土工格栅加筋土挡墙力学特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加筋土挡墙具有重力式挡墙无法比拟的优点,从发展初期就受到普遍关注,并成为研究的热点,在工程中得到了广泛的应用。上世纪70年代以来,随着土工合成材料的飞速发展,土工合成材料(尤其是土工格栅)加筋土支挡结构已成为国内外公认最具有发展前景的轻型支挡结构之一。
     目前,对于单极高度低于10m的土工格栅加筋土挡墙,有关规范都已作了详细的说明,其设计理论及方法都相对成熟,但是对于近年来不断出现的高度大于10m的土工格栅加筋土挡墙,由于相关研究不足,至今还没有成熟可靠的理论支持,绝大多数工程实践还停留在参照类似工程的基础上,理论研究却落后于工程实践,无法满足工程实践的需要。
     基于上述考虑,为解决山区公路加筋土挡墙设计、施工中存在的问题,本文以云南思小高速公路2个包裹式土工格栅加筋土挡墙试验点(K63+785和K63+795)、水麻高速公路2个面板式土工格栅加筋土挡墙试验点(K68+698和K68+798)和2个复合式土工格栅加筋土挡墙试验点(K69+150和K69+150)为依托,开展了3种常用形式的土工格栅加筋土挡墙现场原型试验及有限元数值模拟分析,深入研究了土工格栅加筋土挡墙的力学特性和工作机理,其主要研究内容及结论如下:
     1)土工格栅加筋土挡墙墙底垂直压力大小及分布的现场试验规律
     (1)包裹式和面板式土工格栅加筋土挡墙墙底垂直压力实测值近似均匀分布,普遍大于γ·H值;
     (2)复合式土工格栅加筋土挡墙墙底垂直压力实测值大都大于γ·H值,呈现近墙趾处大于远墙趾处的非均匀分布特点,这一现象可能与重力式挡墙的强支挡作用有关;
     (3)“准运营”阶段的墙底垂直压力观测值普遍保持稳定,说明墙底压力的形成与调整主要在施工阶段完成;
     (4)针对基底垂直压力实测值大于γ·H值的结果,建议:设计高于10m的加筋土高挡墙时,基底垂直压力应乘以增大修正系数K,K=1.2~1.4,以保证地基容许应力有足够的安全储备。
     2)土工格栅加筋土挡墙筋材变形的现场试验规律
     (1)随着填土高度的增加,3种形式的土工格栅加筋土挡墙各层筋材变形均呈双峰不均分布,揭示了挡墙存在潜在破裂面;
     (2)雨季期间,各层筋材变形增加较大(由于土体饱水及部分土体压实度不均产生沉降),在设计、施工中应加以考虑,避免造成不利影响;
     (3)工后观测阶段筋材变形随时间迁移而逐渐减小,并且很快趋于稳定,表明加筋土高挡墙的最不利工况发生在施工阶段末期,即发生在加筋体填筑施工完毕、形成完整路基体系前;
     (4)包裹式和面板式加筋土挡墙各层格栅实测最大拉力值均大于设计值,中部的格栅实测值比设计值大40至50%,说明现行规范关于土工合成材料综合折减系数大于5、抗拔安全系数大于1.3的规定是非常必要的。
     3)土工格栅加筋土挡墙潜在破裂面形式
     (1)包裹式土工格栅加筋土挡墙潜在破裂面与库仑直线破裂面形状大致相似,只是破坏土楔体的面积增大了;
     (2)面板式土工格栅加筋土挡墙实测潜在破裂面与0.3H破裂面和经典朗肯法破裂面形状相近,但位置略有差异;
     (3)复合式土工格栅加筋土挡墙存在2个潜在破裂面,上面一级加筋土挡墙潜在破裂面符合对数螺旋分布,下面一级加筋土挡墙潜在破裂面比较复杂,形式上与0.3H破裂面和库仑直线理论破裂面都不相符,形状、位置主要受试验墙前置重力式挡墙和加筋体的组合影响。
     4)土工格栅加筋土挡墙有限元数值模拟分析结论选取水麻高速公路的2个面板式土工格栅加筋土挡墙K68+698和K68+798试验点,采用有限元强度折减法进行了数值模拟计算分析,得到以下几点认识:
     (1)有限元计算得到的面板式土工格栅加筋土挡墙基底垂直应力值与实测的基底垂直应力值大小及规律上基本上一致,均比相应的γ·H偏大,并呈现出近似均匀分布的特点;
     (2)有限元计算得到的土工格栅拉力和现场实测值基本吻合;
     (3)有限元计算得到的面板式土工格栅加筋土挡墙最大拉力点位置连线(潜在破裂面)与实测接近,形式上与0.3H破裂面相似;
     (4)敏感度分析表明,筋土界面强度指标、加筋长度对加筋土挡墙的安全系数及滑面的确定影响较大。
     本文所进行的研究为交通部西部交通建设科技项目《山区支挡结构的研究》课题高轻型支挡结构研究的重要部分之一。本文分析了土工格栅加筋土挡墙应用发展及开展原型试验研究的选题原因,介绍了现场原型试验方案,分析了原型试验数据成果,研究了土工格栅加筋土挡墙墙底垂直压力分布、筋材拉力和变形规律、挡墙破裂面形状,揭示了土工格栅加筋土挡墙力学特性。研究成果为今后土工格栅加筋土挡墙工程的设计、施工、研究提供技术支持,对进一步完善高大土工格栅加筋土挡墙理论和编制相应的标准、规范提供良好的支撑。通过开展研究,首次在高速公路上与建设同步全面开展了三种常用形式的高大土工格栅加筋土挡墙原型试验研究,原型试验和试验工点建设均取得了成功。通过大型原型试验的成果分析,指出了土工格栅加筋挡墙的破裂面形状、基底压应力的分布和加筋材最大拉力值与国内外以往研究的相同与不同之处,丰富和发展土工格栅加筋土挡墙技术。
Because of its incomparable advantages, reinforced soil retaining wall is widely used in the projects. With the rapid development of geosynthetics, geosynthetics (geogrid especial) retaining wall is one of light supporting constructure that has been the most prospective since 1970s.
     At present, the theory and application of the geogrid reinforced soil retaining wall(H<10m) are reliable. However, the theory and application of the geogrid reinforced soil retaining wall(H>10m) are very unreliable. So, a large number of geogrid reinforced soil retaining walls(H>10m) are designed with reference to the similar projects, instead of the reliable design method.
     Considering the reasons mentioned above and to solve the problems during the design and construction of highways in the mountain areas, this paper aims to study the mechanical behavior of the geogrid reinforced soil retaining walls. This study is conducted through the field test and the numerical simulation by finite element method. The main contents and conclusions in this paper are:
     1)The experimental results on the vertical basal pressure of the geogrid reinforced soil retaining wall
     (1)The measured normal stresses at the basement of the wrapping and panel geogrid reinforced soil retaining walls are nearly uniformly distributed and they are larger than the value ofγ·H.
     (2)The measured normal stresses at the basement of the compound geogrid reinforced soil retaining walls (with concrete rigid face) are larger than the value ofγ·H and they are not uniformly distributed. It is observed that the normal stress is larger near the toe of the retaining wall. This may be due to the strong supporting effect of the gravity retaining wall.
     (3)The measured normal stresses at the basement of the geogrid reinforced soil retaining walls remain stable at the stage of“quasi-operation”. This illustrates that the formation and variation of the normal stresses are almost completed at the construction stage.
     (4)As the measured normal stresses at the basement of the geogrid reinforced soil retaining walls are larger thanγ·H, it is suggested that the calculated normal stresses at the basement should be enlarged by K (K= 1.2-1.4) when the height of the wall is larger than 10 m. This is to ensure the bearing capacity is high enough.
     2)The experimental results on the geosynthetics deformation of the geogrid reinforced soil retaining wall
     (1)With the increment of the height of the earth fill, the deformation of the geogrid inside the retaining walls is not uniform (looks like a double-peak). This implies a potential failure surface exists inside the retaining wall.
     (2)During the rainy season, the·deformation of the geogrid inside the retaining walls is quite large (due to the soil settlement by saturation and nonuniform compression). This should be considered during the design and construction to prevent unfavorable effects.
     (3)After the construction, the·deformation of the geogrid inside the retaining walls is becoming smaller with time and tends to be stable. This illustrates the most unfavorable condition for the high geogrid reinforced soil retaining walls occurs at the end of the construction (i.e., the subgrade is formed and the filling project is completed).
     (4)The measured largest tension force of the geogrid inside the wrapping and panel geogrid reinforced soil retaining walls is larger than the designed value. The one in the central part is larger than the designed value by 40%-50%. Thus the code is reasonable and necessary to take a material reduction factor (>5) and to maintain a high safety factor (>1.3).
     3)The potential failure surface of the geogrid reinforced soil retaining walls
     (1)The potential failure surface of the wrapping geogrid reinforced soil retaining walls is similar to the theoretical prediction by the Coulomb method. The only difference is the area of the soil wedge.
     (2)The measured failure surface of the panel geogrid reinforced soil retaining walls is similar to the theoretical prediction by the“0.3H”method and the classic Rankine’s method
     (3)There are two potential failure surfaces in compound geogrid reinforced soil retaining.The above one is consistent with the distribution of the number of spiral,and the below one is alittle complicated. It is quite different from the theoretical prediction by the “0.3H”method and the Coulomb method.The shape and location are mainly affected by combination of retaining walls and reinforced soil.
     4)The FEM results of the geogrid reinforced soil retaining wall Two panel geogrid reinforced soil retaining walls at the K68+698 and K68+798 of the Shui-Ma Highway are investigated by the field testing. Also, numerical simulations are conducted by the strength reduction finite element method and some conclusions can be given as follows:
     (1)The calculated and measured normal stresses at the basement are consistent. Both of them are larger than and uniformly distributed.
     (2)The calculated tensional force of the geogrid is almost consistent to the measured value in the field testing.
     (3)The simulated potential failure surface of the panel geogrid reinforced soil retaining walls is close to the real measured result and similar to the theoretical prediction by the“0.3H”method.
     (4)According to sensitivity analysis by FEM, the intensity index and the geosynthetics length have more influence over the stability factor of the geogrid reinforced soil retaining wall.
     This study is a key component of the research for the project of the west traffic construction . This pape introduced the applying of geogrid reinforced soil retaining walls and the topics reason for doing prototype test research The main works include:introducing the site prototype test plan,analyzing the data results,studying the vertical pressure distribution,reinforced soil’s pull,deformation & the failure surface’s shape ,and revealling the mechanical properties. With this research,the construction of the high geogrid reinforced soil retaining walls and the prototype test,which are synchronized with project’s construction on the highway,get success first.The research results point out the accordance or difference with the studied conclusion of the failure surfaces’s shape, pressure distribution and the biggest pull of geogrid reinforced soil retaining walls at home and abroad,enrich and develop the technology of the geogrid reinforced soil retaining walls greatly. The research results are useful to the later design,construction and study,and to perfect the theory and the design standard of the geogrid reinforced soil retaining wall.
引文
[1]何光春.加筋土工程设计与施工[M].北京:人民交通出版社,2004
    [2] Vidal H. The Principle of reinforced earth[R]. Washington D. C: Highw Res Record,1969
    [3]铁四院科研所.云南小龙潭煤矿加筋土挡墙的测试分析报告[J].路基工程,1986,(8):40-52
    [4]雷胜友.台阶式加筋土挡墙的原型试验研究[J].工程地质学报,2001,(9):44-51
    [5]周宏元,丁光文.土工格栅加筋土高挡墙的应用与试验分析[J].路基工程,2003,(4):8-14
    [6]王祥,周顺华等.路堤式加筋土挡墙的试验研究[J].土木工程学报,2005,10:119-126
    [7]余建华.单级超高加筋土挡墙的原型观测及数值计算分析:硕士学位论文.成都:四川大学,2002
    [8] Karl P LeBlanc, CD. Performance of two full-scale geosynthetic reinforced segmental retaining walls:[dissertation]. The Royal Military College of Canada.2002
    [9] Dave L. Walters. Behaviour of reinforced soil retaining walls under uniform surcharge loading:[dissertation]. Queen’s University, Canada. 2004
    [10] Christina C. Ma; Jonathan T.H. Wu. Field performance of an independent full-height facing reinforced soil wall. Journal of Performance of Constructed Facilities, August 2004 , V18, P165(8)
    [11]杨广庆.土工格栅加筋土挡墙水平变形研究:博士学位论文.北京:北京交通大学,2005
    [12]李能.土工格栅的力学特性及应用范围.云南建材.2000,1:7~8
    [13]《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册.中国建筑工业出版社, 2000:1~77,179~270
    [14]刘成宇.土力学.中国铁道出版社.2000:59~79
    [15]铁四所,加筋土挡墙.人民交通出版社.1984
    [16]何光春,周世良.加筋土技术的应用与进展.重庆建筑大学学报.2001,23:10~14
    [17]窦宝松.加筋土挡墙的试验研究.华北水利水电学院学报.1998,19:46~50
    [18]杨果林,王永和.加筋土筋材工程特性试验研究.中国公路学报, 2001,14:11~16
    [19]肖建成.公路路基加筋设计中土工格栅材料的选择.湖南交通科技.2004,(30):58~60
    [20] Van Santuoort Consuliancy, B.V.Rosmalen.Geosynthetics in Civil Engineering. A.A.Balkema Rotterdam Brookfield.1995
    [21]高洁.土工格栅拉伸机理及工艺研究.北京石油化工学院学报.2002,(10):28~31
    [22]岳红宇,陈功,陈加付.土工格栅工程特性的试验分析及其在处理公路路基中的应用.公路交通科技.2004,21:20~24
    [23]关秀光,刘文白.土工格栅与土的摩擦特性研究.上海地质.2004,(2):13~17
    [24]周亦唐,马存明.塑料土工格栅加筋土在工程中的应用[J].工程力学, 2000,3(A03):524-528.
    [25]马存明,周亦唐,廖海黎,白良.塑料土工格栅加筋土抗拔特性试验研究.中国铁道科学.2004,(6):36~39
    [26]王松根,高永涛,边国强.关于失稳加筋挡土墙加固问题的探讨[J].公路交通科技,2001, 18(3):6~9
    [27]殷跃平,鄢毅,陈波等.三峡库区巫山新城超高加筋挡墙变形破坏及修复研究[J].工程地质学报,2003,11(1):88~99
    [28]陈玉良,姚于俊.宁镇公路南京段加筋土挡墙破坏的综合整治[J].华东公路.1996, 89(4):35~39
    [29]张志增,高永涛,马飞.失稳加筋土挡土墙的联合加固技术[J].北京科技大学学报.2006, 28(10):917~921
    [30]杨锡武,曾德荣等.加筋土挡土墙病害及其处治方法[J].重庆交通学院院报,2001,20(增刊):83~85
    [31]刑宇,裴军.塑料土工格栅在加筋土挡土墙中的应用.四川建筑.2003,23:67~68
    [32]赵川.塑料土工格栅加筋碎石土强度及其应力应变特性的试验研究.云南工业大学.1998,5:14~20
    [33]陈昌林,姚明善.土工格栅技术概论.水运工程.1998, 2:51~58
    [34]贺丽.塑料土工格栅加筋土挡土墙的应用研究.昆明理工大学.2001,8:20~35
    [35]陈志坚,游庆仲等.振弦式压力盒在刚性接触面应力监测中的应用研究[J].中国工程科学,2002,4(12): 80-85
    [36]王祥,郭庆海,周顺华等.路堤式与路肩式加筋土挡墙的现场试验与分析.铁道学报2005年4月:96-101
    [37]高江平,俞茂宏,胡长顺等加筋土挡墙滑动破裂面的大型模型试验.长安大学学报(自然科学版),2005年11月:6-9
    [38]介玉新,李广信.加筋土的计算方法.水利水电技术,1999年第5期:67-69
    [39] Harrison K M, Gerrard C M.Elastic Theory Applied to Reinforced Earth[J].Soil Mechanics and Foudation Division,ASCE,1972,(98):1325~1345
    [40]陈周与.土工合成材料加筋土技术现场试验及优化反演分析.华侨大学.2002,5:24~35
    [41] Bolton M D, Pang P L R..Collapse Limit States of Reinforced Earth Retaining Walls[M].Geotechnique,1982,(32):349~367
    [42] Shrestha S C.Greep Behavior of Geotextiles Under Sustained Loads[c].2nd international Conference on Geotextiles,1982.Las Vegas,USA
    [43] Barry R.Christopher, Jorge G.Zornberg, James K.mitchell..Design Guidance for Reinforced Soil Structures With Marginal Soil Backfill.Sixth International Conference on Geosynthetics .1998
    [44] Juran I, Chen C L.Strain Compatibility Design Method for Reinforced Earth Walls.Ceotechnical Engineering Division,ASCE,1989,(4):435~455
    [45]李广信.高等土力学.清华大学出版社, 2004:114~180
    [46]朱湘,黄晓明.有限元法分析加筋路堤效果的几个因素[J].土木工程学报,2002,35(6):86-92.
    [47]刘春虹,肖朝昀,王建华,陈锦剑.土工织物加固软土路堤的有限元分析[J].岩土力学,2004,25(增2):325-328.
    [48]栾茂田,李敬峰,肖成志等.土工格栅加筋挡土墙工作性能的非线性有限元数值分析[J].岩石力学与工程学报,2005,24(14):2428-2433
    [49]王多垠,周世良.加筋土挡墙有限元分析中参数变化对计算结果的影响.重庆建筑大学学报,2001,V01.23(5):24—28.
    [50]周世良,何光春.加筋土挡墙筋带拉力计算研究.重庆建筑大学学报,2003, V01.25(1):12—16.
    [51] Helwany M B,WU J T H.A numerical model for analyzing long—term performance of geosynthetic-reinforced soil structures . Geosynthetic International , Journal of theInternational ,Journal of the lnter national Geosynthetics Society,1995,2(2):429—453.
    [52]栾茂田,肖成志,杨庆,等.考虑蠕变性的土工格栅加筋挡土墙应力与变形有限元分析[J].岩土力学,2006.
    [53]Rowe R k,Soderdeerml an K L.Stabilization of very soft using high strength geosynthetics :the role of finite element analysis[J]Geotextiles and Oeomembranes,6(1):53-80.
    [54] Helwany S M B , Reardon G , Wu J T H Effects of backfill on the performance of GRS retaining walls[J].Geotextiles and Geomembranes,1999,l7(1):l-16.
    [55] Bathurst R J,walters D L,Hatami K.Full—scale performance testing and numerical modeling of reinforced soil retaining walls[A].Procedings of International Symposium on Earth Reinforcement[C],Kyushu,Japan,2001:202-231.
    [56]乐翠英,王煜,王铁儒,等.利用土工织物加固油罐地基的有限元分析[A].第二届全国土工合成材料学术会议论文选集[C],1990:37 1—375.
    [57] Grycamanski M.Sekowski J,A composite theory application for analysis of sitesoe in a subson reinforced.by geotextile[A].Proceeding of 3rd International Conference On Geotextiles[C].1986,1:181.186.
    [58] Mahmoud F F, Mashhour M N.An elastoplastic finite element for the anaillysis of soilgeotextiles system[A]Proceeding of 3rd International Conference on geotextiles[C],1986,1:229-231.
    [59]AndraWes K z,McgoWn A, Wilson-Famhmy R F.et al.The finite element method of analysis of applied to soil geotextile systems[A].Proceeding of the 2nd International Conference of Geotextiles[C],Las Vegas,1982:695-700.
    [60] Karpurapu R BathurSt R J.Behaviour of geosynthetic reinforced soil retaining walls using the finite element method[J]. Computers and Geotechnics,1995,17:279-299.
    [61]Ling H I,Tatsuoka F et a1.Simulating performance of GRS-Rw by finite element procedure[J]. Journal of Geotechnical Engineering,ASCE,1 995,121(4):330-340.
    [62]Chew S H.Schmertmann.Reinforced soil wall deformations by finite eiement method[A].Performance of Reinforced Soil Structures[C],1990:35-40
    [63] Holtz R D.Laboratory Studies of Reinforced Earth Using a Woven Polyester Fabrics [A].Proc Int Conf on the Use of Fabrics in Geotechnics [C]:Vol I .Paris,1997:113~117
    [64] Myles B.Assessment of Soil Friction by Means of Shear [A].Proc 2nd Int Conf on the Use of Fabrics in Geotechnics [C],Vol 3,Las Vegas, USA,1982:787~792
    [65] John,N., John,P., Ritson,R., Petley,D..Behavior of Fabric Reinforced Soil Wall.Proceedings of the 2nd International Conference on Geotextiles.Las Vegas,U.S.A..1982
    [66] Juran,I., Knnochenmus,G., Acar,Y.B., Armen,A..pull-out Response of Geotextiles and Geogrid.Geosynthetics for Soil Improvement. Geotechnical Special Publication .No 18.New Yofk.1998 92~111
    [67] Holtz R D.Laboratory Studies of Reinforced Earth Using a Woven Polyester Fabrics [A].Proc Int Conf on the Use of Fabrics in Geotechnics [C]:Vol I .Paris,1997:113~117
    [68] Myles B.Assessment of Soil Friction by Means of Shear [A].Proc 2nd Int Conf on the Use of Fabrics in Geotechnics [C],Vol 3,Las Vegas, USA,1982:787~792
    [69]刘国峰,吴风,谷殿福.在挡土墙工程中应用土工格栅问题的探讨.黑龙江交通高等专科学校学报.1999,13:1~4
    [70]介玉新,李广信.加筋土的计算方法.水利水电技术.1999,(5):67~69
    [71]彭芳乐,小竹望,龙冈文夫.土工格栅加筋砂土的变形与破坏机理解析.岩土力学.2004,(25):843~848
    [72]李洪年,唐秋生,王炳龙,杨龙才.土工格栅受力状况的测试技术.地下空间.2001,21:540~543
    [73]全国第六届土工合成材料学术会议论文集
    [74] N. Richardson and Kenneth L. Lee.Seismic Design of Reinforced Earth Walls.Journal of the Geotechnical Engineering Division, GT2, Feb.1975:167
    [75] Zhong Chun Ouyang.26m Height Reinforced Soil Quaywall Design and Full Scale Test. International Geotechnical Symposium on Theory and Practice of Earth Reinforcement. FuKuoKa,Japan,1988:599-644
    [76] Bourdeau,P.L. , Han,M.E. and Holty,R.D. . Soil-Fabric Interaction--A Analytical Model.Second International Conference on Geotextiles. Las,Vegas,U.S.A. ,1982
    [77]赵川.塑料土工格栅加筋碎石土强度及其应力应变特性的试验研究:[硕士学位论文].昆明:云南工业大学,1998
    [78]马存明.土工格栅加筋土筋材拔出特性的试验研究及其有限元分析:[硕士学位论文].昆明:昆明理工大学,2001
    [79] Juran,I.,Knochenmus, G.,Acar,Y.B., and Armen,A..Pull-out Response of Geotextiles and Geogrid.Geosynthetics for Soil Improvement, Geotechnical Special Publication No. 18, New York,pp. (1998):92-111
    [80]王钊.土工织物加筋土坡的分析和模型试验.见:第二届全国土工合成材料学术会议论文选集.北京:中国建筑工业出版社,1990
    [81]钱家欢,殷宗泽.土工原理与计算..北京:中国水利水电出版社,1996
    [82]王正宏,包承纲,李广信.土工合成材料的加筋作用及其分析计算.地基处理,1992 Vol.3(1):1-10
    [83]孙钧,迟景魁,曹正康等.新型土工材料与工程整治.北京:中国建筑工业出版,1998
    [84]王俊林.土工织物加筋土三轴试验研究.见:首届全国岩土力学与工程青年工作者学术讨论会论文集.杭州:1992
    [85]时钟伦.土建工程中的新型材料:土工网格.见:第四届全国加筋土工程学术研讨会论文集.北京:中国建筑工业出版社,1994
    [86]张耀魁.土工格栅在加筋陡边坡路堤方面的应用.见:第二届全国土工合成材料学术会议论文选集.北京:中国建筑工业出版社,1990
    [87]刘祖德,陆士强,王钊.土工织物加筋陡坡的极限平衡设计.见:.第二届全国土工合成材料学术会议论文选集.北京:中国建筑工业出版社,1990
    [88]宋雅桐,朱继澄.满足规范设计谱的人造地震波及若干结构反应[J].建筑结构学报,1983(3):42-46
    [89]龚晓南,叶黔元,徐日庆.工程材料本构方程.北京:中国建筑工业出版社,1995
    [90]王钊.土工织物加筋土坡的设计与模型试验[博士学位论文D] .武汉水利电力学院.1988.
    [91]Seed R B,Duncan Jl M.Finite element.analyses: compaction--indsucced,sterssew and deformations[J] Journal of the Geotechnical Engmeenng Division,ASCE,1986,112(1):23-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700