用户名: 密码: 验证码:
茶园土壤呼吸及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树是我国重要的经济作物之一,茶园生态系统有着固碳能力及潜力。本文以中国农业科学院茶叶研究所的不同产量水平试验茶园及周边林地、菜地为主要研究对象,通过土壤呼吸年周期变化的原位测定以及实验室培养条件下对影响土壤基础呼吸相关因素的研究,以期了解茶园土壤呼吸作用的基本规律,探讨环境因子与茶园土壤呼吸的相关性,并估算茶园土壤年度碳排放量。
     通过本试验研究,得出的主要结论如下:
     (1).高产、中产、低产茶园以及林地、菜地土壤呼吸全年测定的平均值分别为60.70、48.92、41.56、45.08和53.85mg C· m~(-2)h~(-1)。
     (2).5种样地年土壤呼吸碳通量从大到小依次为:高产茶园5.33t C·h m~(-2)a~(-1),菜地土壤4.85tC·h m~(-2)a~(-1),中产茶园4.28t C·h m~(-2)a~(-1),林地3.97t C·h m~(-2)a~(-1),最低为低产茶园3.65t C·h m~(-2)a~(-1)。
     (3).温度与土壤呼吸具有显著相关性。5种样地土壤呼吸的最高值出现在夏季(7月~9月),最小值出现在冬季(1月),与温度变化趋势相一致。高产茶园和林地的土壤呼吸与土壤含水量间的相关性不显著,中产、低产茶园和菜地的土壤呼吸与土壤含水量间显著相关。
     (4).在土壤含水量为60%田间持水量条件下,不同样地土壤基础呼吸速率从大到小依次排列为:高产茶园土壤>中产茶园土壤>菜地土壤>低产茶园土壤>林地土壤。
     (5).不同样地土壤基础肥力不同,对添加外源氮素的响应程度有所区别。添加氮对高产茶园土壤基础呼吸影响不大,但会提高中产、低产茶园土壤基础呼吸。
     (6).高产茶园和林地土壤存在显著的水、氮交互作用,分别达显著(p <0.05)和极显著(p <0.01)。
     (7).高产茶园土壤基础呼吸在低温培养时较低,温度升高后,土壤基础呼吸随之上升。
     (8).高产土壤基础呼吸速率随外源有机肥添加量的增加而上升。有机肥添加量为37.5g·kg-1时,土壤基础呼吸为0.54mg C·kg-1h~(-1);有机肥添加量为900g·kg-1时,土壤基础呼吸为11.57mgC·kg~(-1)h~(-1)。
     (9). AL~(3+)在一定程度上会抑制土壤基础呼吸,对照处理组(未添加外源AL~(3+))土壤基础呼吸速率为7.11mg C·kg-1h~(-1);添加1888mgAL~(3+)·kg-1后土壤基础呼吸速率为1.95mg C·kg-1h~(-1)。
Tea is one of the most important cash crops in China. Tea garden ecosystem has the capacity andpotential of carbon sequestration. In this study, we used the method of situ observation and laboratoryincubation to study the soil respiration of five different types of soil. Those five types of soil includedhigh production tea garden soil,middle production tea garden soil,low production tea garden soil, forestsoil and vegetable soil. We studied annual change of soil respiration and its influencing factors to explorethe laws of the soil respiration. We also studied the relationship of environmental factors with the teagarden soil respiration. Finally we wish to estimate the carbon emissions of tea garden soil.
     Through this research, the main results were summarized as follows:
     (1). The annual mean soil respiration rate of different types soils were: high production tea garden60.70mg C· m~(-2)h~(-1), middle production tea garden48.92mg C· m~(-2)h~(-1), low production tea garden41.56mg C· m~(-2)h~(-1), forest45.08mg C· m~(-2)h~(-1), vegetable53.85mg C· m~(-2)h~(-1).
     (2). The annual soil carbon flux were: high production tea garden (5.33t C·h m~(-2)a~(-1))> vegetable(4.85t C·h m~(-2)a~(-1))> middle production tea garden (4.28t C·h m~(-2)a~(-1))> forests (3.97t C·h m~(-2)a~(-1))> lowproduction tea garden (3.65t C·h m~(-2)a~(-1)).
     (3). Soil respiration was significantly affected by temperature. The highest soil respiration of thefive types of soils was in summer (July~September), the minimum is in winter (January). Thecorrelation of soil respiration and water content in high production tea garden soil and forest soil werenot significantly, but significantly in middle production tea garden soil, low production tea garden soiland the vegetable soil.
     (4). On the condition of60%water holding capacity, the soil basal respiration rate of differenttypes soil were as follow: high production tea garden soil> middle production tea garden soil>vegetable soil> low production tea garden soil> forest soil.
     (5). Different fertility soils have different responsiveness to external sources of nitrogen. Externalsources of nitrogen had little effect on soil respiration in high production tea garden soil, but will increasethe low production tea garden soil respiration rate.
     (6). High production tea garden soil are significant (p <0.05) with the interaction of water andnitrogen. Forest soil are highly significant (p <0.01) with the interaction of water and nitrogen.
     (7). Low temperature will restrain soil basal respiration of high production tea garden soil. Whenthe temperature was increasing, the soil basal respiration rate will also rise.
     (8). With adding organic fertilizer to the soil, the soil basal respiration rate will increase. Thegroup which added37.5g·kg-1organic fertilizer the soil basal respiration was0.54mg C·kg-1h~(-1), the900g·kg-1group was11.57mg C·kg~(-1)h~(-1).
     (9). Al~(3+)will restrain soil basal respiration. The soil basal respiration rate of CK group is7.11mgC·kg~(-1)h~(-1), the group of add1888mg Al3+·kg~(-1)the rate was1.95mg C·kg~(-1)h~(-1).
引文
[1].蔡艳,易江婷,宋威,等.蒙顶山茶园土壤微生物区系和酶活性研究[J].湖北农业科学,2009,48(2):317-320.
    [2].曹兴,陈荣毅,季枫,等.干旱区绿洲棉田土壤CO2通量变化特征及温湿度影响分析[J],2012,28(8):199-207.
    [3].常宗强,冯起,司建华,等.土壤水热条件对祁连山荒漠草原土壤CO2通量的影响[J].干旱区地理,2007,30(6):812-819.
    [4].常宗强,史作民,冯起,等.气温对祁连山不同植被状况土壤呼吸的影响[J].应用生态学报,2005,16(2):1603-1606
    [5].陈龙池,廖利平,汪思龙,等.酚类物质对杉木幼苗15N养分吸收、分配的影响[J].植物生态学报,2002,26(5):525-532.
    [6].陈全胜,李凌浩,韩兴国,等.水分对土壤呼吸的影响及机理[J].生态学报,2003,23(5):972-978..
    [7].董云社,齐玉春,刘纪元,等.不同降水强度4种草原群落土壤呼吸通量变化特征[J].2005,50(5):473-480.
    [8].傅海平,张亚莲,常硕其,等.湖南省茶叶研究所茶园土壤养分现状及20余年变化研究.见:中国茶叶学会,编.中国茶叶科技创新与产业发展学术研讨会论文集.中国重庆,2009,165-173.
    [9].韩文炎,李强.茶园施肥现状与无公害茶园高效施肥技术[J].中国茶叶,2002,24(6):29-31.
    [10].韩文炎,许允文.低丘红壤茶园土壤养分限制因子及平衡施肥研究[J].浙江农业学报,1995,7(5):387-391.
    [11].何龙飞,刘友良,沈振国,等.铝胁迫对小麦根呼吸作用和一些线粒体结合酶活性影响[J].作物学报,2001,27(6):857-861.
    [12].胡凡根,李志忠,熊平生,等.赣南红壤地区马尾松林和草地土壤呼吸变化研究[J].海南师范大学学报(自然科学版).2011,24(1):101-107.
    [13].黄承才,葛滢,常杰,等,中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报,1999,19(03):36-40.
    [14].黄运湘,曾希柏,张杨珠,等.湖南省丘岗茶园土壤的酸化特征及其对土壤肥力的影响[J].土壤通报,2010,41(3):633-638.
    [15].李明峰,董云社,齐玉春,等.草原土壤的碳氮分布与CO2排放通量的相关性分析[J].环境科学,2004,25(2):7-11.
    [16].李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报.1998,18(4):371-378.
    [17].卢锟,项文化,邓湘雯,等.湘中丘陵区4种不同林地土壤CO2排放量比较[J].中南林业科技大学学报.2012,32(3):104-108.
    [18].马涛,周金星.滩地人工杨树林土壤呼吸变化规律与环境因子的关系研究[J].水土保持研究.2011,18(6):31-36.
    [19].马立锋,石元值,阮建云.苏、浙、皖茶区茶园土壤pH状况及近十年来的变化[J].土壤通报,2000,31(5):205-207.
    [20].马云华,王秀峰,魏珉,等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报,2005,16(11):2149-2153.
    [21].彭福元,张亚莲,曾跃辉,等.红壤茶园土壤酶活性深度分布特性研究[J].福建茶叶,1993(4):23-26.
    [22].裴志永,欧阳华,周才平.青藏高原高寒草原碳排放及其迁移过程研究[J].生态学报,2003,23(2):231-236..
    [23].屈冉,李俊生,肖能文,等.土壤微生物对不同植被类型土壤呼吸速率影响的研究[J].华北农学报,2010,25(3):196-199.
    [24].任全,单武雄,肖润林,等.不同施肥措施对红壤丘陵茶园土壤酶活性及呼吸强度的影响[J].农业现代化研究,2007,28(04):498-500.
    [25].阮建云.茶园生态系统固碳潜力及低碳茶叶生产技术[J].中国茶叶,2010(7):6-9.
    [26].阮建云,王国庆,石元值,等.茶园土壤铝动态及茶树铝吸收特性[J].茶叶科学,2003,23(增刊):16-20.
    [27].珊丹,韩国栋,赵萌莉,等.控制性增温和施氮对荒漠草原土壤呼吸的影响[J].干旱区资源与环境,2009,23(9):106-112.
    [28].田永辉,魏国雄,夏绍湄,等.茶树根际固氮微生物群落结构及动态[J].中国茶叶,1999,21(2):20-21.
    [29].童启庆.茶树栽培学[M].北京:中国农业出版社,2000:373.
    [30].汪思龙,陈龙池,廖利平,等.几种化感物质对杉木幼苗生长的影响[J].应用与环境生物学报,2002,8(6):588-591.
    [31].王兵,姜艳,郭浩,等.土壤呼吸及其三个生物学过程研究[J].土壤通报,2011,42(2):483-490.
    [32].王世强,胡长玉,程东华,等.调节茶园土壤pH对其土著微生物区系及生理群的影响[J].土壤,2011,43(1):76-80.
    [33].王世强,胡长玉,程东华,等. Al3+胁迫对茶园土壤微生物区系及生理群的影响[J].环境污染与防治,2011,3(6):36-38.
    [34].王永强,崔凤娟,郭小刚,等.农田生态系统土壤呼吸文献综述[J].内蒙古农业科技,2011(3):65-67.
    [35].吴全,陆锦时.四川茶园土壤中脲酶活性研究[J].土壤肥料,1999(1),30-32.
    [36].吴仲民.尖峰岭热带林地土壤C储量和CO2排放量的初步研究[J].1997,21(5):416-423.
    [37].伍炳华,许允文,韩文炎.铝对茶树根系生长及氮素营养的影响[J].中国茶叶,1995,(2):28-29.
    [38].徐华勤,肖润林,向佐湘,等.不同生态管理措施对丘陵茶园土壤微生物生物量和微生物数量的影响[J].土壤通报,2010,41(6):1355-1359.
    [39].杨亚军.中国茶树栽培学[M].上海:上海科学技术出版社,2005.
    [40].叶发茂.土壤酚类物质对林地生态系统转换的响应及其机制研究[叶发茂硕士学位论文].福建:福建农林大学,2009.
    [41].俞慎,何振立,陈国潮,等.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J].土壤学报,2003,40(3):433-439.
    [42].俞慎,何振立,张荣光,等.红壤茶树根层土壤基础呼吸作用和酶活性[J].应用生态学报,2003,14(2):179-183.
    [43].易志刚,蚁伟民.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报.2003,23(8):1673-1678.
    [44].张崇邦,杨靖春.东北羊草草原不同植被类型土壤微生物呼吸速率的初步研究[J].应用生态学报,1996,7(3):293-298.
    [45].中国茶叶流通协会.2011年全国春茶产销形势分析报告[J].中国茶叶,2011(9):4-5.
    [46].张志山,谭会娟,王新平,等.沙漠人工植被区土壤呼吸初探[J].中国沙漠,2005,25(4):525-527.
    [47].Atkin O.K., Edwards E.J., Loveys B.R. Response of root respiration to changes in temperature andits relevance to global warming[J]. New Phytologist,2000,147(1):141-154.
    [48].Atkin O.K, Tjoelker M.G., Thermal acclimation and the dynamic response of plant respiration totemperature[J]. Trends in Plant Science,2003,8:343-351.
    [49].Balogh J., Pinter K., Foti Sz., et al., Dependence of soil respiration on soil moisture, clay content,soil organic matter, and CO2uptake in dry grasslands[J]. Soil Biology and Biochemistry,2011,43(5):1006-1013.
    [50].Bekku Y., Koizumi H., Oikawa T., et al., Examination of four methods for measuring soilrespiration [J]. Applied Soil Ecology.1997,5(3):247-254.
    [51].Borken W., Muhs A., Beese F., Application of compost in spruce forests, effects on soil respiration,basal respiration and microbial biomass[J]. Forest Ecology and Management,2002,159:49-58.
    [52].Chen H., Harmon M.E., Griffiths R.P., et al., Effects of temperature and moisture on carbonrespired from decomposing woody roots[J]. Forest Ecology and Management,2000,138(1-3):51-64.
    [53].Epron D., Le D.V., Dufrene E., et al., Seasonal dynamics of soil carbon dioxide efflux andsimulated rhizosphere respiration in a beech forest[J]. Tree Physiology,2001,21:145-152.
    [54].Fenn K.M., Malhi Y., Morecroft M.D., Soil CO2efflux in a temperate deciduous forest:Environmental drivers and component contributions[J]. Soil Biology and Biochemistry,2010,42(10):1685-1693.
    [55].Fierer N., Allen A.S., Schimel J.P., et al., Controls on microbial CO2production, a comparison ofsurface and subsurface soil horizons[J]. Global Change Biology,2003,9:1322-1332.
    [56].Franzluebbers A.J., Haney R.L., Honeycutt C.W., et al., Climatic influences on active fractions ofsoil organic matter[J]. Soil Biology and Biochemistry,2001,33(7-8):1103-1111.
    [57].Han W.Y., Sarah J.K., Philip C.B. Soil microbial biomass and activity in Chinese tea gardens ofvarying stand age and productivity[J]. Soil Biology and Biochemistry,2007,39(7):1468-1478.
    [58].Hanson P.J., Edwards N.T., Garten C.T., et al., Separating root and soil microbial contributions tosoil respiration: A review of methods and observations[J]. Biogeochemistry,2000,48:115-146.
    [59].H gberg P., Nordgren A., gren G.I., Carbon allocation between tree root growth and rootrespiration in boreal pine forest[J]. Oecologia,2002,4:579-581.
    [60].Hu Q.W., Wu Q., Cao G.M., et al., Growing season ecosystem respirations and associatedcomponent fluxes in two alpine meadows on the Tibetan Plateau[J]. Journal of Integrative PlantBiology.2008,50:271-279.
    [61].Intergovernmental Panel On Climate Change. Climate change2007: The physical sciencebasis--summary for policymakers,2007.
    [62].Janssens I.A, Lankreijer H., Matteucci G., et al., Productivity overshadows temperature indetermining soil and ecosystem respiration across European forests[J]. Global change biology.2001,7(3):269-278.
    [63].Janssens I.A., Kowalski A.S., Longdoz B., et al., Assessing forest soil CO2efflux: an in situcomparison of four techniques[J]. Tree Physiology,2000,20(1):23-32.
    [64].Kraal P., Nierop K.G.J., Kaal J., et al., Carbon respiration and nitrogen dynamics in Corsican Pinelitter amended with aluminium and tannins[J]. Soil Biology and Biochemistry,2009,41:2318-2327.
    [65].Liu X.Z., Wan S.Q., Su Bo., et al., Response of soil CO2efflux to water manipulation in a tallgrassprairie ecosystem[J]. Plant and Soil,2002,240(2):213-223.
    [66].Luo Y.Q., Wu L.H., Andrews J.A., et al., Elevated CO2differentiates ecosystem carbonprocesses:deconvolution analysis of Duke Forest FACE data[J]. Ecological Monographs,2001,71(9):357-376.
    [67].Lutze J.L., Gifford R.M., Adams H.N., Litter quality and decomposition in Danthonia richardsoniiswards in response to CO2and nitrogen supply over four years of growth[J]. Global ChangeBiology,2000,6(1):13-24.
    [68].Nobel S.P., Physiochemical and environmental plant physiology[M]. Elsevier Academic Press,Amsterdam, The Netherlands,2005.
    [69].Raich J.W., Schlesinger W.H., The global carbon dioxide flux in soil respiration and itsrelationship to vegetation and climate[J]. Tellus.1992,44B:81-89.
    [70].Reichstin M., Rey A., Freibauer A., et al., Modeling temporal and large-scale spatial variability ofsoil respiration from soil water availability, temperature and vegetation productivity indices[J].Global Biogeochemical Cycles,2003,17(4):1104.
    [71].Roy A., Sharma S., Talukder G., Some aspects of aluminum toxicity in plants[J]. The BotanicalReview,1998,54(2):145-178.
    [72].Sabine C.L, Heimann M., Artaxo P., et al., Current status and past trends of the global carboncycle[M]//eds. C.B. Field and M.R. Raupach, The Global Carbon Cycle: Integrating Humans,Climate, and the Natural World, Scope-scientific committee on problems of the environmentinternational council of Scientific Unions62, Island Press, Washington DC,2004:17-44.
    [73].Schindlabcher A., Zechmeister-Boltenstern S., Jandl R., Carbon losses due to soil warming: Doautotrophic and heterotrophic soil respiration respond equally?[J]. Global Change Biology,2009,15(4):901-913.
    [74].Simmons J.A., Fernandez J.J., Briggs R.D., et al., Forest floor carbon pools and fluxes along aregional climate gradient in Maine USA[J]. Forest Ecology and Management,1996,84:81-95.
    [75].Singh J.S., Gupta S.R., Plant decomposition and soil respiration in terrestrial ecosystems[J]. TheBotanical Review,1977,43(4):449-528.
    [76].Sitaula B.K., Bakken L.R., Abrahamsen G., N-fertilization and soil acidification effects on N2Oand CO2emission from temperate pine forest soil[J]. Soil Biology and Biochemistry,1995,27(11):1401-1408.
    [77].Sivapalan K., Fernando V., Thenabadu M., Humified phenol-rich plant residues and soil ureaseactivity[J]. Plant and Soil,1983,70:143-146.
    [78].Stark J.M., Firestone M.K., Mechanisms for soil moisture effects on activity of nitrifyingbaceria[J], Applied Environmental Microbiology,1995,61:218-221.
    [79].Sulzman E.W., Brant J.B., Bowden R.D., et al., Contribution of aboveground litter, belowgroundlitter, and rhizosphere respiration to total soil CO2efflux in an old growth coniferous forest[J].Biogeochemistry,2005,73(1):231-256.
    [80].Wan S.Q., Luo Y.Q. Substrate regulation of soil respiration in a tallgrass prairie: Results of aclipping and shading experiment[J]. Global Biogeochem Cycles,2003,17(2):1054.
    [81].Xu L.K., Baldocchi D.D., Tang JW. How soil moisture, rain pulses, and growth alter the responseof ecosystem respiration to temperature[J]. Global Biogeochem Cycles,2004,18(4): GB4002.1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700