新疆东天山彩霞山式铅锌矿多元地学信息找矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东天山是中国有色金属、贵金属的重要成矿带,是全国固体矿产资源十六个重点成矿区带之一。该区地层分布齐全,沉积建造多样,地质构造复杂,岩浆活动频繁,变质变形作用明显,成矿历史悠久,成矿地质条件优越,目前的工作程度相对较低,近年来国土资源大调查在该区获得彩霞山大型铅锌矿的突破,说明该区找矿潜力巨大。
     本文以成矿系列理论为指导,以矿床模型综合地质信息预测技术为基本方法,以东天山区域小比例尺度范围内彩霞山式层控热液型铅锌矿预测研究为研究方向,围绕多元地学综合信息的筛选及预测模型的合理构建的理论与方法为核心,在充分收集消化研究区以往地质、矿产、化探、物探、遥感和钻孔等勘查资料以及厘清了彩霞山铅锌矿成矿机制和成矿规律的基础上,在MRAS矿产潜力评价平台上,从已知到未知,圈定了预测的远景靶区和资源量并进行了初步的评价,并对矿产资源勘查研究领域地学信息的部分问题开展了试验探索性研究。
     如何有效地识别和提取地球化学信息是本次论文地质定量化探研究的技术难点,针对这个问题一方面作者结合野外实测剖面和收集的区域化探扫面数据对矿体、矿区、区域三个维度的地球化学特征从不同层次不同角度进行研究,另一方面从数据处理角度对水系沉积物系统偏差校正问题在对比均值比值法、C型转换和移动衬值三种方法的基本原理以及在示范区As元素的应用效果择优选择适合本区的方法为移动衬值法,并使用非线性网络对重点的化探样品进行提取,然后将其取代传统方法中直接使用最高值样品点应用到化探预测因子的构建中。最后,如何将大比例尺原生晕发现的规律应用到小比例尺矿产资源量估算是本次论文的定量化研究的另外一个技术难点,针对这一问题作者以现代成矿成晕理论为指导,以实际矿床钻孔中高精度多元素的分析测试数据为支撑,建立深部成晕机制与地表地球化学示踪指标之间的内在联系,在资源量估算中引入剥蚀系数改进了传统的类比法。
     研究区共圈定出彩霞山式铅锌预测区39个,运用改进的类比法计算资源量为3288万吨。
East Tianshan area is an important metallogenic belt of nonferrous metal and precious metal, and also one of the sixteen important metallogenic regions of non-fuel mineral resources in China. There has complete stratum, multiform sedimentary formations, complicated geologic structure, frequent magmatic activities, obvious metamorphosis, long metallogenic history and ascendant mineralization condition. But, it also has relatively lower working density. The exploration breakthroughs have been made in recent National Land and Resources Survey. Caixiashan lead-zinc deposit, for instance have been found, which foreshows great potential in this area.
     Using the theory of metallogenic series and the deposit model prediction technology of integrated geological information, this thesis made a research on the prediction of the Caixiashan type strata-bound hydrothermal lead-zinc deposits in the small scale range of eastern Tianshan region. Since the key of this method is the selection of the multivariate geological information and the construction of the prediction model, plenty of geological, mineral, geochemical, geophysical, remote sensing and drilling data were collected and analyzed, and the metallogenic regularity and mechanism of Caixiashan lead-zinc deposits were clarified. The perspective target area was delineated and preliminary evaluation was made based on the mineral potential evaluation platform of MRAS, and a pilot exploratory study of geological information in the field of mineral resources exploration was carried out.
     The technical difficulty of the quantitative geochemical exploration in this thesis is how to identify and extract geochemical information effectively. To solve this problem, on one hand, the author made a research on the geochemical characteristics in three dimensions of orebody, mining area and mining region based on the measured profiles and collected geochemical scanning data. On the other hand, compared with ratio method and C-transformation method, moving contrasting coefficient method was taken to deal with the system deviation of the stream sediment data since it has a better application effect for As in the representative area. Instead of the traditional method which used the sample with highest value, nonlinear network was used in the extraction of important geochemical samples for the first time, and it was applied to the construction of geochemical predictor. Finally, another problem of this research is how to do small-scale mineral resource estimation referring to the discovery pattern of large-scale primary halos. Following the modern metallogenic theory and primary halos theory, this thesis established the intrinsic link between the deep primary halos mechanism and the surface geochemical tracers. It improved the traditional areal productivity by introducing denudation coefficient into the resource estimation.
     At last,39optimal prospective areas were selected out and total resource of lead-zinc of this style is32.88Mt estimated by advanced analogy method.
引文
[1]丁建华,程松林等,新疆东天山铅锌矿成矿规律及区域预测[J],地质通报,2010,29(10):1504-1511
    [2]孙莉,邓刚,肖克炎等,新疆鄯善地区彩霞山铅锌矿大比例尺成矿预测[J],地质通报,2010,29(10):1512-1516
    [3]王登红,李纯杰等,东天山成矿规律与找矿方向的初步研究[J],地质通报,2006,25,(8):910-915
    [4]谢学锦,地质词典(五)[M],北京:地质出版社,1981,188
    [5]中维,分形混沌与矿产预测[M],北京:地质出版社,2003,8-9
    [6]陈明,何凯涛,王全明,等地球化学场精细结构解析方案与应用[J],地质通报,2004,23(2):147-153
    [7]XiangSun, Jundeng, QingjieGong, QingfeiWang, Liqiangyang, ZhongyingZhao,2009, Kohonen neuralnetwork and factor analysis based approach to geochemicaldata patternrecognition[J], JournalofGeochemicalExploration,103,6-16
    [8]蔡煜东,姚林声人工神经网络在白云岩类型识别中的应用[J],岩石矿物学杂志,1994,13(1):51-54
    [9]陈毓川,王登红,重要矿产预测类型划分方案[M],2010,北京:地质出版社,65-69
    [10]杜佩轩等,新疆北部地球化学图编制及综合研究[R],陕西:陕西省地矿局物化探队,55-61
    [11]张华等,新疆东天山地区地球化学勘查技术及资源潜力评价方法研究[R],新疆:新疆维吾尔族自治区地质调查院,13-22
    [12]钟富善等,沙泉子铅锌矿特征及成因初探[J],新疆有色金属,2008,05(1),11-14
    [13]花林宝等,新疆东天山沙泉子地区地球化学特征及找矿预测,矿产与地质,2002,05(3),291-297
    [14]程松林等,新疆哈密市宏源铅锌矿地质特征和找矿标志[J],新疆有色金属,2001,07(4),135-132
    [15]王劲,新疆哈密市白干湖铅锌矿床地质特征及成因探讨[J],新疆有色金属,2008,01(2),13-17
    [16]周济元等,新疆哈密玉西银矿床特征及成因[J],矿床地质,2007,18(3),218-224
    [17]惠卫东,肖庆华,新疆哈密西铅炉子铅锌多金属矿床特征及成因潜力分析[J],新疆有色金属,2009增2,101-106
    [18]刘中态等,新疆小热泉子铜锌矿床同位素地球化学研究及其意义[J],地质与勘探,2011,04,624-632
    [19]陈文明,新疆小热泉子铜锌矿床同位素研究[J],地球学报,1999,04(3),349-356
    [20]彭明兴等,新疆彩霞山铅锌矿床成因分析及MVT型矿床成因对比[J],新疆地质,2007,25(4),57-60
    [21]高景刚,彭明兴,梁婷,等新疆彩霞山铅锌矿床地质及同位素地球化学特征[J],地球科学与环境学报,2007,29(2):137-140
    [22]朱裕生,王柏钧,矿产资源评价的现状和展望[J],物化探电子技术,1982,03(Z1),25-29
    [23]肖克炎,王勇毅,陈郑辉等,中国矿产资源评价新技术与评价新模型[M],北京:地质出版社,2006,10-13
    [24]李裕伟,赵精满,李晨阳,等,基于GMS、DSS和GIS的潜在矿产资源评价方法[M], 北京:地震出版社,2007,7-10,
    [25]USGS National Mineral Resource Team, Assessment of undiscovered deposits of gold, silver, copper, lead, and zinc in the United States[J], USGSCircular1178, 1998,1999
    [26]USGS Western Minerals Team, US Department of Interior, USGS Advanced resource assessment methods [01], http://mineral,usgs,gov/west/projects/aramdel, shtmal,2002
    [27]赵鹏大,“三联式”资源定量预测与评价-数字找矿理论与实践探讨[J],地球科学—中国地质大学学报,2002,27(5):482-489
    [28]陈毓川,中国矿床成矿系列初论[M],北京:地质出版社,1998,1-102。
    [29]朱裕生,肖克炎等,成矿预测方法[M],北京:地质出版社,1997,1-330。
    [30]赵鹏大,矿床统计预测[M],北京,地质出版社,1994,5-15。
    [31]王登红,李纯杰,陈郑辉等,东天山成矿规律与找矿方向的初步研究[J],地质通报,2006,25(8):910-915,
    [32]陈毓川,王登红,徐志刚等,对中国成矿体系的初步探讨[J],矿床地质,2006,25(2):155-163
    [33]陈毓川,王登红,肖克炎等,中国西部优势矿产资源潜力评价技术及示范研究[R],2006,1-300。
    [34]陈毓川,王登红,朱裕生等,中国成矿体系与区域成矿评价[M],北京:地质出版社,2007,1-450,
    [35]王世称,陈永良,夏立显,综合信息矿产预测理论与方法[M],北京:科学出版社,2000,1-200。
    [36]Agterberg FP, Bonham-Catrer GF, ChengQ and Wright DF, Weight of evidence modeling and weighted logistic regression for mineral potential mapping[A], in:J, Davisand U, C, Herzfeld, ComputersinGeology-25yearsofProgress, OxfordUnly, PressNewYork,1993,13-25
    [37]CoxDP, The development and use of mineral deposit models in the United States Geological Survey [J], Geological Association of Canada Special Paper,40,1993 (1995),15-19,
    [38]Cox DP, Singer DA, Mineral deposit models[M], USGS bulletin 1693,1986,379,
    [39]HarrisDP and PanG, Mineral favorability mapping:acomparison of Artif icialnet works, logistic regression and discriminant analysis[J], Natural Resource Study,1999,8 (2):93-109,
    [40]HarrisDP, Mineral resource appraisal[M], Oxford University press,1984
    [41]SingerDA and KoudaR, A comparison of weight-of evidence method and probability neural networks[M], Natural Resources Research,1999,8 (4):287-297,
    [42]SingerDA, Basic concept three quantitative assessments of undiscovered mineral resources[J], Nonrenewable Resources,1993,2 (2):1-14,
    [43]Singer. D. A., Menzie. W. D., and Long. K.R. A simplified economic filter for open-pit gold-silver mining in the United States[R], U, S, Geological Survey Open-File Report,1998,98-207,
    [44]Singer. D. A., Menzie. W. D., Sutphin. David, Mosier.D.L., and Bliss. J. D.,2001, Mineral deposit density—an update[R], in Schulz, K. J, ed, Contributions to global mineral resource assessment research:U. S. GeologicalSurveyProfessionalPaper1640-A. p. A1-A13
    [45]David. H. R., David. M. and William. A. S. Computer Monte Carlo Simulation in Quantitative Resource Estimation[R], U, S, Geological Survey,1992,125-138,
    [46]赵鹏大,“三联式”资源定量预测与评价-数字找矿理论与实践探讨[J],地球科学—中国地质大学学报,2002,27(5):482-489,
    [47]赵鹏大,陈建平,张寿庭,“三联式”成矿预测新进展[J],地学前缘,2003,10(2):455-463,
    [48]赵鹏大,非传统矿产资源概论[M],北京:地质出版社,2003。
    [49]赵鹏大,定量地学方法及应用[M],北京:高等教育出版社,2004。
    [50]赵鹏大,胡旺亮,李紫金,等,矿产统计预测[M],北京:地质出版社,1983,1-115,
    [51]王世称,范继璋,杨永华,等,矿产资源评价[M],吉林:吉林科学技术出版社,1987,151-157,
    [52]叶天竺,肖克炎,严光生,矿床模型综合地质信息预测研究技术[J],地学前缘,2007,14(5):11-19,
    [53]黄杏元,马劲松,汤勤,等,地理信息系统概论[M],北京:高等教育出版社,1990,1-200。
    [54]肖克炎,朱裕生,张晓华等,矿产资源评价中的成矿信息提取与综合技术[J],矿床地质,1999,Vol,18,No,4,379-384。
    [55]肖克炎,朱裕生等,矿产资源评价中的成矿信息提取与综合技术[J],矿床地质,1999,18(4):379—384。
    [56]肖克炎,宋国耀,国外国土资源信息系统技术管理及应用译文集[C],中国地质科学院国土资源部信息中心,国土资源部土地规划室,1999,1。
    [57]肖克炎,朱裕生,宋国耀等,矿产资源GIS定量评价[J],中国地质,2000,278(7),29-32。
    [58]肖克炎,徐金芳等,区域地球化学异常分析GIS系统及其应用,地质论评,2000,49卷(增刊)。
    [59]肖克炎,张晓华,王四龙,刘冬林,矿产资源GIS评价系统[M],北京:地质出版社,2000,20-206
    [60]WarrenJ, N,, Metallogenic analysis as an integral part of the mineral resource assessment[A],国外矿产资源评价译文集[C],中国地质调查局(内部资料),2004。
    [61]Agterberg FP, Computer programs for mineral exploration[J], Science,1989, 245:76-81,
    [62]AgterbergFP, Bonham-CarterGF, WrightDF, Statistical pattern integration for mineral exploration[M]//GaalG, MerriamDF, Computer Application in Resource Exploration and Assessment for Minerals and Petroleum, Oxford:Pergamon,1990, 1-21,
    [63]吴锡生,化探数据处理方法[M],北京:地质出版社,1992,
    [64]陈力,油气地球化学勘探解释评价的思路走向[J],石油天然气地质,1996,17(2),9-15
    [65]黄竞先,候景儒,泛克里格法和指示克里格法在地球化学探矿中的应用[J],地球科学,1994,19(3),25-31
    [66]李长江,麻土华,化探数据处理的新技术[J],地质找矿论丛,1997,12(4),47-53
    [67]辛厚文,分型理论及其应用[M],合肥:中国科技大学出版社,1993,456
    [68]李长江,麻土华,矿产勘查中的分形、混沌与ANN,北京:地质出版社,1999,
    [69]成秋明,多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J],地球科学,2001,26(2),34-60
    [70]裴韬,鲍征宇,地球化学数据去噪方法研究[J],地质地球化学,1998,26(4),25-30
    [71]裴韬,鲍征宇,傅里叶变换在地球化学数据处理中的应用[J],长春科技大学报,1998,29(1),57-63
    [72]余金生,蒋金荷等,空间数据的多元滤波的分类方法及其应用[J],物化探计算技术,1994,16(4),44-51
    [73]张远飞,袁继明等,地球化学数据多元模式识别技术[J],矿产与地质,2004,18(4),69-74
    [74]李庆谋,成秋明,分形奇异值分解方法与地球物理和地球化学异常重建[J],地球科学,2004,29(1),30-37
    [75]斯梅斯洛夫AA,鲁德尼克BA,金科夫HM,帕奈奥托夫AY,地球化学预测与找矿[M],北京:地质出版社,1985,76-77
    [76]Clark FW, Washing ton HS, The Composition of the Earth's Crust[R], U, S, Geol, Surv,1924,
    [77]HotellingH, Relations between two sets of variates[J], Biometrika,1936, (36) 321-377
    [78]SpaearmanC, General intelligence objectively determined and measured American Journal of Psychology[J], Acta,1904, (15) 201-293
    [79]TayorSR, Abundance of chemical elements in continental crust A New Table Geochm Cosmochim[J], Acta,1964, Vol28
    [80]史长义,1995,异常下限与异常识别之现状[J],国外地质勘探技术,6(3),19-23
    [81]Rojas, R, Neural Networks, A Systematic Introduction, Springer-Verlag, Berlin, 1996
    [82]kohonen, T, Self-organization and Associative Memory Process,1989, Springer-Verlag, Berlin
    [83]Song, X, H, Hopke, P, K, Kohonen neural network as a pattern recognition method based on The weight interpretation, Anal, Chim, Acta,1996,334,57-66
    [84]Kim, C, Yu, I, K, Song, Y, H, Kohonen neural network and wave let transform based approach to short-term load forecasting, Electr, PowerSys, Res,2002, 63,169-176
    [85]Hoffmann, M, Numerical control of kohonen neural network for scattered data approximation, Number, Algorithms,2005,39,175-186
    [86]朱海滨,蒙特卡洛法模型在矿产资源量预测中的应用,地质找矿论丛,2010,25(1),50-54
    [87]王世称,关于开展矿产总量预测的儿个问题,中国地质,1983,9,5-8
    [88]孙忠军,任天祥等,西藏冈底斯东段成矿系列区域地球化学预测[J],中国地质,2003,30(1)105-112
    [89]王瑞廷,毛景文等,区域地球化学异常评价的现状及其存在的问题[J],中国地质,2005,32(1)168-175
    [90]任天祥,伍宗华等,区域化探异常筛选与查证的方法技术[M],1998,北京地质出版社
    [91]罗先熔,勘查地球化学[M],北京冶金工业出版社,2007,12-13
    [92]丁建华等,区域资源定量评价中面金属量法的应用-以东天山为例[J],矿床地质,2007,(2),58-63
    [93]谢学锦等,地球化学块体概念和方法学的发展[J],中国地质,2002,29,(3),225-234
    [94]C,S,郝奇逊著,张炳熹李文达译:矿床及其构造背景[M],北京地质出版社,1990,
    [95]D, R, Blaskett, D, Boxall, LeadandItsAlloys, EilisHorwoodCo,1990,15-19
    [96]Handbook of Chemistry and Physics, Chemical Rubber Publishing Company Cleveland, Ohio,1964
    [97]梁婷,王登红等,新疆彩霞山铅锌矿微量和稀土元素地球化学特征初步研究[J],地质与勘探,2008,44(5),1-9
    [98]王虹,桑少杰等,新疆彩霞山铅锌矿床稀土元素地球化学研究[J],地球科学与环境学报,2009,31(2),142-147
    [99]梁婷,王磊等,新疆彩霞山铅锌矿床的铅同位素地球化学研究[J],西安科技大学学报,2005,25(3),337-340
    [100]王建明,重磁异常变换中的延拓问题[J],新疆有色金属,2006,(2):11-16,
    [101]邓一谦,重磁异常的解析延拓[J],物探化探计算技术,1982,(1):88-92,
    [102]熊光楚,矿产预测中重磁异常变换的若干问题:一总磁场强度观测结果的化极问题[J],物探与化探,1992,16(4),247-253,
    [103]熊光楚,矿产预测中重磁异常变换的若干问题:二向上延拓的作用及问题[J],物探与化探,1992,16(5),58-364,
    [104]熊光楚,矿产预测中重磁异常变换的若干问题:三向上延拓高度与研究深度的关系[J],物探与化探,1992,16(6),452-455,
    [105]熊光楚,矿产预测中重磁异常变换的若干问题:四重磁异常的水平导数及其应用[J],物探与化探,1993,16(6),27-32,
    [106]薛琴访,场论[M],北京:地质出版社,1978,1-100,
    [107]梅安新,彭望路,秦其明,等,遥感导论[M],高等教育出版社,2001,1-324,
    [108]傅文杰,遥感矿化蚀变信息提取中两种新方法的应用研究[D],长沙:中南大学,2006,1-108,
    [109]刘英俊,邱德同等,勘查地球化学[M],北京:地质出版社,1987,147
    [110]阮天建,朱有光,地球化学找矿[M],北京:地质出版社,1985,2-10
    [111]胡受奚,周顺之等矿床学(上册)[M],北京:地质出版社,198285-86
    [112]路凤香,桑隆康,岩石学[M],北京:地质出版社,2002,285-287
    [113]欧阳宗圻,李惠,典型有色金属矿床地球化学异常模式[M],北京:科学出版社,1990
    [114]胡云中,任天祥等,中国地球化学场及其成矿关系[M],北京:地质出版社,2006,2-10
    [115]迟清华,鄢明才,应用地球化学丰度数据手册[M],北京:地质出版社,
    [116]格里格良CB等,苏联固体矿产化探规范[R],地质矿产部情报研究所译,1982,78-95
    [117]纪宏金,连长云,杜庆丰,地球化学数据的标准化与衬度变换[J],物探化探计算技术[J],1993,15(1):19-26
    [118]陈永清,纪宏金,标准化地球化学图的编制方法及应用效果[J],长春地质学院学报,1995,25(2):216-221,
    [119]陈明,范继璋,矫希国,化探背景与异常划分中的C型转换[J],长春地质学院学报,1996,26(2):227-230,
    [120]陈明等,化探背景与异常识别的问题与对策[J],地质与勘探,1999,35(2):25
    [121]蒋宗礼,人工神经网络导论[M],北京:高等教育出版社,2001
    [122]韩力群,人工神经网络理论、设计及应用[M],北京:化学工业出版社,2007
    [123]王旭,王宏,王文辉,人工神经元网络原理及应用[M],沈阳:东北大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700