荔波连蕊茶GA20-氧化酶和GA2-氧化酶基因调控株型的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GA20-氧化酶和GA2-氧化酶是赤霉素合成代谢途径中的两个关键酶,都由多基因家族编码,参与调控植物内源活性GA水平。目前模式植物中GA20-氧化酶和GA2-氧化酶的功能研究较多,但在山茶属植物中GA20-氧化酶和GA2-氧化酶基因的功能及调控株型等研究还未见报道。
     本研究采用同源克隆方法从荔波连蕊茶(Camellia lipoensis Chang et Xu)中分离出5个与赤霉素合成代谢相关基因的cDNA全长:GA20-氧化酶基因2个和GA2-氧化酶基因3个,分别命名为ClGA20ox1、ClGA20ox2、ClGA2ox1、ClGA2ox2和ClGA2ox3。采用生物信息学软件分析基因序列,表明这些基因是所克隆的目的基因。实验获得的GA20-氧化酶和GA2-氧化酶基因在大肠杆菌E.Coli BL21中经IPTG诱导能表达出相应的蛋白,表明克隆的GA20-氧化酶和GA2-氧化酶基因具有在真核生物中编码蛋白质的能力。
     荧光定量PCR分析GA20-氧化酶和GA2-氧化酶在在荔波连蕊茶不同器官及发育的不同时期的表达模式。ClGA20ox1和ClGA20ox2基因在当年抽生的幼嫩茎中的表达量均较低,在茎和根中的表达量均较高。其中ClGA20ox1基因在种子的表达量最高,在嫩叶中的表达量最低。ClGA20ox2基因在茎中的表达量最高,在当年新抽生的幼嫩茎尖表达量最低。表明ClGA20ox1基因可能主要参与植物种子和根的生长发育调控,ClGA20ox2基因可能主要参与植物茎和叶的生长发育调控。ClGA2ox1、ClGA2ox2和ClGA2ox3基因在成熟叶片中都有较高表达,在种子和嫩叶中的表达量都较低。其中ClGA2ox1基因在茎中的表达量最高,在嫩叶中的表达量最低。ClGA2ox2基因在荔波连蕊茶的成熟叶片中表达量最高,在种子中的表达量最低。ClGA2ox3基因在根中的表达量最高,在嫩叶中的表达量最低。表明ClGA2ox1基因可能主要参与植物茎和叶的生长发育;ClGA2ox2基因可能主要参与植物煮熟叶片的衰老代谢;ClGA2ox3基因可能主要参与根的生长发育。
     利用pCAMBIA1300表达载体分别构建了ClGA20ox1、ClGA20ox2、ClGA2ox1、ClGA2ox2和ClGA2ox3基因的正义表达载体,转化烟草,共获得转基因植株130株。从每个基因的阳性植株中随机挑选5个株系,经PCR、RT-PCR和Southern blotting鉴定出阳性株系3株。实时荧光定量PCR分析表明,在烟草对照植株中没有检测到目标基因表达,而在转基因植株中目标基因的表达量均显著提高,其中ClGA20ox1基因在转基因植株中最高表达量是149;ClGA20ox2基因的表达量达到144;ClGA2ox1基因的表达量达到217;ClGA2ox2基因的表达量达到71;ClGA2ox3基因的表达量达到258。同一基因在不同转基因株系中的表达量亦各不相同,随着ClGA20ox1和ClGA20ox2基因的表达量提高,转基因烟草植株节间伸长和株高增加等表型更加明显;随着ClGA2ox1和ClGA2ox3基因的表达量提高,转基因烟草植株矮化程度加剧。
     植株内源GA4含量测定结果显示转ClGA20ox1和ClGA20ox2基因的烟草植株叶片中GA4含量显著提高,而茎中GA4含量没有显著变化。转ClGA2ox1、ClGA2ox2和ClGA2ox3基因烟草植株叶片中GA4含量显著降低,其中转ClGA2ox3基因烟草植株降低最多。烟草对照植株经多效唑处理后,叶片中GA4含量显著下降,而茎中GA4含量无显著变化。这表明叶片中活性赤霉素的含量与植株的株型调控密切相关,ClGA20ox1和ClGA20ox2基因在转基因植株中过量表达,引起叶片中活性GA含量上升,从而促使植株伸长生长;ClGA2ox1和ClGA2ox3基因的过量表达,导致叶片中活性GA降低,从而诱导植株矮化;茎中的活性赤霉素水平对株型调控影响小。
     ClGA20ox1、ClGA20ox2基因促进植株叶肉细胞伸长,株高增加,节间伸长,始花期提前。转ClGA2ox1、ClGA2ox3基因抑制叶肉细胞伸长生长,叶片缩小,节间缩短,抑制花芽分化。另外,转ClGA2ox1、ClGA2ox2、ClGA2ox3和ClGA20ox2基因的烟草植株结实数量均少于对照烟草。转ClGA20ox1基因的烟草结实量与对照植株差异不显著。转ClGA2ox1基因烟草平均单果质量约为对照的一半,而转ClGA2ox3基因的烟草平均单果质量为对照的1.3倍;转ClGA2ox2、ClGA20ox1和ClGA20ox2基因的烟草植株平均单果质量与对照差异不显著。
     本研究从荔波连蕊茶叶片中分离出的ClGA2ox1基因不仅抑制植株伸长生长,而且抑制花瓣生长,能正常开花结实,这在花卉分子育种上具有重要的应用价值。ClGA2ox3基因不仅抑制植株伸长生长,而且平均单果质量显著提高,植株能正常开花结实,这对园艺植物分子育种具有重要的应用价值。ClGA20ox1和ClGA20ox2能显著促进植株增高,为将来利用RNA干扰或反义RNA等分子技术培育矮化植株奠定基础。
GA20-oxidase and GA2-oxidase are two key enzymes in the metabolic pathway ofgibberellin synthesis, encoded by different multigene family, involved in the regulation ofplant endogenous GA activity level. GA20-oxidase and GA2-oxidase functions are mostlystudied in model plants. Their function in camellia plants have not been studied and whetherthey could regulate plant phenotypes has not been reported.
     In this study, two GA20-oxidase genes and three GA2-oxidase genes were cloned fromCamellia lipoensis Chang et Xu by means of homologous cloning method. They were namedClGA20ox1, ClGA20ox2, ClGA2ox1, ClGA2ox2and ClGA2ox3respectively. Bioinformaticsanalysis suggested that these sequences were GA20-oxidase or GA2-oxidase gene. The codingprotein of GA2-oxidase and GA20-oxidase were completely expressed in Escherichia ColiBL21induced by IPTG, indicating that the isolated genes had the ability to encode protein ineukaryotes.
     The results of quantitative Real time PCR analysis of GA20-oxidase and GA2-oxidasegene expression patterns were different significantly in different organs and growth periods ofC. lipoensis. Expression of ClGA20ox1and ClGA20ox2was low in the young stem, high instems and roots. Expression of ClGA20ox1in the seed was the highest, the lowest in the leaves.Expression of ClGA20ox2in the stem was the highest, the lowest in the young shoot tips. Itshowed that ClGA20ox1may be involved mainly in the regulation of plant growth anddevelopment of seed and root, ClGA20ox2may be involved mainly in the regulation of plantgrowth and development stem and leaves. ClGA2ox1, ClGA2ox2and ClGA2ox3were highlyexpressed in the mature leaves, the expression in the seed and leaves were low. ClGA2ox1expression in the stem was the highest, the lowest in the leaves. ClGA2ox2expression inmature leaves was the highest and the lowest in seed. ClGA2ox3expression in the root was thehighest and the lowest in the leaves. The results showed that ClGA2ox1may be involved in thegrowth and development of plant stem and leaves; ClGA2ox2may be involved in the matureleaf senescence metabolism; ClGA2ox3may be involved in the root growth.
     ClGA20ox1, ClGA20ox2, ClGA2ox1, ClGA2ox2and ClGA2ox3expression vectors wereconstructed into pCAMBIA1300expression vectors, transformed in Nicotiana tabacum. Atotal of130transgenic plants were obtained. Five transgenic plant lines were selectedrandomly from transgenic plants. Finally, three positive lines were obained by PCR, RT-PCRand Southern blotting. Quantitative Real-time PCR analysis showed that the target genes intransgenic expression were significantly increased compared with the control. The expressionamount of ClGA20ox1in transgenic plants was149higher than the control plant. ClGA20ox2expression amount was144higher than the control. ClGA2ox1expression amount was217higher than the control. ClGA2ox2expression amount was71higher than the control.ClGA2ox3expression amount was258higher than the control. Results showed that expressionof the same gene in different transgenic lines varied. With the expression of ClGA20ox1andClGA20ox2rose, the transgenic plants height increased obviously. The dwarf degree oftransgenic plants increased with the expression amount of ClGA2ox1and ClGA2ox3rose.
     Endogenous GA4content in the leaves of transgenic plants with ClGA20ox1orClGA20ox2was increased significantly while no significant changes in the stem. After treatingtransgenic plants with paclobutrazol, there was only a little change of GA4content in the stemand decreased significantly in the leaves. The GA4content reduced significantly in the leavesof transgenic plants with ClGA2ox1、ClGA2ox2or ClGA2ox3,specially decreased largely inthe transgenic plant with ClGA2ox3. After treating control plants with PAC, GA4content inthe leaves decreased while no significant change in the stem. It suggeted that phenotyperegulationg was closely related with the active GA level in the leaves. Thus, overexpression ofClGA2ox1or ClGA2ox3could induce dwarf phenotype and overexpression of ClGA20ox1orClGA20ox2could promote plant growth. The level of active GA in the stem has little effect onplant regulation.
     ClGA20ox1or ClGA20ox2can promote cells elongation, early flowering, plant heightand internode length increase. ClGA2ox1or ClGA2ox3could suppress cell elongation,reduceleaves and internodes. Flower bud differentiation was inhibited in the transgenic plant withClGA2ox1, ClGA2ox2or ClGA2ox3. In addition, fruit-bearing in transgenic plants withClGA20ox or ClGA2ox were lower than the control plant. Whereas there was no significantdifference in fruit-bearing between transgenic plant with ClGA20ox1had and the control plant. Meanwhile fruit mean weight of transgenic plant with ClGA2ox1was about half of the controlplant, while plants with ClGA2ox3was1.3times the height of the control plant. The fruitquality of transgenic plant with ClGA2ox2, ClGA20ox1or ClGA20ox2were similar to controlplant.
     In this study, ClGA2ox1not only inhibits stem elongation but also inhibits the growth offlowers petal. The transgenic plant with ClGA2ox1can normally flowering and fruit-bearing.ClGA2ox1has great value in molecular breeding. ClGA2ox3not only induces dwarf plant butalso increases the mean fruit weight, which has important application value in molecularbreeding. ClGA20ox1and ClGA20ox2can significantly promote the plant growth, which canbe used to cultivate dwarf plant by means of molecular technology, such as RNA interferenceand antisense RNA.
引文
Achard, P., Gong, F., Cheminant, S., et al. The cold-inducible CBF1factor-dependent signaling pathwaymodulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellinmetabolism. Plant Cell,2008,20(8):2117-2129
    Ait-Ali, T., Frances, S., Weller, J.L., et al. Regulation of gibberellin20-oxidase and gibberellin3beta-hydroxylase transcript accumulation during De-etiolation of pea seedlings. Plant Physiol,1999,121(3):783-791
    Akama, K.,Takaiwa, F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as anautoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremelyhigh levels of GABA in plant cells. Journal of Experimental Botany,2007,58(10):2699-2707
    Alabadi, D., Gil, J., Blazquez, M.A., et al. Gibberellins repress photomorphogenesis in darkness. PlantPhysiol.,2004,134(3):1050-1057
    Appleford, N.E., Evans, D.J., Lenton, J.R., et al. Function and transcript analysis of gibberellin-biosyntheticenzymes in wheat. Planta,2006,223(3):568-82
    Appleford, N.E.J., Wilkinson, M.D., Ma, Q., et al. Decreased shoot stature and grain α-amylase activityfollowing ectopic expression of a gibberellin2-oxidase gene in transgenic wheat. Journal ofExperimental Botany,2007,58(12):3213-3226
    Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., et al. Loss-of-function of a rice gibberellin biosynthetic gene,GA20oxidase (GA20ox-2), led to the rice green revolution. Breeding Science,2002,52(2):143-150
    Barboza, L., Effgen, S., Alonso-Blanco, C., et al. Arabidopsis semidwarfs evolved from independentmutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proceedings of theNational Academy of Sciences,2013,110(39):15818-15823
    Biemelt, S., Tschiersch, H., and Sonnewald, U. Impact of altered gibberellin metabolism on biomassaccumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol,2004,135(1):254-265
    Busov, V.B., Meilan, R., Pearce, D.W., et al. Activation tagging of a dominant gibberellin catabolism gene(GA2-oxidase) from poplar that regulates tree stature. Plant Physiol,2003,132(3):1283-1291
    Carrera, E., Jackson, S.D., and Prat, S. Feedback control and diurnal regulation of gibberellin20-oxidasetranscript levels in potato. Plant Physiol,1999,119(2):765-774
    Chebotar, G.O.,Chebotar, S.V. Gibberellin signaling pathways in plants. Tsitol Genet,2011,45(4):67-78
    Cheng, H., Qin, L., Lee, S., et al. Gibberellin regulates Arabidopsis floral development via suppression ofDELLA protein function. Development,2004,131(5):1055-1064
    Cowling, R.J., Kamiya, Y., Seto, H., et al. Gibberellin dose-response regulation of GA4gene transcriptlevels in Arabidopsis. Plant Physiology,1998,117(4):1195-1203
    Curtis, I.S., Ward, D.A., Thomas, S.G., et al. Induction of dwarfism in transgenic Solanum dulcamara byover-expression of a gibberellin20-oxidase cDNA from pumpkin. Plant J,2000,23(3):329-338
    Davidson, S.E., Elliott, R.C., Helliwell, C.A., et al. The pea gene NA encodes ent-kaurenoic acid oxidase.Plant Physiol,2003,131(1):335-344
    Daviere, J.M.,Achard, P. Gibberellin signaling in plants. Development,2013,140(6):1147-1151
    Diaz-Ruiz, J.,Kaper, J. Nucleotide sequence relationships among thirty peanut stunt virus isolatesdetermined by competition hybridization. Archives of virology,1983,75(4):277-281
    Dill, A., Thomas, S.G., Hu, J., et al. The Arabidopsis F-Box protein SLEEPY1targets gibberellin signalingrepressors for gibberellin-induced degradation. The Plant Cell Online,2004,16(6):1392-1405
    Dyrl v Bendtsen, J., Nielsen, H., von Heijne, G., et al. Improved prediction of signal peptides: SignalP3.0.Journal of molecular biology,2004,340(4):783-795
    Elliott, R.C., Ross, J.J., Smith, J.J., et al. Feed-forward regulation of gibberellin deactivation in pea. Journalof Plant Growth Regulation,2001,20(1):87-94
    Eriksson, M.E., Israelsson, M., Olsson, O., et al. Increased gibberellin biosynthesis in transgenic treespromotes growth, biomass production and xylem fiber length. Nat Biotech,2000,18(7):784-788
    Frigerio, M., Alabadi, D., Perez-Gomez, J., et al. Transcriptional regulation of gibberellin metabolism genesby auxin signaling in Arabidopsis. Plant Physiol,2006,142(2):553-563
    Garcia-Martinez, J.L., Lopez-Diaz, I., Sanchez-Beltran, M.J., et al. Isolation and transcript analysis ofgibberellin20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol,1997,33(6):1073-1084
    Gasteiger, E., Hoogland, C., Gattiker, A., et al., Protein identification and analysis tools on the ExPASyserver. The proteomics protocols handbook,2005,571-607
    Gawronska, H., Yang, Y.-Y., Furukawa, K., et al. Effects of low irradiance stress on gibberellin levels in peaseedlings. Plant and cell physiology,1995,36(7):1361-1367
    Gou, J., Strauss, S.H., Tsai, C.J., et al. Gibberellins regulate lateral root formation in populus throughinteractions with auxin and other hormones. The Plant Cell Online,2010,22(3):623-639
    Greenboim-Wainberg, Y., Maymon, I., Borochov, R., et al. Cross talk between gibberellin and cytokinin:The Arabidopsis GA response Inhibitor SPINDLY plays a positive role in cytokinin signaling. ThePlant Cell Online,2005,17(1):92-102
    Griffiths, J., Murase, K., Rieu, I., et al. Genetic characterization and functional analysis of the GID1gibberellin receptors in Arabidopsis. The Plant Cell Online,2006,18(12):3399-3414
    Guermeur, Y., Pollastri, G., Elisseeff, A., et al. Combining protein secondary structure prediction modelswith ensemble methods of optimal complexity. Neuro computing,2004,56(0):305-327
    Guillemaut, P.,Maréchal-Drouard, L. Isolation of plant DNA: A fast, inexpensive, and reliable method. PlantMolecular Biology Reporter,1992,10(1):60-65
    Hauvermale, A.L., Ariizumi, T., and Steber, C.M. Gibberellin signaling: a theme and variations on DELLArepression. Plant Physiol,2012,160(1):83-92
    Hay, A., Barkoulas, M., and Tsiantis, M. Pinning down the connections: transcription factors and hormonesin leaf morphogenesis. Current opinion in plant biology,2004,7(5):575-581
    Hedden, P.,Kamiya, Y. GIBBERELLIN BIOSYNTHESIS: Enzymes, genes and their regulation. Annu RevPlant Physiol Plant Mol Biol,1997,48:431-460
    Hedden, P.,Phillips, A.L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci,2000,5(12):523-530
    Hedden, P.,Proebsting, W.M. Genetic analysis of gibberellin biosynthesis. Plant Physiology,1999,119(2):365-370
    Hedden, P.,Thomas, S.G. Gibberellin biosynthesis and its regulation. Biochem J,2012,444(1):11-25
    Helliwell, C.A., Chandler, P.M., Poole, A., et al. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase,catalyzes three steps of the gibberellin biosynthesis pathway. Proceedings of the National Academy ofSciences,2001,98(4):2065-2070
    Helliwell, C.A., Sheldon, C.C., Olive, M.R., et al. Cloning of the Arabidopsis ent-kaurene oxidase geneGA3. Proceedings of the National Academy of Sciences,1998,95(15):9019-9024
    Hisamatsu, T.,King, R.W. The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T(FT) and gibberellin. Journal of Experimental Botany,2008,59(14):3821-3829
    Hisamatsu, T., King, R.W., Helliwell, C.A., et al. The involvement of gibberellin20-oxidase genes inphytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol,2005,138(2):1106-1116
    Hoshi, A., Oshima, K., Kakizawa, S., et al. A unique virulence factor for proliferation and dwarfism inplants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences,2009,106(15):6416-6421
    Huang, J., Tang, D., Shen, Y., et al. Activation of gibberellin2-oxidase6decreases active gibberellin levelsand creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics,2010,37(1):23-36
    Huang, S., Raman, A.S., Ream, J.E., et al. Overexpression of20-oxidase confers agibberellin-overproduction phenotype in Arabidopsis. Plant Physiol,1998,118(3):773-781
    Itoh, H., Matsuoka, M., and Steber, C.M. A role for the ubiquitin-26S-proteasome pathway in gibberellinsignaling. Trends Plant Sci.,2003,8(10):492-497
    Itoh, H., Ueguchi-Tanaka, M., Sato, Y., et al. The gibberellin signalling pathway is regulated by theappearance and disappearance of SLENDER RICE1in nuclei. Plant Cell,2002,14(1):57-70
    Jasinski, S., Piazza, P., Craft, J., et al. KNOX action in Arabidopsis is mediated by coordinate regulation ofcytokinin and gibberellin activities. Current Biology,2005,15(17):1560-1565
    Kaneko, M., Inukai, Y., Ueguchi-Tanaka, M., et al. Loss of function mutations of the rice GAMYB geneimpair α-Amylase expression in aleurone and flower development. The Plant Cell Online,2004,16(1):33-44
    Kaneko, M., Itoh, H., Inukai, Y., et al. Where do gibberellin biosynthesis and gibberellin signaling occur inrice plants. The Plant Journal,2003,35(1):104-115
    Kang, H.G., Jun, S.H., Kim, J., et al. Cloning and molecular analyses of a gibberellin20-oxidase geneexpressed specifically in developing seeds of watermelon. Plant Physiol,1999,121(2):373-382
    Kobayashi, M., Yamaguchi, I., Murofushi, N., et al. Fluctuation and localization of endogenous gibberellins inrice (Organic Chemistry). Agricultural and biological chemistry,1988,52(5):1189-1194
    Komeda, Y. Genetic regulation of time to flower in Arabidopsis thaliana.Annual Review of Plant Biology,2004,55(1):521-535
    Koornneef, M.,Van der Veen, J. Induction and analysis of gibberellin sensitive mutants in Arabidopsisthaliana (L.) Heynh. Theoretical and Applied genetics,1980,58(6):257-263
    Lange, T. Purification and partial amino-acid sequence of gibberellin20-oxidase from Cucurbita maxima L.endosperm. Planta,1994,195(1):108-115
    Lange, T., Hedden, P., and Graebe, J.E. Expression cloning of a gibberellin20-oxidase, a multifunctionalenzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci U S A,1994,91(18):8552-8556
    Lange, T., Kappler, J., Fischer, A., et al. Gibberellin biosynthesis in developing pumpkin seedlings. PlantPhysiol,2005,139(1):213-223
    Lee, D.J.,Zeevaart, J.A. Molecular cloning of GA2-oxidase3from spinach and its ectopic expression inNicotiana sylvestris. Plant Physiol,2005,138(1):243-254
    Lee, D.J.,Zeevaart, J.A.D. Differential regulation of RNA levels of gibberellin dioxygenases by photoperiodin spinach. Plant Physiology,2002,130(4):2085-2094
    Lee, Y., Kim, Y.-C., Kim, S.Y., et al. A novel gibberellin2-oxidase gene CaGA2ox1in pepper is specificallyinduced by incompatible plant pathogens. Plant Biotechnology Reports,2012,6(4):381-390
    Lo, S.F., Yang, S.Y., Chen, K.T., et al. A novel class of gibberellin2-oxidases control semidwarfism,tillering, and root development in rice. Plant Cell,2008,20(10):2603-2618
    Locascio, A., Blázquez, M.A., and Alabadí, D. Genomic analysis of DELLA protein activity. Plant and CellPhysiology,2013,54(8):1229-1237
    MacMillan, J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant GrowthRegulation,2001,20(4):387-442
    Macmillan, J.,Takahashi, N. Proposed procedure for the allocation of trivial names to the gibberellins.Nature,1968,217(5124):170-171
    MacMillan, J., Ward, D.A., Phillips, A.L., et al. Gibberellin biosynthesis from gibberellin A12-aldehyde inendosperm and embryos of Marah macrocarpus. Plant Physiology,1997,113(4):1369-1377
    Magome, H., Yamaguchi, S., Hanada, A., et al. The DDF1transcriptional activator upregulates expressionof a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. The PlantJournal,2008,56(4):613-626
    Marciniak, K., Kesy, J., Tretyn, A., et al. Gibberellins structure, biosynthesis and deactivation in plants.Postepy Biochem,2012,58(1):14-25
    Martin, D.N., Proebsting, W.M., and Hedden, P. Mendel’s dwarfing gene: cDNAs from the Le alleles and functionoftheexpressed proteins.ProceedingsoftheNationalAcademyofSciences,1997,94(16):8907-8911
    Martin, D.N., Proebsting, W.M., and Hedden, P. The SLENDER gene of pea encodes a gibberellin2-oxidase.Plant Physiol,1999,121(3):775-781
    McGinnis, K.M., Thomas, S.G., Soule, J.D., et al. The Arabidopsis SLEEPY1gene encodes a putative F-Boxsubunit of an SCF E3ubiquitin ligase. The Plant Cell Online,2003,15(5):1120-1130
    Milbrath, G.,Tolin, S. Identification, host range and serology of peanut stunt virus isolated from soybean.Plant Disease Reporter,1977,61(8):637-640
    Mitchum, M.G., Yamaguchi, S., Hanada, A., et al. Distinct and overlapping roles of two gibberellin3-oxidases in Arabidopsis development. The Plant Journal,2006,45(5):804-818
    Moose, S.P.,Mumm, R.H. Molecular plant breeding as the foundation for21st century crop improvement.Plant Physiology,2008,147(3):969-977
    Mutasa-Gottgens, E.,Hedden, P. Gibberellin as a factor in floral regulatory networks. J Exp Bot,2009,60(7):1979-1989
    Nemhauser, J.L., Hong, F., and Chory, J. Different plant hormones regulate similar processes throughlargely nonoverlapping transcriptional responses. Cell,2006,126(3):467-475
    Ngo, P., Ozga, J.A., and Reinecke, D.M. Specificity of auxin regulation of gibberellin20-oxidase geneexpression in pea pericarp. Plant Mol Biol,2002,49(5):439-448
    Niki, T., Nishijima, T., Nakayama, M., et al. Production of dwarf lettuce by overexpressing a pumpkingibberellin20-oxidase gene. Plant Physiol,2001,126(3):965-972
    Olszewski, N., Sun, T.P., and Gubler, F. Gibberellin signaling: biosynthesis, catabolism, and responsepathways. Plant Cell,2002,14(Suppl1):61-80
    O'Neill, D.P., Davidson, S.E., Clarke, V.C., et al. Regulation of the gibberellin pathway by auxin andDELLA proteins. Planta,2010,232(5):1141-1149
    Peng, J.,Harberd, N.P. The role of GA-mediated signalling in the control of seed germination. Currentopinion in plant biology,2002,5(5):376-381
    Phillips, A.L., Ward, D.A., Uknes, S., et al. Isolation and expression of three gibberellin20-oxidase cDNAclones from Arabidopsis. Plant Physiology,1995,108(3):1049-1057
    Plackett, A.R., Thomas, S.G., Wilson, Z.A., et al. Gibberellin control of stamen development: a fertile field.Trends in plant science,2011,16(10):568-578
    Radi, A., Lange, T., Niki, T., et al. Ectopic expression of pumpkin gibberellin oxidases alters gibberellinbiosynthesis and development of transgenic Arabidopsis plants. Plant Physiol,2006,140(2):528-536
    Reid, J.B., Davidson, S.E., and Ross, J.J. Auxin acts independently of DELLA proteins in regulatinggibberellin levels. Plant signaling&behavior,2011,6(3):406-408
    Ribaut, J.M., de Vicente, M.C., and Delannay, X. Molecular breeding in developing countries: challengesand perspectives. Current Opinion in Plant Biology,2010,13(2):213-218
    Rieu, I., Eriksson, S., Powers, S.J., et al. Genetic analysis reveals that C19-GA2-oxidation is a majorgibberellin inactivation pathway in Arabidopsis. Plant Cell,2008,20(9):2420-2436
    Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., et al. The gibberellin biosynthetic genes AtGA20ox1andAtGA20ox2act, partially redundantly, to promote growth and development throughout the Arabidopsislife cycle. The Plant Journal,2008,53(3):488-504
    Ross, J.J., O'Neill, D.P., Wolbang, C.M., et al. Auxin-gibberellin interactions and their role in plant growth.Journal of plant growth regulation,2001,20(4):336-353
    Sakamoto, T., Kobayashi, M., Itoh, H., et al. Expression of a gibberellin2-oxidase gene around the shootapex is related to phase transition in rice. Plant Physiol,2001,125(3):1508-1516
    Sakamoto, T., Miura, K., Itoh, H., et al. An overview of gibberellin metabolism enzyme genes and theirrelated mutants in rice. Plant Physiol,2004,134(4):1642-1653
    Sakamoto, T., Morinaka, Y., Ishiyama, K., et al. Genetic manipulation of gibberellin metabolism intransgenic rice. Nat Biotech,2003,21(8):909-913
    Sasaki, A. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature,2002,416(6882):701-702
    Schomburg, F.M., Bizzell, C.M., Lee, D.J., et al. Overexpression of a novel class of gibberellin2-oxidasesdecreases gibberellin levels and creates dwarf plants. The Plant Cell Online,2003,15(1):151-163
    Serrani, J.C., Sanjuán, R., Ruiz-Rivero, O., et al. Gibberellin regulation of fruit set and growth in tomato.Plant physiology,2007,145(1):246-257
    Silverstone, A.L.,Sun, T.-p. Gibberellins and the green revolution. Trends in Plant Science,2000,5(1):1-2
    Singh, D.P., Jermakow, A.M., and Swain, S.M. Gibberellins are required for seed development and pollentube growth in Arabidopsis. The Plant Cell Online,2002,14(12):3133-3147
    Smith, V.A., Knatt, C.J., Gaskin, P., et al. The distribution of gibberellins in vegetative tissues of Pisumsativum L.: I. Biological and Biochemical Consequences of the le Mutation. Plant Physiology,1992,99(2):368-371
    Spielmeyer, W., Ellis, M.H., and Chandler, P.M. Semidwarf (sd-1),"green revolution" rice, contains adefective gibberellin20-oxidase gene. Proc Natl Acad Sci U S A,2002,99(13):9043-9048
    Sponsel, V.M.,MacMillan, J. Metabolism of gibberellin A29in seeds of Pisum sativum cv. Progress No.9; useof [2H] and [3H] GAs, and the identification of a new GA catabolite. Planta,1978,144(1):69-78
    Stockhaus, J., Nagatani, A., Halfter, U., et al. Serine-to-alanine substitutions at the amino-terminal region ofphytochrome A result in an increase in biological activity. Genes&Development,1992,6(12a):2364-2372
    Stuber, C.W., Polacco, M., and Senior, M.L. Synergy of empirical breeding, marker-assisted selection, andgenomics to increase crop yield potential. Crop Science,1999,39(6):1571-1583
    Sun, T.-p. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. PlantPhysiology,2010,154(2):567-570
    Sun, T.-p. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The ArabidopsisBook,2008,6: e0103
    Tamura, K., Dudley, J., Nei, M., et al. MEGA4: molecular evolutionary genetics analysis (MEGA) softwareversion4.0. Molecular biology and evolution,2007,24(8):1596-1599
    Thomas, S.G., Phillips, A.L., and Hedden, P. Molecular cloning and functional expression of gibberellin2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proceedings of the NationalAcademy of Sciences,1999,96(8):4698-4703
    Tyler, L., Thomas, S.G., Hu, J., et al. DELLA proteins and gibberellin regulated seed germination and floraldevelopment in Arabidopsis. Plant Physiology,2004,135(2):1008-1019
    Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., et al. Gibberellin receptor and its role in gibberellinsignaling in plants. Annual Review of Plant Biology,2007,58(1):183-198
    Vidal, A.M., Ben-Cheikh, W., Talon, M., et al. Regulation of gibberellin20-oxidase gene expression andgibberellin content in citrus by temperature and citrus exocortis viroid. Planta,2003,217(3):442-448
    Willige, B.C., Ghosh, S., Nill, C., et al. The DELLA domain of GA INSENSITIVE mediates the interactionwith the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. The Plant Cell Online,2007,19(4):1209-1220
    Wolbang, C.M., Chandler, P.M., Smith, J.J., et al. Auxin from the developing inflorescence is required forthe biosynthesis of active gibberellins in barley stems. Plant Physiology,2004,134(2):769-776
    Xu, Y.-L., Li, L., Gage, D.A., et al. Feedback regulation of GA5expression and metabolic engineering ofgibberellin levels in Arabidopsis. The Plant Cell Online,1999,11(5):927-935
    Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol.,2008,59:225-251
    Yamauchi, Y., Ogawa, M., Kuwahara, A., et al. Activation of gibberellin biosynthesis and responsepathways by low temperature during imbibition of Arabidopsis thaliana seeds. The Plant Cell Online,2004,16(2):367-378
    Yang, J., Zhang, J., Wang, Z., et al. Hormonal changes in the grains of rice subjected to water stress duringgrain filling. Plant Physiology,2001,127(1):315-323
    Yu, H., Ito, T., Zhao, Y., et al. Floral homeotic genes are targets of gibberellin signaling in flowerdevelopment. Proceedings of the National Academy of Sciences of the United States of America,2004,101(20):7827-7832
    Zeyong Xu, O., Barnett, W., and Gibson, P. Characterization of peanut stunt virus strains by host reactions,serology, and RNA patterns. Phytopathology,1986,76(4):390~395
    Zhang, Y., Cao, G., Qu, L.-J., et al. Involvement of an R2R3-MYB transcription factor gene AtMYB118inembryogenesis in Arabidopsis. Plant Cell Reports,2009,28(3):337-346
    Zhou, B., Lin, J., Peng, W., et al. Dwarfism in Brassica napus L. induced by the over-expression of agibberellin2-oxidase gene from Arabidopsis thaliana. Molecular Breeding,2012,29(1):115-127
    Zhu, Y., Nomura, T., Xu, Y., et al. Elongated uppermost internode encodes a cytochrome P450monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. The Plant CellOnline,2006,18(2):442-456
    范正琪.麻疯树pepc1基因的克隆及其调控烟草蛋白质和油脂合成的作用分析.2010,52-53
    郭兆武,金建军,俞健.彩叶草株型矮化的化学控制及其细胞学特征初探.中国农学通报,2007(11):261-266
    胡宏敏,蒋芳玲,曹雪,等.黄瓜贝壳杉烯氧化酶基因CKO的克隆及其表达分析.园艺学报,2012(06):1131-1140
    李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,134-137
    李节法,田义轲,王彩虹,等.梨贝壳杉烯氧化酶基因PpKO的克隆及生物信息学分析.园艺学报,2010(10):1575-1582
    刘春燕,胡国强,宋红梅,等.多效唑、矮壮素对绿篱植物大叶黄杨的矮化效果研究.林业实用技术,2009(07):47-48
    倪穗,李纪元.我国连蕊茶组植物资源及其园林应用前景.浙江林业科技,2005(05):1001-3776
    谈心,杨宏,乔定君,等.干扰烟草GA20-氧化酶siRNA植物表达载体的构建及矮化烟草的产生.应用与环境生物学报,2008(01):48-52
    王伟,朱平,程克棣.植物赤霉素生物合成和信号传导的分子生物学.植物学通报,2002(02):137-149
    王月华.结缕草GA20氧化酶基因的克隆及遗传转化研究.2007,13-16
    卫尊征,郭琦,李百炼,等.小叶杨GA20氧化酶基因的克隆、表达及单核苷酸多态性分析.林业科学,2009(4):19-27
    吴建明,李杨瑞,王爱勤,等.甘蔗GA20氧化酶基因片段克隆及序列分析.热带作物学报,2009(06):817-821
    武晶,孔秀英,高丽峰,等.小麦TaGA20ox2基因的克隆及分析.中国农业科学,2009(10):3405-3412
    许林,杜克兵,陈法志,等.川鄂连蕊茶花粉的形态、生活力及贮藏力研究.园艺学报,2010(11):1857-1862
    宣利利,欧春青,王斐,等.梨矮化砧木中矮1号GA20-氧化酶基因克隆与表达分析.果树学报,2011(5):883-887
    宣利利,欧春青,王斐,等.梨品种中矮1号GA20-氧化酶基因正义和反义表达载体的构建.中国果树,2011(03):11-13
    严远鑫,安成才,栗力,等.水稻赤霉素20-氧化酶基因(rga5)的正、反义转化对水稻生物学性状的影响.科学通报,2003(4):358-363
    叶创兴,石祥刚.山茶属地理分布特征.土地变化科学与生态建设学术研讨会论文集.2004,556-559
    张宏达,任善湘.中国植物志(第49卷第3分册).北京:科学出版社,1998,1-152
    郑君强,罗筱玉,方小燕.秋水仙素对四季桔多倍体的诱导效应.福建果树,2005(04):3-5
    朱高浦.山茶花MADS-box家族B类基因克隆及在重瓣花形成中的作用.中国林业科学研究院博士学位论文,2011,22-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700