lipopolysaccharide induced keratitis in rats.Chin Med J(Engl).2005 Nov 20;118(22):1893-9.
    [23]Fukuda K,Kumagai N,Yamamoto K,et al.Potentiation of lipopolysaccharide-induced chemokine and adhesion molecule expression in corneal fibroblasts by soluble CD14or LPS-binding protein.Invest Ophthalmol Vis Sci.2005 Sep;46(9):3095-101.
    [24]Bitko V,Garmon NE,Cao T,et al.Activation of cytokines and NF-kappa B in corneal epithelial cells infected by respiratory syncytial virus:potential relevance in ocular inflammation and respiratory infection.BMC Microbiol.2004 Jul 15;4:28.
    [25] Rajala MS, Rajala RV, Astley RA,et al. Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation.J Virol. 2005 Oct;79(19): 12332-41.
    [26] Li H, Zhang J, Kumar A,et al.Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells.Immunology. 2006 Feb; 117(2): 167-76.
    [27] Saika S, Ikeda K, Yamanaka O,et al.Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali.Am J Pathol. 2005 May;166(5):1405-18.
    [28] Saika S, Miyamoto T, Yamanaka O,et al. Therapeutic effect of topical administration of SN50, an inhibitor of nuclear factor-kappaB, in treatment of corneal alkali burns in mice. Am J Pathol. 2005 May;166(5):1393-403.
    [29] Zaidi T, Mowrey-McKee M, Pier GB. Hypoxia increases corneal cell expression of CFTR leading to increased Pseudomonas aeruginosa binding, internalization, and initiation of inflammation.Invest Ophthalmol Vis Sci. 2004 Nov;45(11):4066-74.
    [30] Yoshida K, Hu Y, Karin M. IkappaB kinase alpha is essential for development of the mammalian cornea and conjunctiva.Invest Ophthalmol Vis Sci. 2000 Nov;41(12):3665-9.
    [31] Sagoo P, Chan G, Larkin DF,et al. Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide.Invest Ophthalmol Vis Sci. 2004 Nov;45(11):3964-73.
    [32] Lu Y, Fukuda K, Nakamura Y,et al. Inhibitory effect of triptolide on chemokine expression induced by proinflammatory cytokines in human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2346-52.
    [33] Kase S, Aoki K, Harada T,et al. Activation of nuclear factor-kappa B in the conjunctiva with the epithelial scraping of the mouse cornea and human epidemic keratoconjunctivitis.Br J Ophthalmol. 2004 Jul;88(7):947-9.
    [34] De Saint Jean M, Debbasch C, Rahmani M,et al. Fas- and interferon gamma-induced apoptosis in Chang conjunctival cells: further investigations. Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2531-43.
    [35]Fukuda K,Fujitsu Y,Kumagai N,et al.Inhibition of matrix metalloproteinase-3synthesis in human conjunctival fibroblasts by interleukin-4 or interleukin-13.Invest Ophthalmol Vis Sci.2006 Jul;47(7):2857-64.
    [36]Ciprandi G,Cosentino C,Milanese M,et al.Rapid anti-inflammatory action of azelastine eyedrops for ongoing allergic reactions.Ann Allergy Asthma Immunol.2003 Apr;90(4):434-8.
    [37]Alves M,Calegari VC,Cunha DA,et al.Increased expression of advanced glycation end-products and their receptor,and activation of nuclear factor kappa-B in lacrimal glands of diabetic rats.Diabetologia.2005 Dec;48(12):2675-81.
    [38]Azuma M,Aota K,Tamatani T,et al.Suppression of tumor necrosis factor alpha-induced matrix metalloproteinase 9 production in human salivary gland acinar cells by cepharanthine occurs via down-regulation of nuclear factor kappaB:a possible therapeutic agent for preventing the destruction of the acinar structure in the salivary glands of Sjogren's syndrome patients.Arthritis Rheum.2002Jun;46(6):1585-94.
    [39]Tsubota K,Fukagawa K,Fujihara T,et al.Regulation of human leukocyte antigen expression in human conjunctival epithelium.Invest Ophthalmol Vis Sci.1999Jan;40(1):28-34.
    [40]罗丽辉,刘祖国等.超声乳化术后结膜上皮细胞中核转录因子—κB和转化生长因子—β1的表达变化[J].眼科研究,2002,20(2):142-145
    [41]Ferrer E.Trabecular meshwork as a new target for the treatment of glaucoma.Drug News Perspect.2006 Apr;19(3):151-8.
    [42]Wang,N,Chintala,SK,Fini,ME,et al.Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype.Nat Med.2001;7,304-309
    [43]Wang,N,Chintala,SK,Fini,ME,et al.Ultrasound Activates the TM ELAM-1/IL-1/NF-κB Response:A Potential Mechanism for Intraocular Pressure Reduction after Phacoemulsification.Invest-Ophthalmol-Vis-Sci.2003;44:1977-1981
    [44]Zhou X,Li F,Kong L,et al.Involvement of inflammation,degradation,and apoptosis in a mouse model of glaucoma.J Biol Chem.2005 Sep 2;280(35):31240-8.
    [45] Agapova OA, Kaufman PL, Hernandez MR.Androgen receptor and NFkB expression in human normal and glaucomatous optic nerve head astrocytes in vitro and in experimental glaucoma.Exp Eye Res. 2006 Jun;82(6): 1053-9.
    [46] Kitaoka Y, Kitaoka Y, Kwong JM, et al.TNF-alpha-induced optic nerve degeneration and nuclear factor-kappaB p65.Invest Ophthalmol Vis Sci. 2006 Apr;47(4): 1448-57.
    [47] Kuehn MH, Fingert JH, Kwon YH.Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 2005 Sep;18(3):383-95.
    [48] Fuchs C, Forster V, Balse E,et al.Retinal-cell-conditioned medium prevents TNF-alpha-induced apoptosis of purified ganglion cells.Invest Ophthalmol Vis Sci. 2005 Aug;46(8):2983-91
    [49] Charles I, Khalyfa A, Kumar DM,et al. Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Invest Ophthalmol Vis Sci. 2005 Apr;46(4): 1330-8.
    [50] Ando A, Yamazaki Y, Kaneko S,et al.Cytoprotection by nipradilol, an anti-glaucomatous agent, via down-regulation of apoptosis related gene expression and activation of NF-kappaB.Exp Eye Res. 2005 Apr; 80(4):501-7.
    [51] Jin XH, Ohgami K, Shiratori K,et al. Inhibition of nuclear factor-kappa B activation attenuates hydrogen peroxide-induced cytotoxicity in human lens epithelial cells.Br J Ophthalmol. 2006 Oct 4
    [52] Dudek EJ, Shang F, Taylor A.H(2)O(2)-mediated oxidative stress activates NF-kappa B in lens epithelial cells.Free Radic Biol Med. 2001 Sep l;31(5):651-8.
    [53] Yang Q, Zhao GQ, Li Q,et al.Expression of nuclear factor-kappaB in traumatic cataract.Chin J Traumatol. 2006 Apr;9(2):86-90.
    [54] Kubo E, Singh DP, Akagi Y,Gene expression profiling of diabetic and galactosaemic cataractous rat lens by microarray analysis. Diabetologia. 2005 Apr;48(4):790-8.
    [55] Boileau TW, Bray TM, Bomser JA. Ultraviolet radiation modulates nuclear factor kappa B activation in human lens epithelial cells. J Biochem Mol Toxicol. 2003;17(2):108-13.
    [56] Fang IM, Lin CP, Yang CM,et al. Expression of CX3C chemokine, fractalkine, and its receptor CX3CR1 in experimental autoimmune anterior uveitis.Mol Vis. 2005 Jul 1; 11:443-51.
    [57] Fang IM, Yang CH, Lin CP,et al.Effects of pyrrolidine dithiocarbamate, an NF-kappaB inhibitor, on cytokine expression and ocular inflammation in experimental autoimmune anterior uveitis.J Ocul Pharmacol Ther. 2005 Apr;21(2):95-106.
    [58] Yang CH, Fang M, Lin CP,et al.Effects of the NF-kappaB inhibitor pyrrolidine dithiocarbamate on experimentally induced autoimmune anterior uveitis.Invest Ophthalmol Vis Sci. 2005 Apr;46(4): 1339-47..
    [59] Chi ZL, Hayasaka S, Zhang XY,et al.Effects of rolipram, a selective inhibitor of type 4 phosphodiesterase, on lipopolysaccharide-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2004 Aug;45(8):2497-502.
    [60] Ohta K, Nakayama K, Kurokawa T,et al. Inhibitory effects of pyrrolidine dithiocarbamate on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci. 2002 Mar;43(3):744-50.
    [61] Jin XH, Ohgami K, Shiratori K,et al. Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2562-8.
    [62] Suzuki Y, Ohgami K, Shiratori K,et al.Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-kappaB signaling pathway.Exp Eye Res. 2006 Feb;82(2):275-81.
    [63] Chen YG, Zhang C, Chiang SK,et al. Increased nuclear factor-kappa B p65 immunoreactivity following retinal ischemia and reperfusion injury in mice. J Neurosci Res. 2003 Apr 1;72(1): 125-31.
    [64] Wang J, Jiang S, Kwong JM,et al.Nuclear factor-kappaB p65 and upregulation of interleukin-6 in retinal ischemia/reperfusion injury in rats.Brain Res. 2006 Apr 7; 1081(1): 211-8.
    [65] Sappington RM, Calkins DJ,et al. Pressure-induced regulation of IL-6 in retinal glial cells: involvement of the ubiquitin/proteasome pathway and NFkappaB.Invest Ophthalmol Vis Sci. 2006 Sep;47(9):3860-9.
    [66] Kitaoka Y, Kumai T, Kitaoka Y,et al.Nuclear factor-kappa B p65 in NMDA-induced retinal neurotoxicity.Brain Res Mol Brain Res. 2004 Nov 24; 131 (1 -2):8-16.
    [67] Yoshida A, Yoshida S, Hata Y,et al.The role of NF-kappaB in retinal neovascularization in the rat. Possible involvement of cytokine-induced neutrophil chemoattractant (CINC), a member of the interleukin-8 family. J Histochem Cytochem. 1998 Apr;46(4):429-36.
    [68] Yoshida A, Yoshida S, Ishibashi T,et al. Suppression of retinal neovascularization by the NF-kappaB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci. 1999 Jun;40(7): 1624-9.
    [69] Chen W, Esselman WJ, Jump DB,et al. Anti-inflammatory effect of docosahexaenoic acid on cytokine-induced adhesion molecule expression in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4342-7.
    [70] Cacicedo JM, Benjachareowong S, Chou E,et al.Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide.Diabetes. 2005 Jun;54(6): 1838-45.
    [71] Yamagishi S, Takeuchi M, Matsui T,et al. Angiotensin II augments advanced glycation end product-induced pericyte apoptosis through RAGE overexpression.FEBS Lett. 2005 Aug 15;579(20):4265-70.
    [72] Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci. 2005 Jan 14;76(9): 1051-60.
    [73] Demontis GC, Longoni B, Marchiafava PL.Molecular steps involved in light-induced oxidative damage to retinal rods. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2421-7.
    [74] Wu T, Chiang SK, Chau FY,et al. Light-induced Photoreceptor degeneration may involve the NF kappa B/caspase-1 pathway in vivo.Brain Res. 2003 Mar 28;967(1-2):19-26.
    [75] Wu T, Chen Y, Chiang SK,et al. NF-kappaB activation in light-induced retinal degeneration in a mouse model.Invest Ophthalmol Vis Sci. 2002 Sep;43(9):2834-40.
    [76] Wu T, Handa JT, Gottsch JD.Light-induced oxidative stress in choroidal endothelial cells in mice.Invest Ophthalmol Vis Sci. 2005 Apr;46(4): 1117-23.
    [77] Higgins GT, Wang JH, Dockery P,et al.Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized Photoreceptor outer segments. Invest Ophthalmol Vis Sci. 2003 Apr;44(4):1775-82.
    [78] Poulaki V, Mitsiades CS, Joussen AM,et al. Constitutive nuclear factor-kappaB activity is crucial for human retinoblastoma cell viability.Am J Pathol. 2002 Dec;161(6):2229-40.
    [1]Park GY,Christman JW.Nuclear factor kappa B is a promising therapeutic target in inflammatory lung disease.Curr Drug Targets.2006 Jun;7(6):661-8.
    [2]Tomita N,Ogihara T,Morishita R.Transcription factors as molecular targets:molecular mechanisms of decoy ODN and their design.Curr Drug Targets.2003Nov;4(8):603-8.
    [3]Mann MJ,Dzau VJ.Therapeutic applications of transcription factor decoy oligonucleotides.J Clin Invest.2000 Nov;106(9):1071-5.
    [4]Isomura I,Morita A.Regulation of NF-kappaB signaling by decoy oligodeoxynucleotides.Microbiol Immunol.2006;50(8):559-63.
    [5]Cho-Chung YS,Park YG,Lee YN.Oligonucleotides as transcription factor decoys.Curr Opin Mol Ther.1999 Jun;1(3):386-92.
    [6]Dzau VJ.Transcription Factor Decoy.Circ Res.2002;90:1234
    [7]Ahn JD,Morishita R,Kaneda Y,et al.Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo.Circ Res.2002;90:1325-1332.
    [8]Tomita N,Azuma H,Kaneda Y,Ogihara T,Morishita R.Application of decoy oligodeoxynucleotides-based approach to renal diseases.Curr Drug Targets.2004Nov;5(8):717-33.
    [9]Cho-Chung YS.CRE-enhancer DNA decoy:a tumor target-based genetic tool.Ann N Y Acad Sci.2003 Dec;1002:124-33
    [10]Akimoto M,Hangai M,Okazaki K.Growth inhibition of cultured human Tenon's fibroblastic cells by targeting the E2F transcription factor.Exp Eye Res.1998;67(4):395-401
    [11]Morishita R.Perspective in progress of cardiovascular gene therapy.J Pharmacol Sci.2004 May;95(1):1-8.
    [12]Baeuerle PA,Baltimore D.NF-kappa B:ten years after.Cell,1996,87(1):13-20
    [13] Yamamoto Y, Gaynor RB. Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med, 2001, 1(3): 287-96.
    [14] Morishita R, Aoki M, Kaneda Y,et al.Gene therapy in vascular medicine: recent advances and future perspectives.Pharmacol Ther. 2001 Aug;91(2):105-14.
    
    [15] Kupatt C, Wichels R, Deiss M,et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs. Gene Ther. 2002 Apr;9(8):518-26.
    [16] Jun-Ichi S, Hiroshi I, Ryo Glnitial clinical cases of the use of a NF-kappaB decoy at the site of coronary stenting for the prevention of restenosis.Circ J. 2004 Mar;68(3):270-l.
    [17] Shintani T, Sawa Y, Takahashi T,et al. Intraoperative transfection of vein grafts with the NFkappaB decoy in a canine aortocoronary bypass model: a strategy to attenuate intimal hyperplasia. Ann Thorac Surg. 2002 Oct;74(4):1132-7; discussion 1137-8.
    [18] Yokoseki O, Suzuki J, Kitabayashi H,et al.cis Element decoy against nuclear factor-kappaB attenuates development of experimental autoimmune myocarditis in rats.Circ Res. 2001 Nov 9;89(10):899-906.
    [19] Miyake T, Aoki M, Nakashima H,et al.Prevention of abdominal aortic aneurysms by simultaneous inhibition of NFkappaB and ets using chimeric decoy oligonucleotides in a rabbit model.Gene Ther. 2006 Apr;13(8):695-704.
    [20] Tomita N, Morishita R, Tomita S,et al. Transcription factor decoy for nuclear factor-kappaB inhibits tumor necrosis factor-alpha-induced expression of interleukin-6 and intracellular adhesion molecule-1 in endothelial cells.J Hypertens. 1998 Jul;16(7):993-1000
    [21] Valerio A, Boroni F, Benarese M,et al. NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production.Eur J Neurosci. 2006 Apr;23(7): 1711-20.
    [22] Igwe OJ.Modulation of peripheral inflammation in sensory ganglia by nuclear factor (kappa)B decoy oligodeoxynucleotide: involvement of SRC kinase pathway.Neurosci Lett. 2005 Jun 10-17;381(1-2):114-9.
    [23] Ono S, Date I, Onoda K, Shiota T,et al.Decoy administration of NF-kappaB into the subarachnoid space for cerebral angiopathy.Hum Gene Ther. 1998 May
    [24] Fernyhough P, Smith DR, Schapansky J,et al. Activation of nuclear factor-kappaB via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons. J Neurosci. 2005 Feb 16;25(7):1682-90.
    [25] Cao CC, Ding XQ, Ou ZL,et al..In vivo transfection of NF-kappaB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats. Kidney Int. 2004 Mar;65(3):834-45.
    [26] Tomita N, Morishita R, Tomita S. Inhibition of TNF-alpha, induced cytokine and adhesion molecule. Expression in glomerular cells in vitro and in vivo by transcription factor decoy for NFkappaBExp Nephrol. 2001 ;9(3): 181-90
    [27] Tomita N, Morishita R, Lan HY,et al. In vivo administration of a nuclear transcription factor-kappaB decoy suppresses experimental crescentic glomerulonephritis. J Am Soc Nephrol. 2000 Jul; 11(7): 1244-52
    [28] Desmet C, Gosset P, Pajak B,et al.Selective blockade of NF-kappa B activity in airway immune cells inhibits the effector phase of experimental asthma. J Immunol. 2004 ;173(9):5766-75.
    [29] Matsuda N, Hattori Y, Jesmin S,et al.Nuclear factor-kappaB decoy oligodeoxynucleotides prevent acute lung injury in mice with cecal ligation and puncture-induced sepsis. Mol Pharmacol. 2005 Apr;67(4):1018-25.
    [30] Zhang N, Xu YJ, Zhang ZX,et al. In vivo transfection of cis element 'decoy' against nuclear factor-kappaB binding site modulates function of T lymphocytes in asthma.Zhonghua Jie He He Hu Xi Za Zhi. 2004 Jan;27(1):36-40.
    [31] Griesenbach U, Scheid P, Hillery E,et al. Anti-inflammatory gene therapy directed at the airway epithelium. Gene Ther. 2000 Feb; 7(4):306-13.
    [32] Shimizu H, Nakagami H, Tsukamoto I,et al. NFkappaB decoy oligodeoxynucleotides ameliorates osteoporosis through inhibition of activation and differentiation of osteoclasts. Gene Ther. 2006 Jun;13(12):933-41.
    [33] Korcok J, Raimundo LN, Du X,et al. P2Y6 nucleotide receptors activate NF-kappaB and increase survival of osteoclasts.J Biol Chem. 2005 Apr 29;280(17): 16909-15.
    [34] Tomita T, Takano H, Tomita N,et al.Transcription factor decoy for NFkappaB inhibits cytokine and adhesion molecule expressions in synovial cells derived from rheumatoid arthritis.Rheumatology (Oxford). 2000 Jul;39(7):749-57.
    [35] Karin M.Nuclear factor-kappaB in cancer development and progression.Nature. 2006 May 25;441(7092):431-6.
    [36] Haefner B. Targeting NF-kappaB in anticancer adjunctive chemotherapy. Cancer Treat Res. 2006;130:219-45.
    [37] Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression.Nat Rev Immunol. 2005 Oct;5(10):749-59.
    [38] Zhang HL, Zhang ZX, Xu YJ.The effects of nuclear factor kappa B decoy oligodeoxynucleotides on ciglitazone-induced differentiation of lung cancer cells A549] Zhonghua Nei Ke Za Zhi. 2004 Mar;43(3):201-4.
    [39] Kawamura I, Morishita R, Tomita N,et al. Intratumoral injection of oligonucleotides to the NF kappa B binding site inhibits cachexia in a mouse tumor model. Gene Ther. 1999 Jan;6(1):91-7.
    [40] Kawamura I, Morishita R, Tsujimoto S,et al. Intravenous injection of oligodeoxynucleotides to the NF-kappaB binding site inhibits hepatic metastasis of M5076 reticulosarcoma in mice.Gene Ther. 2001 Jun;8(12):905-12.
    [41] Harimaya K, Tanaka K, Matsumoto Y,et al. Antioxidants inhibit TNFalpha-induced motility and invasion of human Osteosarcoma cells: possible involvement of NFkappaB activation.Clin Exp Metastasis. 2000;18(2): 121-9.
    [42] Gill JS, Zhu X, Moore MJ, et al. Effects of NFkappaB decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line.Biomaterials. 2002 Jul;23(13):2773-81.
    [43] Ohmori K, Takeda S, Miyoshi S,et al. Attenuation of lung injury in allograft rejection using NF-kappaB decoy transfection-novel strategy for use in lung transplantation.Eur J Cardiothorac Surg. 2005 Jan;27(1):23-7.
    [44] Vos IH, Govers R, Grone HJ,et al.NFkappaB decoy oligodeoxynucleotides reduce monocyte infiltration in renal allografts.FASEB J. 2000 Apr;14(5):815-22.
    [45] Azuma H, Tomita N, Kaneda Y,et al. Transfection of NFkappaB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts.Gene Ther. 2003 Mar;10(5):415-25.
    [46] Xu MQ, Suo YP, Gong JP,et al.Augmented regeneration of partial liver allograft induced by nuclear factor-kappaB decoy oligodeoxynucleotides-modified dendritic cells.World J Gastroenterol. 2004 Feb 15;10(4):573-8.
    [47] Feeley BT, Miniati DN, Park AK,et al.Nuclear factor-kappaB transcription factor decoy treatment inhibits graft coronary artery disease after cardiac transplantation in rodents.Transplantation. 2000 Dec 15;70(11): 1560-8.
    [48] Abeyama K, Eng W, Jester JV,et al.A role for NF-kappaB-dependent gene transactivation in sunburn.J Clin Invest. 2000 Jun;105(12):1751-9.
    [49] Fichtner-Feigl S, Fuss IJ,et al. Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-kappa B decoy oligonucleotides.J Clin Invest. 2005 Nov;115(11):3057-71.
    [50] Ogushi I, Iimuro Y, Seki E,et al. Nuclear factor kappa B decoy oligodeoxynucleotides prevent endotoxin-induced fatal liver failure in a murine model.Hepatology. 2003 Aug;38(2):335-44.
    [51] Alexander G, Carlsen H, Blomhoff R.Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.Exp Eye Res. 2006 Apr;82(4):700-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700