土—偏心结构相互作用地震反应参数分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市建设的快速发展,平面形式不规则的非对称建筑大量涌现,在地震过程中此类建筑由于所受惯性力作用与结构自身抗力不共线,因而会表现出平动与扭转耦联的变形特征。震害研究表明,地基条件对偏心结构振动特性有显著的影响,土与结构相互作用效应(SSI)会引起结构振动反应的增大。当前,各国抗震规范中给出的结构抗扭设计方法主要是基于刚性地基假定。由于考虑SSI效应后问题分析的复杂程度与计算规模大幅增加,给分析研究带来困难,尚不足以支撑抗震规范相关条文。为此,本文在综合国内外研究成果的基础上,提出了改进的分析模型和计算方法,以平衡分析精度和计算成本两方面需求,进而对各类参数影响规律进行系统地讨论,研究工作主要围绕以下几个方面进行:土-单层偏心结构体系的理论推导与参数分析;土-多层偏心结构体系平扭耦联参数分析;相互作用体系振动台试验设计与结果分析;土-偏心结构相互作用体系动力时程分析与规律验证。围绕上述问题,主要的创新工作及研究成果有:
     (1)对偏心结构与土相互作用研究现状进行了系统的归纳和探讨,提出了基于分支模态法原理的分析方法,通过模态凝聚实现地基分支与结构分支间的相互耦合,完整考察地基土的质量、刚度和阻尼特性,模拟相互作用过程;研究工作从单层偏心结构(2DOF)情况出发,将地基多自由度因素蕴含于结构显式求解过程当中,推导了频域内结构平扭位移与变形传递函数表达式;对平扭耦联参数(扭平频率比Ω、结构偏心率B、结构偏心形式)和SSI效应参数(地基与结构刚度比、结构长细比)进行了系统的参数分析和影响规律研究;
     (2)地基分支模型通常是由大量连续分布的实体单元(或平面单元)组成,计算规模较上部结构大得多。试算结果表明,地基主模态在全部地基振型中的分布极为分散,给有效地截取主模态截取范围带来困难。对此,本文提出在子结构层次应用Ritz向量法求解地基主模态问题,考察外部动荷载的空间分布与地基自身振动特性的对应关系,滤除对地基振动贡献较小的低阶振型。算例分析结果表明,Ritz向量法自振特性计算效率较传统模态向量有明显提高,适用于地基主模态分析与地震反应分析;
     (3)在单层偏心结构研究的基础上,进而对多层偏心结构体系(五层)开展土—结构相互作用条件下的平扭耦联参数分析。研究理论由单层偏心情况发展而来,由于上部结构自由度数量已超过2个,无法给出结构振动反应的显示表达式,因而采用数值方法开展参数研究;研究工作主要针对刚度偏心体系(CRS)进行,对楼层偏心率B_i、广义扭平频率比Ω~′、偏心楼层分布、楼层相对偏心关系及地基刚度等参数进行了系统地分析,形成了多层偏心结构体系参数影响的规律性认识;
     (4)以某单层框架结构为研究背景,缩尺为单层偏心结构模型,对其在刚性地基与相互作用条件下进行振动台试验研究;试验实施过程中对模型相似设计、模型土配制与土地动力学参数测试方法提出改进措施;获得了较为完整的实测数据,对相互作用体系与地基自振特性、偏心结构振动反应组成、偏心结构应变反应、以及偏心效应作用下的群桩与地基响应进行了系统的分析,为理论研究工作提供了参照;
     (5)编制了基于Wilson-θ法原理的土-单层偏心结构体系直接积分法计算程序,同时,由傅立叶逆变换将频域内偏心结构平扭位移传递函数转换至时域,通过对比两组时程曲线结果,考察“强解耦”过程对分析精度的影响;考虑到SSI体系振动台试验条件与理论分析之间相差较大,从规律分析的角度出发,对比理论研究与试验实测数据,验证结构偏心率与地基条件因素对偏心结构体系平扭耦联反应的影响趋势。
With the rapid development of urbanization in China, more and more asymmetric buildings with irregular distribution in horizontal and vertical direction appeared. The seismic responses of such buildings are of torsionally coupled features typically. Previous earthquake damage investigations indicate that the vibration characteristic of eccentric structures can be notably altered by the flexibility of foundation soil, while the soil-structure interaction effect may enlarge the vibration response of super- structure. Since the complexity and computational scale will be increase significantly when incorporating the SSI effect into relative research. The provisions for structure eccentricity and torsion-resistant design in most design codes are based on fixed-base assumption, while the influence of SSI effect is not fully considered. Therefore, an analytical approach that retains the essential characteristics necessary for studying the torsionally coupled seismic response of eccentric structure built on flexible foundation with reasonable computational cost is presented in this dissertation.A series of innovative work has been done on the issue, the achievements and conclusions of which can be draw as follow:
     (1) The research status of soil-eccentric structure interaction is classified and discussed. An analytical approach that retains all the essential characteristics for simulating the SSI effect is presented and formulated based on the branch mode theory. The superstructure and foundation branch are coupled through mode aggregation procedure. Parametric study of single-storey eccentric structure (2DOF) is firstly carried out by comparing the transfer function results of translational and torsional response, in which the DOFs of foundation soil are incorporated in the explicit solution of superstructure. The influence of torsional to translational frequency ratio, eccentricity ratio, eccentric form, height-to-base ratio and foundation flexibility are analyzed systematically.
     (2) Since the foundation model usually consists of a large amount of continuous soild or plane elements, the computational scale is much higher than that of superstructure. Previous reaseraches indicate that the distribution of foundation modes is extremely scatted among all the modal analysis results, which makes it rather difficult to define the mode cut-off criterion. As a replacement of traditional modal vectors, Ritz vectors are employed in the solution of foundation mode which can filter the lower ranking mode of negligible contribution to the foundation vibration by taking the spatial distribution of external loading into consideration. The results of sample analysis show that Ritz vectors may significantly boost the solution efficiency of natural vibration, which is very suitable for the modal analysis and seismic analysis of foundation sub-structure.
     (3) Based on the research of single-storey eccentric structure interaction system, the computational theory of multi-storey eccentric structures considering SSI effect is developed and formulated. Parametric analysis is carried out by numerical methods, since the number of DOF of superstructure exceed the limitation of explicit solution. The magnitude and rules of influence of parameters, such as floor eccentricity ratio, general ratio of torsional to translational frequency, relative stiffness of soil to structure, distribution of eccentric floor and relative eccentricity between floors, are analyzed and discussed comprehensively.
     (4) Shaking table test for soil-pile-eccentric structure interaction system is carried out and compared with fixed base foundation test. During the preparatory stage, a series of improvement has been presented for model similitude design, fabrication of model soil and the dynamic performance test of soil material. The vibration characteristics of interaction system, constitution of eccentric super- structuctre response, acceleration and strain response, vibration response of group piles and foundation soil are measured and analyzed, which provides experimental reference to theoretical research.
     (5) The direct integral program for soil-eccentric structure interaction system is established base on the Wilson-θalgorithm. The feasibility of the analytical approach developed in this paper is verified by comparing the time domain results derived by inverse fast Fourier transform procedure with the time-history curve of superstructure response obtained by direct integral program. Since the difference between shaking table test conditon of SSI system and theoretical assumption is not neglectable, the analytical results are compared for general rules, which proved the tendency of parameters influence of structure eccentricity and foundation flexibility on the torsionally-coupled response.
引文
[1]王耀伟,黄宗明,影响偏心结构地震反应的因素综述[J].防灾减灾工程学报, 2004, 24(1): 112-116.
    [2]梁莉军,黄宗明,杨溥.各国规范关于结构地震下抗扭设计方法的对比[J].重庆建筑大学学报, 2002, 24(2): 54-56.
    [3] M De Stefano, A Rutenberg. A comparison of the present SEAOC/UBC torsional provisions with the old ones[J]. Earthquake Structures. 1997,19(8): 655-664.
    [4] Uniform Building Code. Structural design requirements. Chapter 16. International Conference Building Officials. Whittier, California; 1997.
    [5] NEHRP. Recommended provisions for the developments of seismic regulations for new buildings. Federal Emergency Management Agency. 1995.
    [6] Eurocode-8. Design provisions of earthquake resistance of structures. European Committee for Standardization. ENV. 1998-1-1/2/3; 1994.
    [7] AK Chopra. Dynamics of structures: theory and applications to earthquake engineering[M]. Englewood Cliffs, NJ: Prentice-Hall. 1995.
    [8]王凤霞,荆玉龙,浅谈土与结构动力相互作用[J].低温建筑技术, 2001, 4: 27-29.
    [9]易伟健,杨随新,软土地基土上的土-结构动力相互作用[J].建筑科学与工程学报, 2005, 22(2): 61-65
    [10]李辉,赖明,白绍良,土-结动力相互作用研究综述(I) [J].重庆建筑大学学报, 1999, 21(4): 112-116
    [11]李辉,赖明,白绍良,土-结构动力相互作用研究综述(Ⅱ) [J].重庆建筑大学学报, 1999, 21(5): 112-116.
    [12]李辉,土一结动力相互作用: [博士学位论文],重庆;重庆建筑大学, 1999.
    [13]李辉、李英明,赖明等,土一结动力相互作用体系的简化分析模型[C].第五届全国地震工程学术会议论文集, 1998年10月20日-22日,北京
    [14]沈聚敏,周锡元,高小旺,等,抗震工程学[M].北京:中国建筑工业出版社, 2000.227-229
    [15]林皋,土-结构动力相互作用[J].世界地震工程, 1991(1): 4-21
    [16]林皋,栾茂田,陈怀海,土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报, 1993, 26(4): 1-13
    [17]林皋,结构与地基相互作用体系的地震反应及抗震设计[J].中国地震工程研究进展,北京:地震出版社,1992
    [18] Lamb H. On the propagation of tremor over the surface of an elastic solid[J]. Philosophical Transactions of the Royal Society, Ser. 1904, 203: 1-42.
    [19] Wolf J P, Somanini. Approximate dynamic model of embedded foundation in time domain[J]. Earthquake Engineering and Structural Dynamics. 1986, 14(5): 683-703.
    [20]吕西林.复杂高层建筑结构抗震理论与应用[M].北京:科学出版社, 2007.
    [21]杜修力,赵建锋,韩强.精度可控地基阻抗力的一种时域差分计算方法[J].力学学报. 2008, 40(1): 59-66.
    [22]楼梦麟.结构动力分析的子结构方法[M].上海:同济大学出版社, 1997.
    [23]楼梦麟,王文剑,土—结构体系振动台模型试验中土层边界影响问题[J].地震工程与工程振动, 2000, 24(4): 30-36
    [24]陈跃庆,吕西林,分层土—基础—高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动, 2001, 21(3): 104-112
    [25]楼梦麟,王文剑,土—桩—结构相互作用体系的振动台模型试验[J].同济大学学报, 2001, 29(7): 763-768
    [26]吕西林,楼梦麟,软基SSI体系动力特性研究—一阶模态化趋势[J].岩石力学与工程学报, 2004, 23(9): 1502-1508
    [27]楼梦麟,宗刚,土—桩—钢结构相互作用体系的振动台模型试验[J].地震工程与工程振动, 2006, 26(5): 226-230
    [28]陈国兴,王志华,宰金珉,土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程, 2002, 18(4): 47-54
    [29]伍小平,孙利民,等振动台试验用层状剪切变形土箱的研制[J].同济大学学报, 2002, 30(7): 781-785
    [30]鲍华,徐礼华,软土—桩—结构动力相互作用振动台模型试验研究[J].沈阳建筑大学学报, 2005, 21(6): 644-648
    [31]钱德玲,雷超,等相互作用体系中桩基的动力响应[J].岩土工程学报, 2006, 28(6): 709-714
    [32] Rosenblueth, Housner. Responses of linear systems to certain transient disturbances, 4th World Conference on Earthquake Engineering[C]. Santiago, Chile,1969
    [33] Tso WK, bozorgnia Y. Effective eccentricity for inelastic seismic response ofbuildings[J].Earthquake Engineering and Structural Dynamics 1986, 14 (3):413-427.
    [34] Dempsey, K.M.Tso, W.K. Seismic torsional provisions for dynamic eccentricity[J]. Earthquake Engineering and Structural Dynamics, 1990,8(2):275-289.
    [35] KS Sivakumaran, T Balendra. Seismic analysis of asymmetric multistorey buildings including foundation interaction and P?Δeffects[J]. Engineering Structure. 1994,16(3): 609-625.
    [36]江宜城,唐家祥.单轴偏心的单层隔震框架结构地震扭转反应分析[J].世界地震工程, 1999, 15(4): 57-61.
    [37]扶长生,抗震设计中的平扭耦联问题[J].建筑结构学报, 2006, 27(2): 40-46
    [38]周晓松,裴星洙,廖述清,实际偏心结构平扭耦合地震反应分析[J].工业建筑, 2005, 35(12): 32-36
    [39]陈昌松,非规则框架结构双向水平地震作用效应初探: [硕士学位论文],重庆;重庆建筑大学, 2000
    [40]张誉,王卫,双向地震作用下不规则框架的扭转分析[J].土木工程学报, 1994, 27(5): 37-51
    [41]蔡贤辉,邬瑞锋,曲乃泗,一类多层偏心结构的地震反应研究[J].地震工程与工程振动, 1999, 19(4):55-60.
    [42]蔡贤辉,邬瑞锋,许士斌,多层剪切型均匀偏心结构的弹塑性地震反应规律的研究[J].应用数学和力学, 2001, 22(11): 1129-1134
    [43]蔡贤辉,邬瑞锋,偏心结构的弹塑性地震反应时程分析[J].工程抗震, 1999 4: 14-17
    [44]蔡贤辉,邬瑞锋,綦宝晖,偏心结构的弹塑性平扭耦合反应与地震动强度[J].应用数学和力学, 2000, 21(5): 451-458.
    [45]邬瑞锋,蔡贤辉,曲乃泗,多层及高层房屋扭转耦连弹塑性地震反应的研究[J].大连理工大学学报, 1999 ,39 (4): 471-477
    [46]徐培福,黄吉峰,韦承基,高层建筑结构在地震作用下的扭转振动效应[J].建筑科学, 2000, 16(1): 1-6
    [47]王耀伟,黄宗明,影响偏心结构非弹性地震反应的主要因素分析[J].重庆建筑大学学报, 2001, 23(6): 114-120
    [48]王耀伟,平面不规则结构非弹性地震反应规律研究: [博士学位论文],重庆,重庆大学博士学位论文;2003
    [49]王耀伟,黄宗明.影响偏心结构地震反应的因素综述[J].防灾减灾工程学报, 2004, 24(1): 112-116.
    [50] T Balendra. Modal damping for torsionally coupled buildings on elastic foundation[J].Earthquake engineering and structure dynamic 1981(10):735-756
    [51] TG Tsicnias, GL Hutchinson. Soil-structure interaction effects on the steady-state response of torsionally coupled buildings[J]. Earthquake Engineering and Structural Dynamics. 1984,12: 237-262.
    [52] Chandler, A.M.,Hutchison,G..L. Evaluation of code torsional provisions by a time history approach[J]. Earthquake Engineering and Strucutral Dynamics, 1987, 15(4): 491-516
    [53] A M Chandler. Code design provisions for torsionally coupled buildings on elastic foundation[J]. Earthquake engineering and structure dynamic 1987(15):517-536
    [54] A M Chandler. Parametric earthquake response of torsionally coupled buildings with foundation interaction[J]. Soil dynamics and earthquake engineering 1987(6):138-148
    [55] Wu Wenhwa, Wang Jerfu, Lin Chichang. Systematic assessment of irregular building-soil interaction using efficient modal analysis[J]. Earthquake Structures. 2001,30: 573-594.
    [56] H shakib. Dynamic soil-structure interaction effects on the seismic response of asymmetric buildings[J]. Soil dynamics and earthquake engineering 2004(24):379-388
    [57]姜忻良,王美丽,王学艳.基于强解耦方法的土—结构平扭耦联参数分析[J].振动与冲击, 2009, 28(10): 154-157.
    [58] Gladwell G M L. Branch Mode Anslysis of Vibrating Systems[J]. Sound Vibration. 1964, 1: 41-59.
    [59]王文亮,杜作润.结构振动与动态子结构方法[M].上海:复旦大学出版社. 1985: 229-258.
    [60] EL Wilson, Yuan Mingwu. Dynamic analysis by direct superposition of Ritz vectors[J]. Earthquake Engineering and Structural Dynamics. 1992, 10: 813-821.
    [61]张建胜,武岳,沈世钊.单层网壳结构风振响应的主要贡献模态识别[J].振动工程学报, 2006, 19(4): 452-458.
    [62] EL Wilson, EP Bay. Use of special Ritz vectors in dynamic substructure analysis[J]. Structure Engineering. 1986, 112: 1944-1954.
    [63]陈波,武岳,沈世钊. Ritz-POD法及其在大跨度屋盖结构风振分析中的应用[J].沈阳建筑大学学报(自然科学版), 2005, 21(6): 601-605.
    [64]楼梦麟,柳锋波.混凝土坝的抗震计算新方法[J].水利水电技术, 1987, 10(2) : 12-16.
    [65]汪梦甫,沈蒲生.Ritz向量叠加法的改进及其应用[J].湖南大学学报, 1996, 23(3): 109-115.
    [66]楼梦麟.子结构Ritz向量综合法[J].应用力学学报, 1996, 13(4): 126-130.
    [67]曲乃泗,吴全军.改进Ritz向量法在动态子结构分析中的应用[J].大连理工大学学报, 1991, 31(5): 529-536.
    [68] AA Abdallah, AA Huckelbridge. Boundary flexibility method of component mode synthesis using static Ritz vectors[J]. Computers and Structure. 1990, 35: 51-61.
    [69] T Balendra, CW Tat, SL Lee. Modal damping for torsionally coupled buildings on elastic foundation[J]. Earthquake Engineering and Structural Dynamics. 1982,10: 735-756.
    [70]何晓宇,李宏男.偏心形式对偏心结构扭转耦联地震响应的影响[J].世界地震工程, 2008, 24(3): 36-44.
    [71]赵徐东,郭迎庆, Matalb语言在建筑抗震中的应用[M].北京:科学出版社, 2001
    [72]杨溥,李英明,赖明,结构时程分析法输入地震波的选择控制指标[J].土木工程学报, 2000, 33(1): 44-51
    [73] Anil K. Chopra(著),谢礼立,吕大纲等(译),结构动力学理论及其在地震工程中的应用[M].高等教育出版社, 2005
    [74]尚守平,刘方成,卢华喜,等.振动台试验模型地基的设计与试验研究[J],地震工程与工程振动,2006,26(4):199-204
    [75]楼梦麟,宗刚,牛伟星,等.土-桩-钢结构相互作用体系的振动台模型试验[J],地震工程与工程振动,2006,26(5):226-230
    [76]季倩倩,地铁车站结构振动台试验研究, [博士学位论文],上海;同济大学, 2002
    [77]庄海洋,土—地下结构非线性动力相互作用及其大型振动台试验研究, [博士学位论文],南京;南京工业大学, 2006
    [78]楼梦麟,王文剑等,土—结构体系振动台模型试验中土层边界影响问题[J].地震工程与工程振动, 2000, 20(4): 30-36
    [79]吴世明等,土动力学[M].北京:中国建筑工业出版社, 2000
    [80]刘汉龙,土动力学与岩土地震工程[C].北京:中国土木工程学会第九届土力学及岩土工程学术会议论文集, 2003, 25-28
    [81]王建华,程国勇,一种在三轴压力室内测试土样剪切波速的新装置[J].天津大学学报, 2004, 37(2): 152-156
    [82]程国勇,王建华,用扭剪波测试土样剪切波速的新技术[J].岩土工程学报, 2005, 27(3): 358-359
    [83]谢定义,土动力学[M].西安:西安交通大学出版社, 1988
    [84] Hardin B O, Drnevich V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundations, ASCE, 1972, (7): 667-692
    [85] Idriss,I.M.,Dorbry,R.,and Singh,R.D. Nonlinear Behavior of Soft Clays During Cyclic Loading[J]. Journal of the Geotechniacal Enginneering Division,ASCE,1978,(104)
    [86] Pyke,R., Nonlinear Soil Models for Irregular Cyclic Loadings[J]. Journal of the Geotechniacal Enginneering Division,ASCE,1979,(105)
    [87] Martin P P, Seed H B. One dimensional dynamic ground response analysis[J]. Journal of Geotechnical Engineering, ASCE, 1982, (7): 935-952
    [88]陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动本构关系[J].岩土工程学报, 2005, 27, (8): 860-864
    [89]冯志仁,郭德存.最大剪切模量对土动力参数及地震反应的影响[J].自然灾害学报, 2007, 16(3): 90-95
    [90]袁聚云,徐超.土工试验与原位测试[M].上海:同济大学出版社, 2004
    [91]史晓军,岳庆霞,李杰.土—结构动力相互作用振动台试验中模型地基影响因素分析[J].建筑科学与工程学报, 2007, 24(4): 50-59.
    [92]刘立平,李英民,韩军,等.桩—土动力相互作用对桩基变形特性和受力性能的影响[J].地震工程与工程振动, 2006, 26(3): 235-237.
    [93]陈波,吕西林,李培振,等.均匀土—桩基—结构相互作用体系的计算分析[J].地震工程与工程振动, 2002, 22(3): 91-99.
    [94]陈清军,朱庆群.土—桩—结构相互作用体系随机地震反应分析[J].力学季刊, 2004, 25(3): 417-423.
    [95]李宏男,结构多维抗震理论与设计方法[M].北京:科学出版社, 1998
    [96]周云,宗兰,张文芳,等,土木工程抗震设计[M].科学出版社, 2005
    [97]王开顺等.土与结构相互作用地震反应研究及实用计算[J].建筑结构学报. 1986, 7(2): 64-76.
    [98]姜忻良,严士超.分枝模态二步分析法及其在液体-结构-桩土体系中的应用[J].振动工程学报. 1994, 7(4): 346-350.
    [99]姜忻良,严士超,丁学成.筒体结构-桩-土相互作用的分枝模态-二步分析法[J].天津大学学报. 1995, 6: 796-801.
    [100]王文亮,杜作润.结构振动与动态子结构方法[M].上海:复旦大学出版社. 1985: 229-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700