热湿气候地区多层墙体热湿耦合迁移特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国南方地区,气候变化剧烈并且长期处于高温高湿气候条件下,墙体的热湿迁移对建筑围护结构的热工性能、建筑能耗和室内环境有着十分重要的影响。因此,本文以多孔介质传热传质学为理论基础、以建筑围护结构内的热湿迁移及湿积累问题为工程背景对南方热湿气候地区多层墙体的热湿耦合迁移特性进行了深入、系统的研究。
     首先,对热湿气候地区多层墙体的传热传质规律进行了详细分析和讨论。在Budaiwi模型的基础上,通过考虑相变以及墙体内部液态水传递建立了多层墙体热湿耦合传递模型。将墙体与周围介质的质量、能量传递过程作为问题的边界条件处理,将墙体内部水分的蒸发冷凝换热作为能量守恒的一部分。该模型以空气含湿率和温度为驱动势,避免了多层材料交界处或材料与空气边界处的不连续现象,从而可将材料内部的热湿迁移过程与材料表面吸放湿过程联系起来,使分析过程变得简便。
     利用有限容积法对模型进行离散,为了确保数值稳定性,采用隐式格式。用系数更新法将非线性离散方程组化为线性方程组,然后利用Gauss-Jordan消元法对线性方程组进行求解。开发了分析计算程序。对数值模型的精度进行了分析。为了验证模型的正确性,将模型预测结果与实验测试数据进行了对比,二者吻合良好。室外侧分界面处的空气相对湿度的平均偏差为4.2%,平均温度偏差为1.1K,室内侧分界面处的空气相对湿度的平均误差为5.7%,平均温度偏差为0.95K。
     建立了多层墙体热湿耦合传递的实验测试方法。以水泥砂浆-砖-水泥抹灰墙体为代表,在实际气候条件下对长沙地区1月份和7月份空调房间外墙体内的温湿度分布进行了测试。对该红砖墙体而言,实验测试结果表明:
     (1)无论是在夏季还是在冬季,该红砖墙体内的温、湿度变化都存在着很强的耦合作用,并且温度对湿度的影响尤为显著。
     (2)无论是在夏季还是在冬季,水泥砂浆与红砖界面处的温度、湿度都严重受到室外温、湿度变化的影响,室内环境的变化对其影响比较小,红砖与水泥抹灰界面处的温度、湿度主要受室内温、湿度的影响,变化较小。
     (3)在夏季和冬季进行空气调节时,不论阴雨天还是晴天,水泥砂浆与红砖界面处的相对湿度均有可能达到饱和状态,并有相当长的时间该位置的相对湿度高于80%。
     (4)在夏季时,内表面贴有发泡塑料壁纸的墙体2内各界面处的温、湿度普遍比没有贴壁纸的墙体1内相应界面处的要高;在冬季时,两种墙体内各界面处的温度基本相同,但没贴壁纸的墙体1内各界面处的湿度比贴壁纸的墙体2中的湿度要略高。
     (5)无论是在夏季还是在冬季,阴雨天气候对墙体内的含湿量影响都很大,会造成水泥砂浆与红砖界面处的相对湿度长期接近饱和状态,并且存在水分凝结现象。
     (6)无论是在夏季还是在冬季,太阳辐射强度对墙体内的温、湿度变化都存在着很大的影响,且明显影响着墙体内温湿度的分布规律。
     以所建立的热湿耦合传递模型为主模型,以忽略太阳辐射影响的热湿传递模型为子模型1,以纯导热模型为子模型2。将主模型的计算结果分别与子模型1和子模型2的计算结果进行比较,得出太阳辐射和湿传递对墙体热湿性能的影响。
     根据Motakef和EI-Masri的热湿同时传递理论,将水蒸气冷凝看成是湿源、热源、蒸汽汇,建立了冷凝区域内的热湿同时传递方程。给出了稳态阶段和瞬态阶段湿区域位置的确定方法。通过分析解得出了墙体内的冷凝率分布函数、液态含湿量分布函数以及达到临界含湿量所需的时间。根据湿分布情况得出了冷凝对材料导热系数的影响。
     利用自编程序对南方地区几种典型墙体的热湿性能进行了详细分析。最后根据室内产湿率、换气效率及室内外温度条件得出了基于预防霉菌生长的墙体的最小热阻的确定方法。
In hot and humid climate of south China, the heat and moisture transfer through wall has an important impact on the hygrothermal performance of building envelope, energy consumption and indoor environment. Therefore, in this dissertation, based on the heat and moisture transfer through porous media, the characteristics of heat and moisture transfer through multilayer wall subjected to hot humid climate of south China are systematically studied by taking the moisture migration and accumulation in building enclosed structures as an engineering background.
     First, the detailed analysis and discussion on the laws of heat and moisture transfer through multilayer wall was conducted. Based on the Budaiwi model, coupled heat and moisture transfer model was established by considering phase change and liquid tranfer within wall. The mass and energy exchange between wall and air was taken as boundary conditions in this model and the heat produced by vapour phase change occurring within wall was taken as a part of energy balance. The discontinuity between material and air or the interface between different materials was avoided by using air humidity ratio and temperature as driving potentials. Therefore, the heat and moisture transfer process within materials can be linked with desorption/adsorption process at the material surface which make the analysis process easier.
     To ensure the numerical stability, the governing equations were discreted by finite volume method with implicit forward differences for time. The linear equations were obtained from the non-linear equations using coefficients updating method. The solution of linear equations was obtained by Gauss-Jordan elimination technique. A compution program was developed. The accuracy of the numerical model was analyzed. To evaluate the correctness of the model, the prediction of the model was compared with the experimental test data. The prediction results have good agreement with the experimental results. For the interface close to outdoor side, the average deviation of temperature and relative humidity is 1.1K and 4.2%, respectively. For the interface close to indoor side, the average deviation of temperature is 0.95K and the average deviation of relative humidity is 5.7%.
     An experimental setup was built to test the coupled heat and moisture transfer in a multilayer construction. Taken cement mortar-red brick-cement plaster multilayer wall under natural climatic boundary conditions as an example, the temperature and relative humidity was measured in the external walls of an air-conditioned room in Changsha during January and July. The experimental results showed that:
     (1) Whatever in summer or winter, the temperature and humidity ratio within the wall was coupled strong and the effect of temperature on humidity ratio was more important.
     (2) Whatever in summer or winter, the temperature and humidity at the interface between the cement mortar and red brick were seriously affected by the variation of outdoor temperature and humidity. The temperature and humidity at the interface between the red brick and cement plaster had small variations; they were affected by the variation of indoor temperature and humidity.
     (3) The relative humidity at the interface between cement mortar and red brick was likely to reach saturation in summer and winter during the period of air-conditioning. In addition, the relative humidity was kept at higher than 80% for a long-term.
     (4) In summer, the temperature and humidity at the interfaces of the wall with foamed plastic wallpaper were generally higher than those of the wall without treatment. In winter, the temperature at the interfaces of two walls was basically the same, but humidity at the interfaces of the wall without treatment were slightly higher than that of the wall with foamed plastic wallpaper.
     (5) Whatever in summer or winter, rainy day climate has a great influence on the moisture content in the wall, which can cause to relative humidity at the interface between the cement mortar and red brick close to saturation for a long-term.
     (6) Whatever in summer or winter, solar radiation intensity has a great impact on the distribution and variation of temperature and humidity inside the wall.
     Regarded the hygrothermal model established in this dissertation as main model, the hygrothermal model neglecting solar radiation as sub-model 1 and the well-kn(?)n conduction equation as sub-model 2. Results calculated by main model are compared with the results calculated by the sub-model 1 and sub-model 2. Through these comparisons the effects of solar radiation and moisture transfer on hygrothermal performance of multilayer wall are obtained.
     According to the work of Motakef and EI-Masri, taken the vapour condensation as a vapour sink, water source and heat source, coupled heat and moisture equations for wet zone were established. The determination of wet zone for steady stage and unsteady stage are provided. Closed-form analytical expressions for the condensation rate, moisture content and the time at which critical moisture content value is reached are obtained. The effect of condensation on material thermal conductivity is obtained according to the moisture content distribution.
     Detailed analysis on hygrothermal performance of several typical walls of south China is conducted using the codes developed in this dissertation. Finally, the determination method of minimum thermal resistance to prevent mould growth is proposed according to internal moisture production rate, air change rate, indoor and outdoor temperature.
引文
[1]中华人民共和国建设部.建设部建筑节能“十五”计划纲要建筑节能(39).北京:中国建筑工业出版社,2002,3-10
    [2]Lotz W. Moisture problems in buildings in hot humid climates. ASHRAE Journal, 1989,4(6):26-27
    [3]Baughman A, Arens E. Indoor humidity and human health- Part Ⅰ:Literature review of health effects of humidity-influenced indoor pollutants. ASHRAE Transactions,1996,102(1):193-211
    [4]Bear J. Dynamics of fluids in porous media. New York:Dover publications,1988, 764
    [5]Boukadida N, Ben Nasrallah S. Two dimensional heat and mass transfer during convective drying of porous media. Drying technology (USA),1995,13(3): 661-694
    [6]Couture F, Fabrie P, Puiggali J. An alternative choice for the drying variables leading to a mathematically and physically well described problem. Drying Technology,1995,13(8):519-550
    [7]De Vries D. Simultaneous transfer of heat and moisture in porous media. Transaction of American Geophysical Union,1958,39(5):909-916
    [8]Luikov A. Heat and mass transfer in capillary-porous bodies. Oxford:Pergamon Press,1966,75-99
    [9]Philip J, De Vries D. Moisture movement in porous materials under temperature gradients. Transaction of American Geophysical Union,1957,38(2):222-232
    [10]Lewis W. The rate of drying of solid materials. Industrial and Engineering Chemistry,1921,13(2):427-432
    [11]Hougen O, McCauley H, Marshall Jr W. Limitations of diffusion equations in drying. Transactions of the American Institute of Chemical Engineers,1940, 36(1):183-209
    [12]Henry P. Diffusion in absorbing media. In:Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences. London,1939,215-241
    [13]Banks P J. Coupled equilibrium heat and single adsorbate transfer in fluid flow through a porous medium-I Characteristic potentials and specific capacity ratios. Chemical Engineering Science,1972,27(3):1143-1155
    [14]Banks P J, Close D J, Maclaine-Cross I. Coupled heat and mass transfer in fluid flow through porous media-an analogy with heat transfer. In:Proceedings of 4th international heat transfer conference. Amsterdam,1970,7
    [15]Close D J, Banks P J. Coupled equilibrium heat and single adsorbate transfer in fluid flow through a porous medium-Ⅱ Predictions for a silica-gel air-drier using characteristic charts. Chemical Engineering Science.1972,27(3):1157-1169
    [16]Close D J, Banks P J. Coupled heat and mass transfer in a packed bed with the lewis relation not satisfied. Chemical Engineering Science,1974, 29(5):1147-1155
    [17]Nottage H. Coupled periodic heat and mass transfer through a permeable slab with vapor adsorption. Journal of Heat Transfer,1967,26(4):44
    [18]Delsante E A. A response factor method for calculating coupled heat and mass transfer in buildings. In:Proceedings of building simulation 91 International Building Performance Simulation Association. Nice,1991,51-55
    [19]Gurr C, Marshall T, Hutton J. Movement of water in soil due to a temperature gradient. Soil Science,1952,74(5):335-346
    [20]Kuzmak J, Sereda P. The mechanism by which water moves through a porous material subjected to a temperature gradient:Ⅱ. Salt tracer and streaming potential to detect flow in the liquid phase. Soil Science,1957.84(6):419-422
    [21]Kuzmak J, Sereda P. The mechanism by which water moves through a porous material subjected to a temperature gradient:i. introduction of a vapor gap into a saturated system. Soil Science,1957,84(4):291-300
    [22]Harmathy T. Simultaneous moisture and heat transfer in porous systems with particular reference to drying. Industrial and Engineering Chemistry Fundamentals,1969,8(7):92-103
    [23]Luikov A V. Systems of differential equations of heat and mass transfer in capillary-porous bodies (review). International Journal of Heat and Mass Transfer,1975,18(9):1-14
    [24]Taylor S, Cary J. Linear equations for the simultaneous flow of matter and energy in a continuous soil system. Soil Science Society of America Journal, 1964,28(5):167-172
    [25]Comini G, Lewis R. A numerical solution of two-dimensional problems involving heat and mass transfer. International Journal of Heat and Mass Transfer,1976, 19(12):1387-1392
    [26]Carrington C, Sun Z. Second law analysis of combined heat and mass transfer phenomena. International Journal of Heat and Mass Transfer,1991,34(11): 2767-2773
    [27]Mikhailov M. General solutions of the diffusion equations coupled at boundary conditions. International Journal of Heat and Mass Transfer,1973,16(12): 2155-2164
    [28]Pandey R, Srivastava S, Mikhailov M. Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus:a new approach. International Journal of Heat and Mass Transfer,1999,42(12):2649-2660
    [29]Berger D, Pei D. Drying of hygroscopic capillary porous solids-a theoretical approach. International Journal of Heat and Mass Transfer,1973,16(2):293-302
    [30]Whitaker S. Simultaneous heat, mass and momentum transfer in porous media:a theory of drying. Advances in Heat Transfer,1977,13(2):119-123
    [31]Bear J, Bachmat Y. Introduction to modeling of transport phenomena in porous media. Dordrecht:Kluwer Academic Publishers,1990,172-190
    [32]Bouddour A, Auriault J, Mhamdi-Alaoui M, Bloch J. Heat and mass transfer in wet porous media in presence of evaporation-condensation. International Journal of Heat and Mass Transfer,1998,41(12):2263-2277
    [33]Arfvidsson J, Claesson J. Isothermal moisture flow in building materials: modelling, measurements and calculations based on Kirchhoff's potential. Building and Environment,2000,35(6):519-536
    [34]Matsumoto M, Hokoi S, Hatano M. Model for simulation of freezing and thawing processes in building materials. Building and Environment,2001,36(6):733-742
    [35]王补宣,方肇洪.含湿毛细多孔体介质的传热与传质和热湿迁移特性测定方法的探讨.工程热物理学报,1985,6(1):60-62
    [36]王补宣,王仁.含湿建筑材料的导热系数.工程热物理学报,1983,4(2):146-152
    [37]王补宣,虞维平.在第三类边界条件下测定含湿多孔介质热湿迁移特性的方法.工程热物理学报,1987,8(4):363-369
    [38]陈振乾,施明恒,虞维平.太阳辐射对沙土内部热湿迁移过程影响的实验研究.太阳能学报,1995,16(4):395-399
    [39]张浙,杨世铭.多孔介质对流干燥机理及其模型.化工学报,1997,48(1):52-59
    [40]李友荣.多孔介质对流干燥过程的热力学理论:[重庆大学博士学位论文].重庆:重庆大学热力工程系,1999,25-38
    [41]卢军,冯雅.含湿多孔介质热湿迁移特性参数研究.重庆建筑大学学报,2000, 22(4):83-86
    [42]胡松涛,刘国丹.干燥过程中热质传递交叉效应的研究.哈尔滨工业大学学报,2001,33(1):35-39
    [43]金仁喜,淮秀兰.多孔介质高强度传热传质的理论研究.工程热物理学报.2005.S1:152-154
    [44]Glaser H. Graphical method for investigation of diffusion process. German:Kalteohnik,1958,35-67
    [45]Rose D. Water movement in porous materials:Part 2- The separation of the components of water movement. British Journal of Applied Physics,1963,14(8): 491-496
    [46]A.Y.弗兰裘克著,谭天佑译.房屋围护部分受潮理论与计算.北京:中国轻工业出版社,1964,80-85
    [47]Spooner D C. The practical relevance of mechanisms of water vapor transport in porous building materials:the autoclaved aerated concrete, moisture and properties. Amsterdam:Netherlands Press,1983,27-41
    [48]Andersson A. Verification of calculation methods for moisture transport in porous building materials. Stockholm:Swedish Council for Building Research, 1985,23-36
    [49]Gummerson R, Hall C, Hoff W. Water movement in porous building materials-Ⅱ. Hydraulic suction and sorptivity of brick and other masonry materials. Building and Environment,1980,15(2):101-108
    [50]Gummerson R, Hall C, Hoff W. Water movement in porous building materials-3. A sorptivity procedure for chemical injection damp proofing. Building and Environment,1981,16(3):193-199
    [51]Hall C. Water movement in porous building materials-Ⅰ. Unsaturated flow theory and its applications. Building and Environment,1977,12(2):117-125
    [52]Hall C. Water movement in porous building materials. Pt.4:initial surface absorption and the sorptivity. Building and Environment,1981,16(3):201-207
    [53]Hall C, Hoff W, Nixon M. Water movement in porous building materials-Ⅵ. Evaporation and drying in brick and block materials. Building and Environment, 1984,19(1):13-20
    [54]Hall C, Kalimeris A. Water movement in porous building materials-V. Absorption and shedding of rain by building surfaces. Building and Environment, 1982,17(4):257-262
    [55]Hall C, Tse T. Water movement in porous building materials-Ⅶ. The sorptivity of mortars. Building and Environment,1986,21(2):113-118
    [56]I'Anson S, Hoff W. Water movement in porous building materials-Ⅷ. Effects of evaporative drying on height of capillary rise equilibrium in walls. Building and Environment,1986,21(3):195-200
    [57]TenWolde A. Steady-state one-dimensional water vapor movement by diffusion and convection in a multilayered wall. ASHRAE Transactions,1985,91(1): 322-342
    [58]Mahdavi A, Lam K. Dynamic analysis and visualization of water vapor diffusion through building components. ASHRAE Transactions,1993,99(1):288-296
    [59]Burch D. An analysis of moisture accumulation in walls subjected to hot and humid climates. ASHRAE Transactions,1993,99(2):1013-1022
    [60]Kerestecioglu A, Gu L. Theoretical and computational investigation of simultaneous heat and moisture transfer in buildings:" Evaporation and condensation" theory. ASHRAE Transactions,1990,96(1):455-464
    [61]Cunningham M. Modelling of moisture transfer in structures--Ⅱ. A comparison of a numerical model, an analytical model and some experimental results. Building and Environment,1990,25(1):85-94
    [62]Cunningham M. Effective penetration depth and effective resistance in moisture transfer. Building and Environment,1992,27(3):379-386
    [63]El Diasty R, Fazio P, Budaiwi I. Dynamic modelling of moisture absorption and desorption in buildings. Building and Environment,1993,28(1):21-32
    [64]Kunzel H, Kiessl K. Calculation of heat and moisture transfer in exposed building components. International Journal of Heat and Mass Transfer,1997, 40(2):159-167
    [65]Haupl P, Grunewald J, Fechner H, Stopp H. Coupled heat air and moisture transfer in building structures. International Journal of Heat and Mass Transfer, 1997,40(7):1633-1642
    [66]Budaiwi I, El-Diasty R, Abdou A. Modelling of moisture and thermal transient behaviour of multi-layer non-cavity walls. Building and Environment,1999, 34(5):537-551
    [67]Liesen R, Pedersen C. Modelling the energy effects of combined heat and mass transfer in building elements:part 1 theory. ASHRAE Transactions,1999,105(1): 941-953
    [68]Pedersen C. Prediction of moisture transfer in building constructions. Building and Environment,1992,27(3):387-397
    [69]Kunzel H. Simultaneous heat and moisture transport in building components. Stuttgart:IRB-Verlag,1995,63-69
    [70]Mendes N, Philippi P, Lamberts R. A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media. International Journal of Heat and Mass Transfer,2002,45(3):509-518
    [71]Mendes N, Winkelmann F, Lamberts R, et al. Moisture effects on conduction loads. Energy and Buildings,2003,35(7):631-644
    [72]Mendes N, Philippi P. A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients. International Journal of Heat and Mass Transfer,2005,48(1):37-51
    [73]Grunewald J. Documentation of the Numerical Simulation program DIM3.1: Theoretical Fundamentals. http://bauklimatik-dresden de/software html, 2000-3-18
    [74]Qin M, Belarbi R, A t-Mokhtar A, et al. Coupled heat and moisture transfer in multi-layer building materials. Construction and Building Materials,2009,23(2): 967-975
    [75]Lu X. Modelling of heat and moisture transfer in buildings Ⅰ. Model program. Energy and Buildings,2002,34(10):1033-1043
    [76]Lu X. Modelling of heat and moisture transfer in buildings Ⅱ. Applications to indoor thermal and moisture control. Energy and Buildings,2002,34(10): 1045-1054
    [77]Shakun W. The causes and control of mold and mildew in hot and humid climates. ASHRAE Transactions,1992,98(2):1282-1292
    [78]Ogniewicz Y, Tien C. Analysis of condensation in porous insulation. Journal of Heat and Mass Transfer,1981,24(3):421-429
    [79]王建瑚.洞库混凝土被覆结构的散湿研究.西安冶金建筑学院技术报告,1979,1-13
    [80]黄福其.地下工程热工计算方法.北京:中国建筑工业出版社,1981,21-26
    [81]陈启高.多孔围护结构中湿度计算理论.重庆建筑工程学院学报,1984,4(2):1-18
    [82]季杰.严寒地区建筑墙体湿迁移对能耗影响的研究:[哈尔滨建筑工程学院博士学位论文].哈尔滨:哈尔滨建筑工程学院,1991,10-15
    [83]苏向辉,昂海松.多孔介质传热传湿过程多层不连续问题的数值分析.南京航空航天大学学报,2003,35(1):39-43
    [84]陈友明,陈在康.多孔体围护结构热湿同时传导基本方程及其线性化.应用 基础与工程科学学报,1997,5(2):161-171
    [85]陈友明,陈在康.建筑围护结构线性热湿同时传导的频率解法.应用基础与工程科学学报,1998,42(6):367-382
    [86]陈友明,陈在康,陈晓晖.建筑内表面吸放湿过程对室内环境和空调负荷影响的仿真研究.暖通空调,1999,29(5):5-9
    [87]刘才丰.吸湿被动蒸发通风屋顶热质迁移机理及热环境研究:[重庆大学博士学位论文].重庆:重庆大学建筑城规学院,2001,65-79
    [88]贾春霞,赵立华.严寒地区外贴聚苯板复合墙体传湿研究.新型建筑材料,2001,8:1-4
    [89]闫增峰.生土建筑室内热湿环境研究:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学建筑学院,2003,32-45
    [90]刘晓燕,贾永英,王志国.建筑墙体热、湿及空气耦合传递.太阳能学报,2004,25(1):13-18
    [91]许锋,苏向辉,昂海松.墙体内热湿耦合过程分析中的传递函数解析法.计算物理,2004,21(5):461-466
    [92]孔凡红,郑茂余,韩宗伟等.新建建筑围护结构热质传递对建筑能耗的影响.暖通空调,2008,38(7):6-9
    [93]孔凡红,郑茂余,韩宗伟等.新建建筑围护结构热质传递对室内温湿度环境的影响.建筑科学,2008,24(8):94-97
    [94]李魁山,张旭,高军.周期性边界条件下多层墙体内热湿耦合迁移.同济大学学报(自然科学版),2009,37(8):814-818
    [95]Fanney A, Thomas W, Burch D, et al. Measurements of moisture diffusion in building materials. ASHRAE Transactions,1991,97(1):99-113
    [96]Roels S, Carmeliet J, Hens H, et al. A comparison of different techniques to quantify moisture content profiles in porous building materials. Journal of Building Physics,2004,27(4):261-276
    [97]Kusuda T, Miki M. Measurement of moisture content for building interior surface. In:Proceedings of the international moisture and humidity measurement and control in science and industry symposium. London,1985,297-311
    [98]Stewart W. Effect of air pressure differential on vapor flow through sample building walls. ASHRAE Transactions,1998,104(1):17-24
    [99]Hosni M, Sipes J, Wallis M. Experimental results for diffusion and infiltration of moisture in concrete masonry walls exposed to hot and humid climates. ASHRAE Transactions,1999,105(1):191-203
    [100]Kumaran M. Moisture diffusivity of building materials from water absorption measurements. Journal of Building Physics,1999,22(4):349-355
    [101]Roels S, Carmeliet J. Analysis of moisture flow in porous materials using microfocus X-ray radiography. International Journal of Heat and Mass Transfer, 2006,49(25):4762-4772
    [102]张月刚.红砖-岩棉复合墙体热湿传递研究:[哈尔滨建筑工程学院硕士学位论文].哈尔滨:哈尔滨建筑工程学院,1988,26-50
    [103]陈际阳.寒冷地区红砖-岩棉内保温复合墙体热湿传递研究:[哈尔滨建筑工程学院硕士学位论文].哈尔滨:哈尔滨建筑工程学院,1990,30-42
    [104]贾春霞.严寒地区外贴苯板复合墙体热湿传递研究:[哈尔滨工程大学硕士学位论文].哈尔滨:哈尔滨工程大学土木工程学院,2002,1-7
    [105]苏向辉.多层多孔结构内热湿耦合迁移特性研究:[南京航空航天大学博士学位论文].南京:南京航空航天大学人机与环境工程学院,2003,1-10
    [106]李魁山,张旭,韩星等.建筑材料水蒸气渗透系数实验研究.建筑材料学报,2009,12(3):288-291
    [107]Kast W, Jokisch F. iiberlegungen zum Verlauf von Sorptionsisothermen und zur Sorptionskinetik an porOsen Feststoffen (Considerations regarding the development of sorption isotherms and the sorption kinetics in porous solids). Chemie-Ingenieur Technik,1972,23(7):556-563
    [108]Kunzel H. FeuchteeinfluB auf die warmeleitfahigkeit bei hygroskopischen und nicht hygroskopischen stoffen (The moisture effect on the thermal conductivity of hygroscopic materials) WKSB 36. Germany:H.29,1991,15-18
    [109]Kumaran M. IEA Annex 24 Final Report, Vol.3, Task 3:Material Properties. Leuven:IEA, Acco Leuven,1996,30-103
    [110]Hens H. Final Report, Volume 1, Task 1:Modeling. KU-Leuven:Laboratorium Bouwfysica,1996,25-98
    [111]ASHRAE. ASHRAE handbook of fundamentals. Atlanta:American Society of Heating Refrigerating and Air-Conditioning Engineers,2005,13-17
    [112]彦启森,赵庆珠.建筑热过程.北京:中国建筑工业出版杜,1986,6-36
    [113]Muhammad I. An introduction to solar radiation. Orlando:Academic Press, 1983,89-203
    [114]Lam J, Li D. Correlation between global solar radiation and its direct and diffuse components. Building and Environment,1996,31(6):527-535
    [115]Chow L, Chung J. Evaporation of water into a laminar stream of air and superheated steam. International Journal of Heat and Mass Transfer.1983, 26(3):373-380
    [116]Wong S, Wang S. Fundamentals of simultaneous heat and moisture transfer between the building envelope and the conditioned space air. ASHRAE Transactions,1990,96(1):73-83
    [117]许文发,季杰.严寒地区建筑供热裕量研究.哈尔滨建筑大学学报,1990,2:185-188
    [118]Ritchmyer R, Morton K. Difference methods for initial-value problems. Hoboken:Wiley Interscience,1967,12-34
    [119]Smith G. Numerical solution of partial differential equations:finite difference methods. Oxford:Oxford University Press,1985,145-178
    [120]Versteeg H, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. New York:Longman Scientific and Technical,1995, 33-38
    [121]陶文铨.数值传热学.西安:西安交通大学出版社,1988,1-2.
    [122]陶文铨.数值传热学.西安:西安交通大学出版社,2001,32-47
    [123]Waters J, Wright A. Criteria for the distribution of nodes in multilayer walls in finite-difference thermal modelling. Building and Environment,1985,20(3): 151-162
    [124]王志勇,刘振杰.暖通空调设计资料便览.北京:中国建筑工业出版社1993.64-65
    [125]Pfrommer P, Lomas K, Kupke C. Solar radiation transport through slat-type blinds:a new model and its application for thermal simulation of buildings. Solar energy,1996,57(2):77-91
    [126]Muhaisen A, Gadi M. Effect of courtyard proportions on solar heat gain and energy requirement in the temperate climate of Rome. Building and Environment, 2006,41(2):245-253
    [127]Huang S. Solar-driven vapor flow in wood-frame walls with wetted cladding. Montreal:Concordia University,2008,19-28
    [128]Motakef S, El-Masri M. Simultaneous heat and mass transfer with phase change in a porous slab. International Journal of Heat and Mass Transfer,1986,29(10): 1503-1512
    [129]Wyrwa J, Marynowicz A. Vapour condensation and moisture accumulation in porous building wall. Building and Environment,2002,37(3):313-318
    [130]陈永在,陈启高.建筑墙体潮湿区湿度计算方法研究.重庆建筑大学学报,1997,19(3):16-22
    [131]Pedersen C. Combined heat and moisture transfer in building constructions: [dissertation]. Copenhagen:Thermal Insulation Laboratory, Technical University of Denmark,1990,24-56
    [132]Pedersen C. Modeling the energy effects of combined heat and mass transfer in building elements:Part 2-Application to a building energy analysis program and examples. ASHRAE Transactions,1999,105(1):954-961
    [133]Mukhopadhyaya P, Kumaran M, Tariku F, van Reenen D. Final Report from Task 7 of MEWS Project at the Institute for Research in Construction: Long-Term Performance:Predict the Moisture Management Performance of Wall Systems as a Function of Climate, Material Properties, etc., Through Mathematical Modeling. Canada:Institute for Research in Construction, National Research Council Canada,2003,384
    [134]胡敏,陈友明,郭兴国.霉菌生长对建筑和IAQ的影响与控制策略.建筑热能通风空调,2006,25(6):15-19
    [135]李云,胡葵玉.190例婴幼儿哮喘变应原皮肤试验结果分析.临床儿科杂志,1991,9(1):6-7
    [136]张怡,朱良英.儿童哮喘208例吸入性过敏原调查分析.医学理论与实践,1998,11(8):376-377
    [137]中华人民共和国建设部.民用建筑热工设计规范.GB 50176.北京:中国计划出版社,1993,15-16
    [138]白莉,齐子姝,于周丰.严寒地区围护结构结露及最大允许传热系数.建筑热能通风空调,2008,27(1):48-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700