长江上游不同海拔代表性森林土壤动物对凋落叶分解的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凋落叶分解是陆地生态系统物质循环的重要组成部分,决定着全球碳收支和养分周转,受气候、基质质量和土壤生物等因子共同作用的影响。土壤动物群落可通过取食、破碎、混合等直接作用和通过影响土壤微生物数量、结构和活性以及改变土壤物理特性等间接作用控制凋落叶分解过程。它们对凋落叶分解的影响可能在很大程度上取决于凋落叶的分解环境、基质特性和土壤动物群落结构。长江上游森林生态系统是长江流域生态安全屏障的主体,其气候条件、植被组成和土壤动物群落结构沿流域海拔变化具有显著的时空分异。鉴于此,本研究以长江上游代表性森林植被群落为对象,基于“土壤动物对凋落叶分解的贡献是否集中体现了气候和树种(基质质量)对凋落叶分解的作用?土壤动物对凋落叶分解的贡献是否随海拔升高而降低?受季节性雪被影响的亚高山/高山森林土壤动物对凋落叶分解的贡献是否显著不同于常绿阔叶林区?”的科学假设,通过网袋法进行土壤动物群落控制试验,同步监测了不同海拔森林凋落叶分解的环境、土壤动物群落、质量(mass)损失、养分释放和质量(quality)变化动态。主要结果如下:
     (1)大气温度和降水量随海拔增加显著(P<0.05)降低,以海拔453m最高,3,582m最低,年平均温度相差12.89℃,年降水量相差479mm。凋落叶的平均温度随海拔增加显著(P<0.05)降低。整个研究期间,凋落叶温度在945m和453m始终高于0。C,在3,582m和3,023m的冬季则围绕0℃存在明显的冻融循环,且凋落叶分解湿度随降水量季节差异显著变化。这种截然不同的温湿度特征可能深刻影响土壤动物对凋落叶分解的贡献。
     (2)不同凋落叶的土壤动物优势类群和常见类群组成、个体密度和类群数量以及蜱螨目与弹尾目比值(A/C)差异显著。土壤动物群落优势类群和功能类群组成、个体和类群密度以及群落多样性和相似性随凋落叶分解过程表现出显著的动态变化,且受到海拔、基质质量和采样时间显著影响,与凋落叶的温湿度、化学性质和基质质量特征表现出显著的相关关系。这表明土壤动物群落结构随凋落叶分解过程不断变化,对海拔、基质质量和季节变化敏感响应,可能深刻作用于凋落叶的质量损失和养分矿化。
     (3)土壤动物参与显著(P<0.05)增加了凋落叶的质量损失和分解速率,缩短了分解所需时间,但土壤动物对凋落叶分解的贡献并未随随海拔升高而降低。整个研究期间,土壤动物对凋落叶质量损失和分解速率的贡献率分别为15.44%-42.56%和1].24%-36.35%,且对阔叶凋落叶的贡献率随海拔增加显著(P<0.05)降低,但对针叶凋落叶的贡献率随海拔增加降低不显著(P>0.05)。土壤动物对质量损失贡献效应的出现时间随海拔增加而延后,贡献率随分解时间增加而增加,在冬季受季节性冻融影响的高山和亚高山森林(海拔3,582m和3,023m)表现为针叶显著(P<0.05)高于阔叶,而在冬季分解温度较高的中山和低山森林(海拔945m和453m)表现为阔叶显著(P<0.05)高于针叶。此外,土壤动物对质量损失的贡献率受到海拔、基质质量和采样时间的显著影响,与凋落叶的温湿度、化学性质和土壤动物群落特征具有密切相关关系。这表明土壤动物群落显著影响了凋落叶的质量损失,其贡献率差异能有效体现气候和树种(基质质量)对凋落物分解的作用。
     (4)土壤动物对凋落叶元素释放的影响随元素类型变化而不同。总体而言,土壤动物参与促进了微生物对凋落叶氮和磷的固持,显著(P<0.05)增加了凋落叶氮和磷的含量,但对凋落叶碳含量的影响不显著(P>0.05)。土壤动物参与还显著(P<0.05)增加了木质素比例,降低了纤维素比例。并且,凋落叶元素释放受到海拔、基质质量和采样时间显著影响,与凋落叶的温湿度和土壤动物群落特征相关显著。这表明土壤动物群落显著影响了凋落叶的元素释放和养分周转,且土壤动物作用的元素释放特征对海拔、基质质量和季节变化敏感响应。
     (5)土壤动物显著改变了凋落叶分解过程中的基质质量特征。总体而言,土壤动物显著(P<0.05)降低了多数凋落叶分解初期的碳氮比、碳磷比、木质素氮比,特别是是针叶树种。土壤动物显著(P<0.05)增加了多数凋落叶分解初期的氮磷比以及整个分解期间的木质素纤维素比。凋落叶分解过程中的质量特征受到海拔、基质质量和采样时间显著影响,与凋落叶的温湿度和土壤动物群落特征表现出显著的相关关系。这进一步表明土壤动物促进了凋落叶分解,对分解过程的影响对海拔、基质质量和季节变化敏感响应。
     总之,长江上游典型森林凋落叶分解过程中维持着丰富多样的土壤动物群落,这些土壤动物对凋落叶的质量损失、养分释放和基质质量变化总体表现为正效应。它们能通过直接和间接作用增加凋落叶的可分解性,进而使整个系统的物质循环和能量流动稳定有序。并且,土壤动物贡献率的差异能有效体现气候和基质质量对凋落物分解的作用。
Litter decomposition is one of the essential components of material cycles in terrestrial ecosystems, determining global carbon budget and nutrient turnover. The decomposition process is mainly regulated by climate, litter quality and soil organisms. Soil faunal community has been shown to accelerate the rates of litter decomposition and nutrient cycling in forest ecosystems. Their body sizes are large enough to disrupt physical structure of soil and litter, and then affect organic matter decomposition directly by fragmenting and comminuting of litter, further indirectly by altering soil moisture, soil structure and litter surface and regulating microbial activities during litter decomposition. Moreover, the influences of soil faunal community on litter decomposition could depend strongly on the conditions of microclimate, litter quality and soil faunal structure. The forests in the upper reaches of the Yangze River serve as fundamental ecological barriers to the Yangze River. The climate condition, plant composition and soil faunal structure in these forests significantly vary with the change in altitudes in the Yangze River valley. Hence, in order to assess the effects of soil faunal community on litter decomposition processes, we conducted an experiment using litterbag method in the representative forest ecosystems of the upper reaches of the Yangze River. Our objectives were to explore:(1) whether the contribution of soil fauna to litter decomposition could exhibit the influences of climate and litter quality on litter decomposition,(2) whether the contribution of soil fauna to litter decomposition would decrease with the increase in latitudes and altitudes,(3) what are the differences in the contributions of soil fauna to litter decomposition between subalpine and alpine forests and subtropical evergreen broad-leaved forests.
     (1) The air temperature and preciptation significantly (P<0.05) decreased with increasing altitude. The maximum and minimum of air temperature and preciptation were observed at the453m and3582m, respectively. The differences in temperature and preciptation between the453m and3582m were12.89℃and479mm, respectively. Moreover, the mean temperature in litterbags also significantly (P<0.05) decreased with increasing altitude. The temperature in litterbags at the945m and453m remained above0℃throughout the decomposition process, but those at the3582m and3023m experienced obvious freeze-thaw cycles with the air temperature fluctuates above and below0℃in the winter. Additionally, the moisture in litterbags significantly changed with the dynamics of preciptation during the whole decomposition process. These results suggest that the striking differences in temperature and moisture in litterbags can profoundly affect the contribution of soil fauna to litter decomposition in different forest ecosystems.
     (2) There were significantly differences in the composition of dominant groups and ordinary groups, density of individual and group as well as the rate of Acarina to Collembola of the soil faunal communities in the litterbags at different altitdues. Meanwhile, the composition of dominant groups and functional groups, density of individual and group, diversity index and similarity index of the soil faunal communities significantly changed as the decomposition processed, and showed obviously correlated with litter temperature and moisture, litter chemical properties and litter quality. Additionally, the altitude, litter quality and sampling date significantly influenced the soil faunal structure in the litterbags. These results suggest that the soil faunal structure changes during the litter decomposition process and shows sensitive response to the changes in altitude, litter quality and season, which can profoundly affect the litter mass loss and nutrients mineraliztion in different forest ecosystems.
     (3) As compared with soil fauna removal, soil fauna significantly (P<0.05) increased the litter mass loss and decay rat, and reduced the litter decomposition times. However, the contributions of soil fauna to litter mass loss did not decrease with the increase in altitudes. During the study period, the contributions of soil fauna to litter mass loss and decay rate were15.44%-42.56%and11.24%-36.35%, respectively. The contributions of soil fauna to litter mass loss and decay rate for the broadleaf species significantly (P<0.05) decreased with the increase in altitudes, but which for the coniferous species insignificantly (P>0.05) decreased with the increase in altitudes. The time of contribution effects delayed with increasing altitudes, and the contribution rate increased with increasing decomposition times. The contribution rates were higher (P<0.05) for the coniferous species than those for the broadleaf species at the3582m and3023m, but which were higher (P<0.05) for the broadleaf species than those for the coniferous species at the945m and453m. Additionally, the contribution rate showed obviously correlated with litter temperature and moisture, litter chemical properties and soil faunal structure and were significantly influenced by the altitude, litter quality and sampling date. These results suggest that the soil faunal community profoundly accelerates litter mass loss, and the differences in the contribution of soil fauna to litter can display the influences of climate and litter quality on litter decomposition.
     (4) The contribution of soil fauna to litter elements release varied with the change of element types. In general, as compared with soil fauna removal, soil fauna significantly (P<0.05) increased the content of N and P in litters by promoting the retention of N and P by microbes, but it showed little (P>0.05) effect on the C content. Moreover, soil fauna also significantly increased the content of lignin and reduced the content of cellulose. Additionally, litter elements release showed obviously correlated with litter temperature and moisture and soil faunal structure and were significantly influenced by the altitude, litter quality and sampling date. These results suggest that the soil faunal community profoundly influences litter elements release and nutrients turnover, and the contribution of soil fauna to litter elements release shows sensitive response to the changes in altitude, litter quality and season.
     (5) Soil fauna significantly (P>0.05) changed the litter quality throughout the decomposition process compared with soil fauna removal. In general, soil fauna significantly reduced the rates of C/N, C/P, and lignin/N during the early stage of litter decompotion, in particular for the coniferous species. However, soil fauna significantly increased the rate of N/P during the early stage of litter decompotion and the rate of lignin/cellulose during the whole decomposition process. Additionally, litter qualities showed obviously correlated with litter temperature and moisture and soil faunal structure and were significantly influenced by the altitude, litter quality and sampling date. These results suggest that the soil faunal community increases litter mass loss and nutrients turnover and has important contribution to litter decomposition process. Taken together, our results indicate that the forest ecosystems in the upper reaches of the Yangze River keep high diversity of soil faunal community during litter decomposition. Soil faunal community generally has positive effects on litter mass loss and nutrient release as decomposition processed by directly and indirectly improving litter decomposability. Furthermore, the positive effects show sensitive response to changes in climate and litter quality.
引文
[1]Aber J D, Melillo J M. Litter decomposition:measuring relative contributions of organic matter and nitrogen to forest soils [J]. Canadian Journal of Botany,1980, 58:416-421.
    [2]Addison J A, Trofymow J A, Marshall V G. Functional role of Collembola in successional coastal temperate forests on Vancouver Island, Canada [J]. Applied Soil Ecology,2003,24:247-261
    [3]Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship [J]. Oikos,1997,79:439-449.
    [4]Aerts R. The freezer defrosting:global warming and litter decomposition rates in cold biomes [J]. Journal of Ecology,2006,94:713-724.
    [5]Aerts R, Caluwe H D. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species [J]. Ecology,1997,78:244-260.
    [6]Amelsvoort P A M V, Van Domgen M, van der Werff P A. The impact of Collembola Humification and mineralization of soil organic matter [J]. Pedobiologia,1988,31:103-111.
    [7]Anderson J M. Succession diversity and trophic relationships of some soil animals in decomposing leaf litter [J]. Journal of Animal Ecology,1975,44:475-495.
    [8]Anderson J M, Ineson P. Interactions between micro-organisms and soil Invertebrates in nutrient flux pathways of forest ecosystems. In:Anderson J M, Rayner A D M, Walton D W H. Invertebrates-microbial interactions [M]. Cambridge University Press, Cambridge,1984.
    [9]Andersson M, Kj(?)ller A, Struwe S. Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests [J]. Soil Biology and Biochemistry,2004,36:1527-1537.
    [10]Angers D A, Caron J. Plant-induced changes in soil structure:Processes and feedbacks [J]. Biogeochemistry,1998,42:55-72.
    [11]Ayres E, Nkem J N, Wall D H, et al. Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert [J]. Polar Biology,2010,33:897-907.
    [12]Barajas-Guzman G, Alvarez-Sanchez J. The relationships between litter fauna and rates of litter decomposition in a tropical rain forest [J]. Applied Soil Ecology, 2003,24:91-100.
    [13]Bardgett R D. Belowground herbivory promotes soil nutrient transfer and root growth in grassland [J]. Ecology Letters,1999,2:357-360.
    [14]Bardgett R D, Chan K F. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems [J]. Soil Biology and Biochemistry,1999,31:1007-1014.
    [15]Bardgett R D, Wardle, D A. Herbivore-mediated linkages between aboveground and belowground communities [J]. Ecology,2003,84:2258-2268.
    [16]Bardgett R D, Wardle D A, Yeates G W. Linking above-ground and below-ground interactions:how plant responses to foliar herbivory influence soil organisms [J]. Soil Biology and Biochemistry,1998,30:1867-1878.
    [17]Beara M H, Parmelee R W, Hendrix P F, et al. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems [J]. Ecological Monograpshs,1992,62:569-591.
    [18]Berg B. Litter decomposition and organic matter turnover in northern forest soils [J]. Forest Ecology and Management,2000,133:13-22.
    [19]Berg B, Berg M P, Bottner P. Litter mass-loss rates in pine forests of Europe and Eastern United States:some relationships with climate and litter quality [J]. Biogeochemistry,1993,20:127-153.
    [20]Berg B, Ekbohm G, Johansson M B, et al. Maximum decomposition limits of forest litter types:a synthesis [J]. Canadian Journal of Botany,1996,74:659-672.
    [21]Berg B, McClaugherty C. Plant Litter:Decomposition, Humus Formation, Carbon Sequestration (2nd ed.) [M]. Springer, New York,2008.
    [22]Berg M P, Kniese J P, Verhoef H A. Dynamics and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil [J]. Biology and Fertility of Soils,1998,26:313-322.
    [23]Bever J D, Westover K M, Antonovics J. Incorporating the soil and community into plant population dynamics:the utility of the feedback approach [J]. Journal of Ecology,1997,85:561-573.
    [24]Blagodatskaya E, Blagodatsky S, Dorodnikov M, et al. Elevated atmospheric CO2 increases microbial growth rates in soil:results of three CO2 enrichment experiments [J]. Global Change Biology,2010,16:836-848.
    [25]Blair J M, Crossley D A, Rider S. Effects of naphthalene on microbial activity and nitrogen pools in soil-litter microcosms [J]. Soil Biology and Biochemistry, 1989,21:507-510.
    [26]Blankinship J C, Niklaus P A, Hungate B A. A metaanalysis of responses of soil biota to global change [J]. Oecologia,2011,165:553-565.
    [27]Bokhorst S, Bjerke J W, Melillo J, et al. Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland [J]. Soil Biology and Biochemistry,2010,42:611-617.
    [28]Bokhorst S, Huiskes A, Convey P, et al. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic [J]. Soil Biology and Biochemistry,2008,40:1547-1556.
    [29]Bongers T, Ferris H. Nematode community structure as a bioindicator in environmental monitoring [J]. Trends Ecology and Evolution,1999,14:224-227.
    [30]Bradford M A, Tordoff G M, Eggers T, et al. Microbiota, fauna, and mesh size interactions in litter decomposition [J]. Oikos,2002,99:317-323.
    [31]Briones M J I, Ostle N J, McNamara N P, et al. Functional shifts of grassland soil communities in response to soil warming [J]. Soil Biology and Biochemistry, 2009,41:315-322.
    [32]Brown V K and Garage A C. Differential effects of above- and below-ground insect herbivory during early plant succession [J]. Oikos,1989,54:67-76.
    [33]Brussaard L. Soil fauna, guilds, functional groups and ecosystem processes [J]. Applied Soil Ecology,1998,9:123-135.
    [34]Bubb K A, Xu Z H, Simpson J A. Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southern Queensland, Australia [J]. Forest Ecology Management,1998,110:343-352.
    [35]Cadish G, Giller K E. Driven by nature:plant litter and decomposition [M]. CAB International, Wallingford,1997.
    [36]ampbell J L, Mitchell M J, Groffman PM, et al. Winter in northeastern North America:a critical period for ecological processes [J]. Frontiers in Ecology and the Environment,2005,3:314-322.
    [37]Cao Z P, Han X M, Hu C, et al. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Applied Soil Ecology,2011,49:131-138.
    [38]Cardon Z G. Influence of rhizodepositions under elevated CO2 on plant nutrition and soil organic matter [J]. Plant and Soil,1996,187:277-288.
    [39]Carrillo Y, Ball B A, Bradford M A, et al. Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil [J]. Soil Biology and Biochemistry,2011,43:1440-1449.
    [40]Chamberlain P M, McNamara N P, Chaplow J, et al. Translocation of surface litter carbon into soil by Collembola [J]. Soil Biology and Biochemistry,2006,38: 2655-2664.
    [41]Chapin Ⅲ F S, Shaver G R. Individualistic growth response of tundra plant species species to environmental manipulations in the field [J]. Ecology,1985,66: 564-576.
    [42]Chapin Ⅲ F S, Shaver G R, Giblin A E, et al. Responses of arctic tundra to experimental and observed changes in climate [J]. Ecology,1995,76:694-711.
    [43]Christenson L M, Mitchell M J, Groffman P M, et al.2010. Winter climate change implications for decomposition in northeastern forests:comparisons of sugar maple litter with herbivore fecal inputs. Global Change Biology,2010,16: 2589-2601.
    [44]Christian K, Alexander B. The role of microarthropods in terrestrial decomposition:a meta-analysis of 40 years of litterbag studies [J]. Biological Reviews,2009,84:375-389.
    [45]Cole L, Bardgett R D, Ineson P, et al. Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peat in northern England [J]. Soil Biology and Biochemetry,2002,34: 599-607.
    [46]Cornelissen J H C, Callaghan T V, Alatalo J M, et al. Global change and arctic ecosystems:is lichen decline a function of increase in vascular plant biomass? [J]. Journal of Ecology,2001,89:984-994.
    [47]Coulson S, Hodkinson I, Wooley C, et al. Effects of experimental temperature elevation on high arctic soil microarthropod populations [J]. Polar Biology,1996, 16:147-153.
    [48]Couteaux M M, Bottner P, Berg B. Litter decomposition, climate and litter quality [J]. Trends Ecology and Evolution,1995,10:63-66.
    [49]Couteaux M M, Kurz C, Bottner P, et al. Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition [J]. Tree Physiology,1999,19:301-311.
    [50]Cragg R G, Richard R D. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes [J]. Soil Biology and Biochemistry,2001,33:2073-2081.
    [51]Crutsinger G M, Sanders N J, Classen A T. Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem [J]. Basic and Applied Ecology,2009,10:535-543.
    [52]De Deyn G B, Raaijmakers C E, Zoomer H R, et al. Soil invertebrate fauna enhances grassland succession and diversity [J]. Nature,2003,422:711-713.
    [53]Don A, Kalbitz K. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages [J]. Soil Biology and Biochemistry, 2005,37:2171-2179.
    [54]Dowding P. Nutrient losses from litter on IBP tundra sites. In Holding A 1. Soil Organisms and Decomposition in Tundra [M]. Stockholm, Sweden:Tundra Biome Steering Committee,1974.
    [55]Drigo B, Pijl AS, Duyts H, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2 [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107: 10938-10942.
    [56]Dumana J G, Bennett V, Sformo T, et al. Antifreeze proteins in Alaskan insects and spiders [J]. Journal of Insect Physiology,2004,50:259-266.
    [57]Eisenhauer N, Cesarz S, Koller R, et al. Global change belowground:Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity [J]. Global Change Biology,2012,18:435-447.
    [58]Gange A C, Brown V K. Soil food web components affect plant community structure during early succession [J]. Ecological Research,2002,17:217-227.
    [59]Gavazov K S. Dynamics of alpine plant litter decomposition in a changing climate [J]. Plant and Soil,2010,337:19-32.
    [60]Gongalsky K B, Persson T, Pokarzhevskii A D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test [J]. Applied Soil Ecology,2008,39:84-90.
    [61]Gonzalez G, Seastedt T R. Soil fauna and plant litter decomposition in tropical and subalpine forests [J]. Ecology,2001,82:955-964.
    [62]Graca, M A S, Barlocher F, Gessner M O. Methods to study litter decomposition: a practical guide [M]. Springer, New York,2005.
    [63]Graglia E, Jonasson S, Michelsen A, et al. Effects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatments [J]. Ecography,2001,24:5-12.
    [64]Groffman P M, Driscoll C T, Fahey T J, et al. Colder soils in a warmer world:A snow manipulation study in a northern hardwood forest ecosystem [J]. Biogeochemistry,2001,56:135-150.
    [65]Groffman P M, Hardy J P, Fashu-Kanu S, et al. Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape [J]. Biogeochemistry, 2011:102,223-238.
    [66]Hagvar S, Kjondal B R. Succession, diversity, and feeding habits of microarthrops in decomposing leaf litter [J]. Oecologia,1981,38:193-991.
    [67]Harvell C D, Mitchell C E, Ward J R, et al. Climate warming and disease risks for terrestrial and marine biota [J]. Science,2002,296:2158-2162.
    [68]He X T, Stevenson F J, Mulvaney R L, et al.1988. Incorporation of newly immobilized 15N into stable organic forms in soil [J]. Soil Biology and Biochemistry,1988,20:75-81.
    [69]Heneghan L, Coleman D C, Zou X, et al. Soil microarthropod contributions to decomposition dynamics:tropical-temperate comparisons of a single substrate [J]. Ecology,1999,80:1873-1882.
    [70]Hessen D O, Agren G I, Anderson T R, et al. Carbon sequestration in ecosystems: the role of stoichiometry [J]. Ecology,2004,85:1179-1192.
    [71]Hobbie S E, Chapin Ⅲ F S. The response of tundra plants biomass, aboveground production, nitrogen, and flux to experimental warming [J]. Ecology,1998,79: 1526-1544.
    [72]Hollister R D, Webber P J, Tweedie C E. The response of Alaskan tundra to experimental warming:differences between short- and long-term responses [J]. Global Change Biology,2005,11:525-536.
    [73]Hughes L. Biological consequences of global warming:is the signal already apparent? [J]. Trends Ecology and Evolution,2000,15:56-61.
    [74]Huhta V. The role of soil fauna in ecosystems:A historical review [J]. Pedobiologia,2007,50:489-495.
    [75]Hunter M D, Adl S, Pringle C M, et al. Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition [J]. Pedobiologia, 2003,47:101-115.
    [76]IPCC. Climate change 2007:The Scientific Basis. Fourth Assessment Report of Working Group [M]. Cambridge, Cambridge University press,2007.
    [77]Irmler U. Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests [J]. Pedobiologia,2000, 44:105-118.
    [78]Jiang Y F, Yin X Q, Wang F B. The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains, China [J]. European Journal of Soil Biology,2013,55:28-39.
    [79]Jones C G, Lawton J H, Shachak M. Organisms as ecosystem engineers [J]. Oikos,1994,69:373-386.
    [80]Jones D, Nguyen C, Finlay R. Carbon flow in the rhizosphere:Carbon trading at the soil root interface [J]. Plant and Soil,2009,321:5-33.
    [81]Jones H G, Pomeroy J W, Walker D A. Snow ecology:an interdisciplinary examination of snow-covered ecosystems [M]. Cambridge University Press,2001.
    [82]Jonsdottir I S, Magnusson B, Gudmundsson J, et al. Variable sensitivity of plant communities in Iceland to experimental warming [J]. Global Change Biology, 2005,11:553-563.
    [83]Kaneda S, Kaneko N. Influence of Collembola on nitrogen mineralization varies with soil moisture content [J]. Soil Science and Plant Nutrition,2011,57:40-49.
    [84]Kardol P, Reynolds W N, Norby R J, et al. Climate change effects on soil microarthropod abundance and community structure [J]. Applied Soil Ecology, 2010,47:37-44.
    [85]Konestabo H S, Michelsen A, Holmstrup M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem [J]. Applied Soil Ecology,2007,36:136-146.
    [86]Kochy M, Wilson S D. Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie [J]. Ecology,1997,78:732-739.
    [87]Korner C. Biosphere responses to CO2 enrichment [J]. Ecological Applications, 2000,10:1590-1619.
    [88]Kuperman R G. Litter decomposition and nutrient dynamics in oak-hickory forests along a historic gradient of nitrogen and sulfur deposition [J]. Soil Biology and Biochemistry,1999,31:237-244.
    [89]Lavelle P, Bignell D, Lepage M, et al. Soil function in a changing world:the role of invertebrate ecosystem engineers [J]. European Journal of Soil Biology,1997, 33:159-193.
    [90]Lemma B, Nilsson I, Kleja D B, et al. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia [J]. Soil Biology and Biochemistry,2007,39: 2317-2328.
    [91]Lindberg N, Bengtsson J. Population responses of oribatid mites and collembolans after drought [J]. Applied Soil Ecology,2005,28:163-17.
    [92]Lindberg N, Engtsson J B, Persson T, et al. Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand [J]. Journal of Applied Ecology,2002,39:924-936.
    [93]Lipson D A, Monson R K. Plant-microbe competition for soil amino acids in the alpine tundra:effects of freeze-thaw and dry-rewet events [J]. Oecologia,1998, 113:406-414.
    [94]Lipson D A, Schmidt S K, Monson R K. Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass [J]. Soil Biology and Biochemistry,2000,32:441-448.
    [95]Maity S K, Joy V C. Impact of antinutritional chemical compounds of leaf litter on detritivore soil arthropod fauna [J]. Journal of Ecobiology,1999,11:193-202.
    [96]Makkonen M, Berg M P, Van Hal J R, et al. Traits explain the responses of a subarctic Collembola community to climate manipulation [J]. Soil Biology and Biochemistry,2010,43:377-384.
    [97]Meentemeyer V. Macroclimate and lignin control of litter decomposition rates [J]. Ecology,1978,59:465-472.
    [98]Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology,1982,63:621-626.
    [99]Meyer III W M, Ostertag R, Cowie R H. Macro-invertebrates accelerate litter decomposition and nutrient release in a Hawaiian rainforest [J]. Soil Biology and Biochemistry,2011,43:206-211.
    [100]Moore A E. Temperature and moisture dependence of decomposition rates of hardwood and coniferous leaf letter [J]. Soil Biology and Biochemetry,1986,18: 427-435.
    [101]Moore T R, Taylor B, Prescott C. Litter decomposition rates in Canadian forests [J]. Global Change Biology,1999,5:75-82.
    [102]Moorhead D L, Reynolds J F. The contribution of abiotic processes to buried litter decompositionin the northern Chihuahuan Desert [J]. Oecologia,1989,79: 133-135.
    [103]Navarro-Campos C, Pekas A, Moraza M, et al. Soil-dwelling predatory mites in citrus:Their potential as natural enemies of thrips with special reference to Pezothrips kellyanus (Thysanoptera:Thripidae). Biological Control,2012,63: 201-209.
    [104]Norby R J, Cotrufo M F, Ineson P, et al. Elevated CO2, litter chemistry, and decomposition:A synthesis [J]. Oecologia,2001,127:153-165.
    [105]Nyman T, Julkunen T R. Chemical variation within and among six northern willow species [J]. Phytochemistry,2005,66:2836-2843.
    [106]Olson J S. Energy storage and the balance of producers and decomposers in ecological systems [J]. Ecology,1963,44:322-331.
    [107]Ott D, Rail B C, Brose U. Climate change effects on macrofaunal litter decomposition:the interplay of temperature, body masses and stoichiometry [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2012,367:3025-3032.
    [108]Park S, Kang-Hyun C. Nutrient leaching from leaf litter of emergent macrophytes(Zizania latifolia) and the effects of water temperature on the leaching processes [J]. Korean Journal of Biological Sciences,2003,7:289-294.
    [109]Pausas J G, Casals P, Ronmnyh J. Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer [J]. Soil Biology and Biochemistry,2004,36:989-997.
    [110]Press M C, Potter J A, Burke M J W, et al. Responses of subarctic dwarf shrub heath community to simulated environmental change [J]. Journal of Ecology,1998, 86:315-327.
    [111]Reich P B, Knops J, Tilman D, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition [J]. Nature,2001,410:809-810.
    [112]Ruess L, Michelsen A, Schmidt I K, et al. Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils [J]. Plant and Soil,1999,212:63-73.
    [113]Schimel D S, Alvves D, Enting I, et al. CO2 and the carbon cycle. In:Houghton J, Filho L M, Callander B A, et al. Climate Change [M]. Cambridge University Press, Cambridge,1995.
    [114]Seastedt T R. The role of microarthropods in decomposition and mineralization process. Annual Review of Entomology,1984,29:25-46.
    [115]Seastedt T R, Crossley J D A. Nutrients in forest litter treated with naphthalene and simulated throughfall:a field microcosm study [J]. Soil Biology and Biochemistry,1983,15:159-165.
    [116]Seastedt T R, Crossley J D A. The Influence of Arthropods on Ecosystems [J]. BioScience,1984,34:157-161.
    [117]Setala H, Marshall V G, Trofymow J A. Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial [J]. Soil Biology and Biochemistry,1996,28:1661-1675.
    [118]Shaw M R, Harte J. Control of litter decomposition in a subalpine meadow sagebrush ecotone under climate change [J]. Ecological Applications,2001,11: 1206-1223.
    [119]Sjursen H, Michelsen A, Holmstrup M. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil [J]. Applied Soil Ecology,2005,28:79-93.
    [120]Slotsbo S, Maraldo K, Malmendal A, et al. Freeze tolerance and accumulation of cryoprotectants in the enchytraeid Enchytraeus albidus (Oligochaeta) from Greenland and Europe [J]. Cryobiology,2008,57:286-291.
    [121]Smith V C, Bradford M A. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Applied Soil Ecology,2003,24:197-203.
    [122]Steltzer H, Bowman W D. Differential influence of plant species on soil nitrogen transformations moist meadow alpine tundra [J]. Ecosystems,1998,1: 464-474.
    [123]Stump L M, Binkley D. Relationships between litter quality and nitrogen availability in Rocky Mountain forests [J]. Canadian Journal of Forest Research, 1993,23:492-502.
    [124]Swift M J, Heal O W, Anderson J M. Decomposition in Terrestrial Ecosystems [M]. Berkley, California:University of California Press,1979.
    [125]Sulkava P, Huhta V. Habitat patchiness affects decomposition and faunal diversity:a microcosm experiment on forest floor [J]. Oecologia,1998,116:390-396.
    [126]Tan B, Wu F Z, Yang W Q, et al. Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan at the early stage of freeze-thaw season [J]. Acta Ecologica Sinica,2010,30:93-99.
    [127]Tan B, Wu F Z, Yang W Q, et al. Soil fauna community dynamics during soil thawing period in the subalpine and alpine forests of western China [J]. Polish Journal of Ecology,2012,30:750-766.
    [128]Tan B, Wu F Z, Yang W Q, et al. Seasonal dynamics of soil fauna in the subalpine and alpine forests of west Sichuan at different altitudes [J]. Acta Ecologica Sinica,2013,33:12-22.
    [129]Taylor B R, Parkinson D. A new microcosm approach to litter decomposition studies [J]. Canadian Journal of Botany,1988a,66:1933-1939.
    [130]Taylor B R, Parkinson D. Aspen and pine leaf litter decomposition in laboratory microcosms. Ⅱ. Interactions of temperature and moisture level [J]. Canadian Journal of Botany,1988b,66:1966-1973.
    [131]Taylor B R, Parkinson D. Respiration and mass loss rates of aspen and pine leaf litter decaying in laboratory microcosms [J]. Canadian Journal of Botany,1988c, 66:1948-1959.
    [132]Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test [J]. Ecology,1989,70:97-104.
    [133]Tian G, Brussaard L, Kang B T. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions:effects on soil fauna [J]. Soil Biology and Biochemistry,1993,25:731-737.
    [134]Tian X J, Li S G H. Relative roles of microorganisms and fauna on needle litter decomposition in a subalpine coniferous forest [J]. Acta Phytoecological Sinica, 2002,26:257-263.
    [135]Tierney G L, Fahey T J, Groffman P M, et al. Soil freezing alters fine root dynamics in a northern hardwood forest [J]. Biogeochemistry,2001,56:175-190.
    [136]Trajano E. Cave faunas in the Atlantic tropical rain forest:composition, ecology, and conservation [J]. Biotropica,2000,32:882-893.
    [137]Treonis A M, Dighton J. Effect of a one year rainfall manipulation on soil nematode abundances and community composition [J]. Pedobiologia,2010,54: 87-91.
    [138]Tsukamoto J, Sabang J. Soil macro-fauna in an Acacia mangium plantation in comparison to that in a primary mixed dipterocarp forest in the lowlands of Sarawak, Malaysia [J]. Pedobiologia,2005,49:69-80.
    [139]Verhoef H A, Brussaard L. Decomposition and nitrogen mineralization in natural and agroecosystems:the contribution of soil animals [J]. Biogeochemistry, 1990,11:175-211.
    [140]Vitousek P M, Turner D R, Parton W J, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawai'i:patterns, pechanisms, and podels [J]. Ecology,1994,75:418-429.
    [141]Vossbrinck C R, Coleman D C, Woolley T A. Abiotic and biotic factors in litter decomposition in a semiarid grassland [J]. Ecology,1979,60:265-271.
    [142]Wall D H, Bardgett R D, Kelly E. Biodiversity in the dark [J]. Nature Geoscience,2010,3:297-298.
    [143]Wall D H, Bradford M A, John M G S T, et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent [J]. Global Change Biology,2008,14:2661-2677.
    [144]Wang S J, Ruan H H, Han Y. Effects of microclimate, litter type, and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China [J]. Ecological Research,2010,25:1113-1120.
    [145]Wang S J, Ruan H H, Wang B. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains [J]. Soil Biology and Biochemistry,2009,41:891-897.
    [146]Wardle D A. Communities and ecosystems:linking the aboveground and belowground components [M]. Princeton University Press, New Jersey, USA, 2002.
    [147]Wardle D A, Bardgett R D, Klironomos J N,et al. Ecological linkages between aboveground and belowground biota [J]. Science,2004,304:1629-1633.
    [148]Wardle D A, Verhoef H A, Clarholm M. Trophic relationships in the soil microfood-web:predicting the responses to a changing global environment [J]. Global Change Biology,1998,4:713-727.
    [149]Warren M W, Zou X M. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico [J]. Forest Ecology and Management,2002,170:161-171.
    [150]Wolters V. Functional aspects of animal diversity in soil-Introduction and overview [J]. Applied Soil Ecology,1998,10:185-190.
    [151]Wolters V. Invertebrate control of soil organic matter stability [J]. Biology and Fertility of Soils,2000,31:1-19.
    [152]Wu F Z, Yang W Q, Zhang J, et al. Litter decomposition in two subalpine forests during the freeze-thaw season [J]. Acta Oecologica,2010,36:135-140.
    [153]Xin W D, Yin X Q, Song B. Contribution of soil fauna to litter decomposition in Songnen sandy lands in northeastern China [J]. Journal of Arid Environments, 2012,77:90-95.
    [154]Yang W Q, Wang K Y, Kellomaki S, et al. Litter dynamics of three subalpine forests in Western Sichuan [J]. Pedosphere,2005,15:653-659.
    [155]Yang X D, Chen J. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China [J]. Soil Biology and Biochemistry,2009,41:910-918.
    [156]Zhang D Q, Hui D F, Luo Y Q, et al. Rates of litter decomposition in terrestrial ecosystems:global patterns and controlling factors [J]. Journal of Plant Ecology, 2008,1:85-93.
    [157]Zhou G Y, Guan L L, Wei X H, et al. Factors influencing leaf litter decomposition:an intersite decomposition experiment across China [J]. Plant and Soil,2008,311:61-72.
    [158]Zhu J X, Yang W Q, He X H. Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient close to the Qinghai-Tibet Plateau [J]. PloS One, 2013, in press.
    [159]陈国孝,宋大祥.暖温带北京小龙门林区土壤动物的研究[J].生物多样性,2000,8(1):88-95.
    [160]陈华,Harmon M E,田汉勤.全球变化对陆地生态系统凋落物分解的影响[J].生态学报,2001,21(9):1549-1563.
    [161]傅必谦,陈卫,邢忠民,等.北京松山四种大型土壤动物群落组成和结构[J].生态学报,2002,22(2):215-223.
    [162]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [163]黄旭,文维全,张健,等.川西高山典型自然植被土壤动物多样性[J].应用生态学报,2010,21(1):181-190.
    [164]柯欣,赵立军,尹文英.青冈林土壤动物群落结构在落叶分解过程中的演替变化[J].动物学研究,1999,20(3):207-213.
    [165]柯欣,赵立军,尹文英.青冈林土壤跳虫群落结构在落叶分解过程中的变化[J].生态学报,2001,21(6):982-987.
    [166]黄丽荣,张雪萍.大兴安岭北部森林生态系统土壤动物的功能类群及其生态分布[J].土壤通报,2008,39(5):1017-1022.
    [167]李鸿兴,隋敬之,周士秀,等.昆虫分类检索[M].北京:中国农业出版社,1987.
    [168]李强,马明东,刘跃建,等.几种人工林土壤有机碳和养分研究[J].土壤通报,2008,3(5):1034-1037.
    [169]廖崇惠,陈茂干.热带人工林土壤动物群落的次生演替和发展过程探讨[J].应用生态学报,1990,1(1):56-61.
    [170]廖崇惠,李健雄,黄海涛.南亚热带森林土壤动物群落多样性研究[J].生态学报,1997,17(5):549-555.
    [171]廖崇惠,李健雄,杨悦屏,等.海南尖峰岭热带林土壤动物群落-群落的组成及其特征[J].生态学报,2002,22(11):1866-1872.
    [172]林英华,杨德付,张夫道,等.栎林凋落层土壤动物群落结构及其在凋落物分解中的变化[J].林业科学研究,2006,19(3):331-336.
    [173]刘照光,包维楷,吴宁,等.长江上游的生态环境问题、根源及其治理方略[J].世界科技研究与发展,2001(1):32-35.
    [174]刘颖,武耀祥,韩士杰,等.长白山四种森林类型凋落物分解动态[J].生态学杂志,2009,28(3):400-404.
    [175]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [176]罗媛媛,袁金凤,沈国春,等.常绿阔叶林片段中木荷凋落叶分解速率及中小型土壤节肢动物群落的结构动态[J].应用生态学报,2010,21(2):265-271.
    [177]罗媛媛,袁金凤,沈国春,等.甜槠凋落叶分解中土壤节肢动物群落结构动态及其对森林片段化的响应[J].应用生态学报,2011,22(5):1295-1301.
    [178]苗雅杰,殷秀琴.小兴安岭红松阔叶混交林土壤动物群落研究[J].林业科学,2005,41(2):204-209.
    [179]彭少麟,刘强.森林凋落物动态及其对全球气候变化的响应[J].生态学报,2002,22(9):1534-1544.
    [180]沈海龙,丁宝永,沈国舫,等.樟子松人工林下针阔叶凋落物分解动态[J]. 林业科学,1996,32(5):393-402.
    [181]苏永春,勾影波,张忠恒,等.东北高寒地区土壤动物和微生物的生态特征研究[J].生态学报,2001,21(10):1614-1619.
    [182]谭波,吴福忠,杨万勤,等.川西亚高山/高山森林大型土壤动物群落多样性及其对季节性冻融的响应[J].生物多样性2012a,20(2):215-223.
    [183]谭波,吴福忠,杨万勤,等.川西亚高山/高山森林土壤氧化还原酶活性及其对季节性冻融的响应[J].生态学报,2012b,32(21):6670-6678.
    [184]谭波,吴福忠,杨万勤,等.不同林龄马尾松人工林土壤节肢动物群落结构[J].应用生态学报,2013,24(4),in press.
    [185]王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报,2001,25(3):375-380.
    [186]王明田,张玉芳,马均,等.四川省盆地区玉米干旱灾害风险评估及区划[J].应用生态学报,2012,23(10):2803-2811.
    [187]王振中,张友梅.衡山自然保护区森林土壤中动物群落研究[J].地理学报,1989,44(2):205-213.
    [188]王振中,张友梅,邢协加.土壤环境变化对土壤动物群落影响的研究[J].土壤学报,2002,39(6):892-1897.
    [189]武海涛,吕宪国,杨青,等.土壤动物主要生态特征与生态功能研究进展[J].土壤学报,2003,43(2):314-323.
    [190]吴宁.山地退化生态系统的恢复与重建—理论与岷江上游的实践[M].成都:四川科技出版社,2007.
    [191]吴鹏飞,刘兴良,刘世荣.米亚罗亚高山草甸冬春两季土壤动物群落特征的比较[J].草业学报,2009,18(5):123-129.
    [192]吴鹏飞,刘兴良,刘世荣.米亚罗林区冬季大型土壤动物空间分布特征[J].土壤学报,2011,48(3):659-664.
    [193]吴廷娟.全球变化对土壤动物多样性的影响[J].应用生态学报,2013,24(2):581-588.
    [194]夏磊,吴福忠,杨万勤,等.川西亚高山森林凋落物分解初期土壤动物对红桦凋落叶质量损失的贡献[J].应用生态学报,2012,23(2):301-306.
    [195]夏磊,吴福忠,杨万勤.季节性冻融期间土壤动物对岷江冷杉凋落叶质量损失的贡献[J].植物生态学报,2011,35(11):1127-1135.
    [196]肖红艳,刘红,李波,等.放牧干扰对亚高山草甸土壤动物群落影响的研究[J].草业学报,2012a,21(2):26-33.
    [197]肖红艳,刘红,李波,等.亚高山草甸冬夏季牧场土壤动物群落多样性[J].中国农业科学,2012b,45(2):292-301.
    [198]熊燕,刘强,陈欢,等.鼎湖山季风常绿阔叶林凋落叶分解与土壤动物群落动态和多样性[J].生态学杂志,2005,24(10):1120-1126.
    [199]徐振锋,唐正,万川,等.模拟增温对川西亚高山两类针叶林土壤酶活性的影响[J].应用生态学报,2010,21(11):2727-2733.
    [200]徐振锋,尹华军,赵春章,等.陆地生态系统凋落物分解对全球气候变暖的响应[J].植物生态学报,2009,33(6):1208-1219.
    [201]许湘琴,林植华,陈慧丽.凋落物分解对土壤生物的影响[J].生态学杂志,2011,30(6):1258-1264.
    [202]易兰,由文辉,宋永昌.天童常绿阔叶林五个演替阶段凋落物中的土壤动物群落[J].生态学报,2005,25(3):466-473.
    [203]杨万勤.森林土壤生态学[M].成都:四川科技出版社,2006.
    [204]尹文英,胡圣豪,沈韫芬,等.中国土壤动物检索图鉴[M].北京:科学出版社,1998.
    [205]尹文英,杨逢春,王振中,等.中国亚热带土壤动物[M].北京:科学出版社,1992.
    [206]尹文英,张荣祖,殷绥公,等.中国土壤动物[M].北京:科学出版社,2000.
    [207]殷秀琴,仲伟彦,王海霞,等.小兴安岭森林落叶分解与土壤动物的作用[J].地理研究,2002,21(6):689-699.
    [208]杨效东.热带季节雨林凋落物分解过程中的中型土壤节肢动物的群落结构及动态[J].生物多样性,2004,12(2):252-261.
    [209]杨效东,邹晓明.西双版纳热带季节雨林凋落叶分解与土壤动物群落:两种网孔分解袋的分解实验比较[J].植物生态学报,2006,30(5):791-801.
    [210]杨玉坡,李承彪.四川森林[M].北京:中国林业出版社,1992.
    [211]张雪萍,候威岭,陈鹏.东北森林土壤动物同功能种团及其生态分布[J].应用与环境生物学报,2001,7(4):370-374.
    [212]张雪萍,黄丽荣,姜丽秋.大兴安岭北部森林生态系统大型土壤动物群落特征[J].地理研究,2008,27(3):509-518.
    [213]仲伟彦,殷秀琴,陈鹏.帽儿山森林落叶分解消耗与土壤动物关系的研究[J].应用生态学报,1999,10(4):511-512.
    [214]赵宗慈,王绍武,罗勇.IPCC成立以来对温度升高的评估与预测[J].气候变化研究进展,2007,3(3):183-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700