大气酸沉降影响下硫的生态化学——以庐山森林生态系统为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Eco-Chemistry of sulfur under Impact by Acid Deposition--A Case Study of Forest Ecosystem in Mt. Lushan
  • 作者:石盛莉
  • 论文级别:博士
  • 学科专业名称:土壤学
  • 学位年度:2000
  • 导师:潘根兴
  • 学科代码:090301
  • 学位授予单位:南京农业大学
  • 论文提交日期:2000-07-01
  • 答辩委员会主席:曹志洪
摘要
本文以庐山植物园的日本柳杉针叶林和阔叶林样地为对象,采集不同季
    节、不同植被下的根区土和非根区土,并对生态系统水相进行长期定位监测和
    动态监测方法,分析大气沉降硫在森林生态系统土壤和地表水酸化过程中的化
    学行为及其动态特点,试图为阐明酸沉降下硫对土壤酸化的生态效应及大气酸
    沉降的控制提供科学依据。研究得到的认识如下。
    1.庐山森林土壤总硫含量高达365.17±115.89mg/kg,且以吸附态为主。亚表
     层土壤中吸附态硫的含量高达178.82±94.62mg/kg。无机硫和有机硫间存
     在互为消长的关系。针叶林土壤吸附态硫和水溶态硫显著高于阔叶林土
     壤,针叶林下土壤对S的吸附能力和S的移动性高于阔叶林下。针叶林下
     根区土壤的总硫含量,水溶态硫和有机硫都高于非根区土,针叶林根系对
     土壤硫形态的分布有明显影响。
    2.森林凋落物年分解速率在25%左右,阔叶林凋落物比针叶林凋落物分解
     快,但腐殖化系数低。凋落物分解趋向于使针叶林土壤硫的移动性增强,
     而增加阔叶林土壤中吸附性硫。
    3.庐山98年降雨中SO_4~(2-)浓度平均为2.97mg/L,庐山降雨S的沉降量达
     1.03kmol/(ha a)。森林冠层可明显缓冲酸雨,阔叶林冠层的缓冲能力大于
     针叶林。透冠水和树干流中SO_4~(2-)浓度明显高于降雨,针叶林对干沉降的
     吸收大于阔叶林。两种林种相比,阔叶林SO_4~(2-)的输入较低而输出较高。
    4.季节变化:水相pH和透冠水、树干流的SO_4~(2-)浓度季节变化格式与降雨
     吻合,冬季较高而夏季较低,差异性显著;针叶林下透冠水和树干流的
     SO_4~(2-)浓度季节变异较大。树干流中SO_4~(2-)浓度的季节变异比透冠水强。针
     叶林渗漏水中SO_4~(2-)浓度在冬季最高,而阔叶林的则在春季最高。径流水
     中SO_4~(2-)浓度变化较小,针叶林在春季高而秋季最低,阔叶林是冬季最低;
     土壤硫形态有明显季节变化,在春季水溶态硫高,春夏季根区土壤水溶态
     硫高于非根区土壤。针叶林亚表层土壤吸附态硫明显高于阔叶林土壤,阔
     叶林根区土壤在夏季吸附态硫明显高于非根区土壤。根系,尤其是阔叶林
     根系活动对土壤对硫的吸附能力影响显著。盐酸可溶态硫在非根区土壤中
     受林型影响较小。而在根区土壤中,针叶林盐酸可溶性S在秋季大幅度增
    
    
     高,阔叶林下则在夏季较高。土壤有机硫的秋季明显积累。
    5.降雨事件对森林生态系统S化学的影响十分活跃:降雨的化学成分变率较
     大,SO4z是控制进人生态系统酸沉降的关键化学组分;小雨、秋季降雨对
     生态系统酸沉降有重要作用。透冠水成份有活跃变化,并且与大气降雨性
     质密有关。降雨使地表径流pH降低,电导率升高。降雨对阔叶林径流水
     的pH影响幅度都较大,针叶林电导率则对降雨的脉冲效应响应突出。针
     叶林雨后恢复较快。阔叶林下径流水So/’浓度高于针叶林下,阔叶林径
     流水中 SO4‘”浓度变化较针叶林滞后约 4 ,J’时。
     综上所述,庐山硫沉降量很大的,并有逐渐增加的趋势。两种林型的森林
    生态系统对酸沉降的反应不一。阔叶林冠层比针叶林冠层可消耗更多的矿,
    而针叶林土壤系统比阔叶林土壤系统消耗更多的矿,其总体效应表现出两种
    林型对H”的消耗量相近。针叶林系统较阔叶林系统能固持更多的S,但其非
    根区土壤A层也己吸附了大量S,预示着针叶林土壤对S的吸附已渐趋饱和。
    一旦达到饱和,针叶林土壤将不能继续延缓土壤酸化,而可能促进酸化。针叶
    林植被的根系活动及凋落物的作用可延缓这一过程。阔叶林土壤则是输入的硫
    较针叶林少,而输出较多。保持了S在系统中的相对稳定,从而对因吸附S
    的饱中造成的土壤酸化的危险较小。从S化学来看,阔叶林对酸沉降的缓冲
    与抗性较针叶林系统更为明显和活跃。野外生态系统下酸沉降对系统酸冲击及
    其生态化学过程除考虑土壤过程外,必须更多地注意大气一植物一上壤一水各
    相的相互作用及其季节动态。也就是说,生态系统的化学过程及其 可能比
    土壤一水体的化学动态更能反映酸沉降下生态系统酸化的实质。
Taking a example of a ecodessetera in the Botalcal Garden, Mt. Lushan under
    intense acid deposition, both of sulfur chendstry and its dynamics of in forest
    ecosystem was studied by means of field monitoring and sulfur fraction analysis.
    Both the rooting zone soil and non-rooted soil under different vegetation and in
    different season were smpled, and the fOrest ecosystem resPOnse to acid
    deposition was monitored in sitU. The purpOse of this Wor is to describe the
    ecological effects on sulfur distributions of dynamics of the fOrest ecosystem by the
    acid dePosition and to help enhancement of scientific data for atmospheric
    deposition control. The results were as follows:
    l. The total sulfur in soil of Mt. Lushan was up to 365. l7 t l l5.89mg/kg, of which
    40.3% being adsorbed sulfuL In the subsurface soil, adsorbed sulfor was l78.82I
    94.62mg/kg. Whn In-organic sulfur increased, orgboc sulfor decreases, vice versa.
    Adsorbed sulfur and soluble sulfur in soil under coniferous forest was higher than
    that under deciduous forest, indicating bigger caPacity for adsorbed sulfur of soil
    under coniferous forest. In the rooting zone soil under coniferous forest, the total
    sulfur soluble sulfur and organic sulfur were higher than tha of none-rooted soil.
    The roots of coniferous significantlY innuenced distribndon of sulfur fractions.
    2. The annua decomPOsihon rate of the litters was about 21.l% under coniferous
    and 24.l% under deciduous. DecomPosition the of deciduous litters were bigger
    than that of coniferous litters. DecomPOsition of litters tends to enhance mobile of
    sulfur in soils under coniferous foreSt, While increase adsorbed sulfor in soils under
    deciduous forest.
    3. The average sulfate concentraion in precipitation was 2.98mg/L in l998 in the
    
    
    stUdied area. The anntal sulfor dePOsition by preciPitation was l.03kInOU(ha a).
    Acid rain was greaily buffered by forest canopy, and the canopy of deciduous was
    able to bther more acidity of acid taln than canOPy of coniferous. The sulfate
    concentration in throughfall and stem-flow were sighficanly higher than that in
    precipitation. As comPared with coniferous ecosystem, the inPut of SO4'-
    deciduous ecosystem was more, while output less.
    4. The seasonal change pattem of acidity in water Phase and sulfate concefitration
    in throughfall and stem-flow were consistent with precipitation, being signiflcanly
    higher in winter than in sununeL Sulfate concentration in throughfail and
    stem-flow under coniferous fOrest change greatly in differeni seasons. Fractionation
    of sulfur has apparently seasonal changes. Soluble sulfur was high in spring, and
    content of sulfate in rooting zone soils was higher than that of in non-rooted soil.
    Organic sulfur accumulated in autumn. In A horizon of soil under coniferous, there
    were accumulation of adsorbed sulfate in spring and winter, while in subsoil under
    deciduous adsorbed sulfated increase sharply' showing that rootS of deciduous
    greatIy improved adsorption of sulfate in soils.
    5. The chemical coopnent in rain were various during precipitation, and the
    sulfate dominated the asid dePOsition to eco-system. Ligh rain and rains in auumn
    made greater contribution for acid dePOsition. The chemical components in
    throughfall aiso changed actively, and had close relationship with charaCer of
    precipitation. The runoff chemical under forest give prompt resPOnd tO
    precipitation. During precipitation, pH of runoff declined, While electricity rose.
    The pH of runoff under deciduous forest was more susceptible than that of
    coniferous fOrest, while the electricity of runoff under coniferous fOrest noticeabIy
    responded to precipitation pulse effect. After precipitation, the nmoff chemical
    under coniferous forest recovered qulcker than that under deciduous forest. The
    change sulfate concelltr8ion in runoff under deciduous went in a pattem 4 hours
    behind under coniferous forest.
    In summarize, the sulfur dePOsition fiux in Mt. Lushan was great, and
    gradually increased.
引文
1.《中国环境年鉴》编委会.1998年中国环境年鉴.北京:中国环境年鉴社.1998:168~169
    2.《中国环境年鉴》编委会.1999年中国环境年鉴.北京:中国环境年鉴社.1999:168~169
    3.Bengtsson, B.-E., Hill, C., Bergman, A. et al.. 波罗的海鱼类生殖失调:FiRe 项目概要.AMBIO(中文版), 1999,28(1):2~8
    4.Schindler D. 从酸雨到毒雪.AMBIO(中文版), 1999,28 (4): 350~358.
    5.Seip, H.M, Aagaard, P., Valter, A., et al. 1999. 中国的酸化问题—一项基于重庆—广州森林临测点研究结果的评估.AMBIO(中文版), 28(6):524~530
    6.艾有年,阎立荣.环境监测新方法.北京:中国环境科学出版社1992.:52-54
    7.北村守次等,曾毅强译.根据硫稳定性同位素比值推断日本石川县降水中硫酸根离子和来源,地质地球化学,1995(6):48~56
    8.曹洪法,王玮,高映新等.森林冠层对酸雨的反应及其影响.中国环境科学,1989,9(2):81~85
    9.陈铭,谭见安,孙富臣等.湘南红壤对NO_3~-和SO_4~(2-)的吸附机理研究.环境化学,1993 12(4):252~257
    10.程伯荣,许广山,高世东.森林林冠对酸性降水化学组成的影响.中国环境科学,1989,9(2):155~157
    11.程春明,魏复盛,王瑞斌等.我国大气降水化学背景值的研究.中国环境科学学会,酸雨文集.北京:中国环境科学出版社,1989:217~226
    12.仇荣亮,吴箐.陆地生态环境酸沉降敏感性研究.环境科学进展,1997,5(4):8~22
    13.单孝全,陈斌,铁军等.土壤和河流沉积物中硫的形态分析.环境科学学报,1991,11(2):172~177
    14.邓仕坚,陈楚莹,张家武.树冠及叶凋落物对模拟酸雨能动冲能力的初探.环境科学,1992,13(3):10~17
    15.丁国安,纪湘明,房秀梅等.庐山云雾水化学组分的某些特征.气象学报,1991,49(2):191~197
    16.丁国安等.庐山降水化学垂直分布的初步研究.应用气象学报,1990,1(4):360~368
    17.董小卫,刘德辉,潘根兴等.酸沉降影响下春季庐山森林生态系统水溶态氮的分布及动态.南京农业大学学报,1999 22(4):45~48
    18.董小卫.酸沉降影响下庐山森林生态系统氮素的动态变化.南京农业大学硕士论文.1999
    19.范业成,叶厚专.江西硫肥肥效及其影响因素研究.土壤通报,1994,25(3):135~137
    20.郭笃发,姜爱霞.酸沉降对土壤过程和性状的影响.土壤通报,1997,28(4)187~189
    21.郭亚芬,陈魁卿,刘元英等.黑龙江省主要土壤硫的形态及其有效性的研究(Ⅰ).东北农业大学学报,1995,26(1):27~33
    22.国家环保局.全国环境质量报告书.1996
    
    
    23.国家环保局污染控制司.“两控区”酸雨和二氧化硫污染综合防治行动方案(摘要).环境保护,1998.4:3
    24.郝古明,谢绍东.中国土壤对酸沉降的相对敏感性区划.环境科学,1999,20(4):1-5
    25.洪业汤,张鸿斌,朱永煊等.中国煤的硫同位素组成特征及燃煤过程硫同位素分馏.中国科学B,1992,(8):869~873
    26.胡正义,曹志洪.我国南方地区典型土壤有机硫矿化速率及供硫潜力研究.中国农业科学,1999,32(6):69~74
    27.胡正义,张继榛,竺伟民.安徽省主要农用土壤中硫形态组分的初步研究.土壤,1996,28(8):119~112
    28.胡正义,张继榛,武佩龙等.黄潮土硫库及供硫能力研究.土壤通报,1996,27(6):270~272
    29.胡正义,竺伟民,曹志洪.土壤有机硫形态分配的季节变化与作物效应.植物营养学报与肥料学报,1999,5(3):273~281
    30.黄瑞采,戴朱恒,陈邦本等.庐山区土壤的特征.土壤学报,1957,5(2):117~133
    31.库克(中国科学院南京土壤研究所译)高产施肥.北京:科学出版社.1978,.12~13
    32.李成保.土壤中硫和不同形态硫的提取与测定.土壤学进展,1990,(3):42~46
    33.李凌浩,林鹏,何建源等.森林水化学研究综述.水土保持学报,1994,8(3):84~96
    34.李柱国.浙江省降水酸度和化学特征分析.中国环境科学,1999,19(5):436~440
    35.廖柏寒,戴昭华.土壤对酸沉降的缓冲能力与土壤矿物的风化特征.环境科学学报,1991,11(4):425~430
    36.刘炳江,郝吉明,贺克斌等.中国酸雨和二氧化硫污染控制区区划及实施政策研究,中国环境科学,1998,18(1):1~7
    37.刘崇群,曹淑卿,陈国安.我国南亚热带闽滇地区降水中养分含量的研究.壤学报,1984,21(4):438~442
    38.刘帅仁,黄美元.云下雨水酸化的数值模拟及重庆酸雨形成机理的探讨.酸雨文集,北京:中国环境科学出版社:1989,25~36
    39.罗承德,张健,刘建龙.四川盆周山地杉木人工林衰退与铝毒阈值的探讨.林业科学,2000,36(1):9~14.
    40.马友华.土壤和烟草中硒和硫相互作用的研究.南京农业大学博士论文.1998:25~26
    41.麦克拉伦A.D.,波得森等著,闵九康,关松荫等译.土壤生物化学:第十章硫的有机硫化合物.北京:农业出版社,1984:150~171
    42.牟树林,杨学春.酸雨危害与土壤酸化问题的调查研究.西南农业大学学报,1988,10(1):12~19.
    43.南京农业大学(主编).土壤农化分析(第二版),北京:中国农业出版社1992:62~63
    44.潘根兴,Fallavier P.杨焱等.近35年来庐山土壤酸化与物理化学性质变化,土壤通报,1993,24(4):145~147.
    45.潘根兴,卢玉文.南方酸性土壤B层对SO_4~(2-)的吸附特征及其影响因素。热带亚热带土壤科学,1994,3(2):66-70
    
    
    46.潘根兴,冉炜..中国大气酸沉降与土壤酸化问题.热带亚热带土壤科学,1994,3(4):234~252.
    47.潘根兴.大气酸沉降与土壤酸化.见:李天杰,宫世国,潘根兴等(编著),土壤环境学,北京:高等教育出版社,1995:180~202
    48.青长乐.酸沉降物对土壤肥力的影响研究.西南农业大学学报,1988,10(1):1—11.
    49.曲东,尉庆丰.陕西几种代表性土壤硫形态与土壤性质的关系.土壤通报,1996,27(1):16—18
    50.沈济,赵倩雪,赵殿五.数值模拟酸雨洗脱痕量气体.酸雨文集,北京:中国环境科学出版社1989:37~47
    51.石晶,黄云,陈宏文等.江西省酸雨时空分布规律及发展趋势.陈志远,刘志荣.中国酸雨研究.北京,中国环境科学出版社,1997:250~258
    52.世界银行.碧水蓝天——展望二十一世纪的中国环境.北京:中国财政经济出版社.1997
    53.唐常源,平田健正,村冈浩尔.森林小流域的降雨出流机制的探讨.地理研究,1991,10(3)87~95
    54.唐常源.亚热带马尾松人工林的降雨截留作用.地理学报,1992,47(6):545~550
    55.陶福禄,冯宗炜.植物对酸沉降的净化缓冲作用研究综述.农村生态环境,1999,15(2):46~49
    56.王保安,张远航,张铮等.庐山春季降水化学的研究,中国环境科学,1996,16(2):218~222
    57.于恒纯.同位素水文地质概论,北京:地质出版社1991:61~70
    58.王将克,常弘,廖金凤等.生物地球化学,广州:广东科技出版杜,1999:571~574.
    59.王连峰,潘根兴,石盛莉等.酸沉降影响下庐山森林土壤溶液溶解铝分异,南京农业大学学报,2000,(3),在印
    60.王连峰.庐山森林生态系统移动性组分化学及其对酸沉降的响应与动态.南京农业大学硕士论文.2000.
    61.韦启璠.硫的某些土壤生物地球化学特征及其实践意义.土壤地球化学的进展和作用 北京:科学出版社1988:233-247。
    62.文启孝等.土壤有机质研究法.北京:农业出版社,1984:285~295
    63.吴箐,仇荣亮,杨平等.南方土壤酸沉降敏感性研究Ⅲ.Si释放与缓冲作用.中国环境科学,1998,18(4):302~305
    64.徐仁扣,季国亮.对酸性土壤中铝的溶出和铝离子形态分布的影响.土壤学报,1998,35(2):162~170
    65.许志遂,丁根娣.环境中硫酸盐测定方法—硫酸钡比浊法的探讨和改进.理化检验(化学分册),1990,(3):179~180,181
    66.宣家祥,张自力.根际土壤溶液中铝离子的形态分布及其对大麦的毒性.土壤学报,1995,32(增刊),27~35
    67.杨昂,孙波,赵其国.中国酸雨的分布、成因及其对土壤环境的影响.土壤,1999,31(1)13~18
    
    
    68.伊丽莹.矿物分析化学.北京:科学出版社1994:68~69
    69.张道勇,王鹤平.中国实用肥料学.上海:上海科学技术出版社1997:110
    70.张继榛,马友华,竺伟民等,水稻土有机硫组分及其有效性.土壤通报,1998,29(4):173—176
    71.赵殿五,张晓山,熊际翎等.小集水区酸化过程观测研究,环境化学,1999,18(1)16-20
    72.赵忠.森林土壤酸化及其对林木生长的影响.土壤学进展,1988,2:51~56
    73.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.上海科学技术出版社,1980
    74.中国科学院南京土壤研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组.中国土壤系统分类(修订稿)。北京:中国农业科技出版社1995:117.
    75.周光召.历史的启迪和重大科学发现产生的条件.科技导报,2000,1:1-8
    76.周国逸,小仓纪雄.酸雨对重庆儿种土壤中元素释放的影响.生态学报,1996,16(3):251~257
    77.周修萍,江静蓉,梁伟等.模拟酸雨对南方五种土壤理化性质的影响.环境科学,1992,9(3):6~12
    78.朱晓帆,蒋文举,周励等.模拟酸雨对峨眉缓冲能力与冷杉生长的关系.中国环境科学,1998,18(1):21~24
    79.Ajwa, H.A. and Tabatabai,M.A. Mental-induced sulfate adsorptions by soils:I effects of pH and ionic strength. Soil Science, 1995a 159(1):32~42
    80.Ajwa, H.A. and Tabatabai,M.A. Mental-induced sulfate adsorptions by soils:II effects of mental type valence, and concentration. Soil Science, 1995b, 160(4):281~290
    81.Ashmore,M.R. In air pollution and ecosystems. Mathy,R. Ed. Rcidel, Dirdrecht,1988:284~287
    82.Autry,A.R. and Fitzgerald,F.W. Sulfate S: a major form of forest organic sulfur. Biology Fertilizer of Soils, 1990,10:50~56
    83.Autry,A.R., Fitzgerald,F.W. and Caldwell,P.R.Sulfur fractions and retention mechanisms in forest soils. Canadian Journal of Forest Research 1990,20:337~342
    84.Baba, M., Okazaki, M., and Hashitani,T. Effect of acid deposition on forested catchment in the western Tokyo, Japan. Water, air and soil pollution, 1995,85:1215-1220
    85.Bakker M R. Dielfenbach A. Range J. Soil solution chemistry in the rhizosphere of roots of Sessik oak (Querens petrace) as influenced by lime. Plant and Soil, 1999,209:209~216.
    86.Balanagoudar, S.P. and Satyanarayana, T. Correlations of different forms of sulfur with soil properties and with organic carbon and nitrogen in some Vertisols and Alfisols.Journal of the Indian society of soil science 1990, 38(4): 641-645
    87.Bredemeier, M. Forest canopy transformation of atmospheric deposition. Water, air and soilpollution, 1988, 40:121~138
    88.Cape. J.N.,Sheppard, L.J,et al. Environmwntal Pollution 1992,75:229
    
    
    89. Cappellato, R., Peters, N.E and Meyers, T. Above-ground sulfur cycling in adjacent coniferous and deciduous forests and watershed sulfur retention in the Georgia Piedmont, U.S.A. Water, Air, and Soil Pollution, 1998,103:151-171
    90. Carlsson E., Torssander P. and Morth C.M. Historical atmospheric deposition a Swedish mining area traced by S isotope ratios in soils. Water,Air,and Soil Pollution, 1999,110:103-118
    91. Christopher,S.C. Biogeochemical Responses of forest canopies to acid precipitation. In: Rick, A.L. Eds. Direct and indirect effects of acid deposition on vegetation. Butterworth Publishers, Boston London. 1993,134-187
    92. Cole, D. W., and Johnson, D. W. Atmospheric sulfate additions and cation leaching in a Douglasfir ecosystem. Water Resource. Research 1977,133:313-317
    93. Courchesne,F. and Hendershot,W.H. The role of basic aluminum sulfate minerals in controlling sulfate retention in the mineral horizon of two spodosols. Soil Science, 1990,150(3) :571-578
    94. Cowling,E. Acid precipitation in historical perspective. Environment Science and Technology, 1982,16(2) :110A-123A
    95. Dai Zhaohua [a]. Liu Yunxia. Wang Xingjun. et al. Changes in pH,CEC and exchangeable acidity of some forest soils in southern China during the last 32-35 years. Water, Air, & Soil Pollution. 1998,108(3-4) :377-390.
    96. Dail,D.B. and Fitzgerald,J.W. Sulfur cycling in soil and stream sediment influence of season and in situ concertration of carbon, nitrogen and sulfur. Soil biology and biochemistry, 1999,31(1395-1404)
    97. David,M.B., Fasth,W.J. and Vance,G.F. Forest soil response to acid and salt additions of sulfate:1 sulfur constituents and net retention . Soil Science, 1991,151(2) 136-145
    98. David, M.B., Mitchell,M.J. and Scoll,T.J. Importance of biological processes in the sulfur budget of a northern hardwood ecosystem. Biology and Fertility of Soils, 1987,5:258-264
    99. Davidson, C.I., Lindberg, S.E., Schmidt, J. et al Journal Geophysics Research. 1985,90:2123
    100. Davidson, C.I., Miller, J.M. and Pleskow, M.A. Water Air Soil Pollution. 1982,18:25
    101. Edmonds,R.L, Thomas,T.B. and Thodes, J.J. Canopy and soil modification of precipitation chemistry in a temperate rain forest. Soil Science Society American Journal, 1991,55:1685-1693
    102. Edwards, P. J., Gregory, J. D. and Allen, H L. Seasonal sulfate deposition and export patterns for a small Appalachian watershed. Water,Air and Soil pollution, 1999, 110:137-155
    103. Fateh Singh , Vinay Singh, Malik,R.S et al Forms of S in some alluvial soils of Uttar Pradesh. Annals of agricultural Research, 1995, 16(3) :367-358
    
    
    104. Fitzgerald,J.W., Swank,W.T. Strickland.T.C. et al Sulfur pools and transformation in litter and surface soil of a hardwood forest. In Forest biology and ecology at Coweeta. Eds. W.T. Swank and Crossley, Springer-Verlag,New York. 1988:246-253
    105. Fowler,D. in Proceedings of the International Conference on Ecological Impacts of Acid Precipitation. D. Drablos and A. Tollan, Eds.(SNSF Project, Sandefjord, Norway) 1980:22
    106. Garkand ,J.A. in Acid precipitation: origin and effects. J.Lobel and W.R. Thief ,Eds. (VDI Ber.5∞Verein Deutscher lngenieure,Dusseldorf,West Germany), 1983 :83
    107. Garton,C.T., JR. Foliar leaching translocation, and biogenic emission of 35S in radio labled Loblolly Pines. Ecology, 1990,71(1) :239-251
    108. Gottlein A. Heim A. Matzner E. Mobilization of aluminum in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant and Soil, 1999, 211:41-49
    109. Gregory P J. New approaches to studying chemical and physical changes in rhizosphere: an overview. Plant and Soil, 1999, 211:1-9.
    110. Groscheova, H., Movak, M, Havel, M. et al Effect of altitude and tree species on δ 34S of deposited sulfur (Jezeri carchment, czech republic). Water Air and Soil Pollution , 1998,105:295-303
    111. Hicks,B.B. in The Acidic Deposition Phenomenon and Its Effects. A.P. Altshuller,Ed.(EPA 6∞/8-83-oi6Am Environmental Protection Agency, Washington, DC) chap. 1984:1-8
    112. Hisgton,F.J., Atkinson,P.J., Posner,A.M. et al Specific adsorption of anion. Nature, 1967,215:1459-1461
    113. Huebert,B.J. in Precipitation Scavenging, Dry-Deposition, and Resuspension, H.R. Pruppacher, R.G. Semonin, W.G. N. Slinn, Eds.(Elsevier, New York) 1983: 785
    114. Huete ,A.R. and McColl,J.R.. Soil cation leaching by "acid rain" with varying nitrate-to-sulfate ratios. Journal of Environ Quality, 1984,13:366-371
    115. Johnson, D.W., Richter D,D. Van Miegroet, H. et al . Sulfur cycling in five forest ecosystems. Water Air and soil pollution. 1986,30:965-979
    116. Johnson, D.W. and Henderson, G.S. Sulfate adsorption and sulfur fractions in a highly weathered soil under a mixed deciduous forest. Soil science, 1979, 128(1) :34-40
    117. Johnson, D.W. and Todd, D. E. Relationship among iron aluminum, carbon, and sulfate in variety of forest soils. Soil Science Society American Journal, 1983,47:792-800
    118. Johnson, D.W. and Cole, D.W. Anion mobility in soils: relevance to nutrient transport from forest ecocyctems. Environment International, 1980,3:79-90
    119. Kaise,K. and Zech,W. Nitrate , sulfate and biphosphate rentention in acid forest soils affected by natural dissolved organic carbon. Journal of Environmental Quality, 1996,25:1325-1331
    
    
    120. Khanna,P.K., Prenzel,J., Meiwes, K.J.,et al. Dynamics of sulfate retention by acid forest soils in a acidic deposition environment. Soil science society of American journal, 1987,51:446-452
    121. Kros,J., Groenenberg, J.E., Deur IES W., et al. Uncertainties in long-term predictions of forest soil acidification due to neglecting seasonal variability. Water ,Air and Soil pollution. 1995,19:353-375
    122. Krouse, H.R. and Tabatabai, M.A. Stable sulfur isotopes, In Tabatabai, M.A. Eds.: Sulfur in agriculture, American Socuety of Agtonomy, Crop Science Society of America, Soi1 Science Society of America. Madison, Wisconsin, 1986 :169-205
    123. Larssen,T., Xiong,J. , Vogt,R.D. et al Studies of soil, soil water and stream water at a small catchment near Guiyang, China. Water Air Soil pollution, 1998,101:137-162
    124. Lawrence,G.B., David, M.B., and Shortle, W.C. Anew mechanism for calcium loss in forest-floor soils. Nature, 1995,378:162-165
    125. Likens,G.E., F.h. Bormann, R.S. Pierce,et al. Biogeochemistry of a forested ecosystem. Springer-verlag, Berlin-New York. 1977
    126. Lindberg ,S,E and Lovett,G.M.: Atmospheric Environment 26A, 1992,1477
    127. Lindberg, S.E., Lovett,G.M., Richerter,D.w., et al. Atmospheric deposition and canopy interactions of major ions in a forest. Nature ,1986,231:141-145
    128. Lindberg,S. E., Lovett,G. M., Joe, J.M. Acid deposition/ forest canopy interactions. Rep. ORNL/ESD Publ.2439 Oak ridge National Laboratory, Oak Ridge,TN. 1984
    129. Lindberg,S.E., and Garten,C.T. Jr Sources of sulphur in forest canopy throughfall. Nature, 1988,336:148-151
    130. Masanori Okazaki, Xu guangshan, and Sun Zhouping. Effects of acidic deposition on soil ecosystems under forest in the Chongqing region of China. soil science plant nutrition, 1998,44(2) :187-196
    131. Matzner E. Pijpers M. Holland W. et al, , Aluminum in soil solutions of forest soils: influence of water flow and aluminum pools. Soil Science Society of America Journal, 1998,62: 445-454
    132. Menzel,R.G. Soil Science :the environmental challenge. Soil Science, 1991,151 (2) :24-28
    133. Mitchell, M.J., David , M.B., Maynard, D.G. et al Sulfur constituerns in soils and streams of a watershed in the Qocky Mountains of Alberta. Canadian Journal of Foreat Research, 1986,16:315-320
    134. Mulder J. van Breeman N. Eijck H C. Depletion of soil aluminum by acid deposition and implication for acid neutralization. Nature, 1989,337 (6024) : 247-249
    135. Nadelhoffer,K.J., Emmett,B,A., Gundersen,P., et al. Nitrogen deposition makes a minor Contribution to carbon sequestration in temperate forests. Nature , 1999,398:145-148
    136. National Academy of Sciences. Acid Deposition-Atmospheric Processes in Eastern North America. National Academy Press, Washington,DC. 1983.
    
    
    137. Nguyen,M.L and Goh,K.M chemical fractionation water solubility and temporal distribution of sheep faecal sulphur fractions in grazed pastares receiving long-term SO42-fertillizotion. Communications in soil science and plant analysis 1993,24(11-12) :1087-1113
    138. Nommik,H., Larsson, K., and Malcolm,R.L. Effects of experimental acidification on the transformation of carbon, nitrogen and sulphur in forest soils. Statens naturvardsverk PM 1869, Solna,Sweden. 1984.
    139. Novak, M., Bottrell,S.H., Fottova, D. et al Sulfur isotope signal in forest soils of central Europe along an air pollution gradient. Environment Science Technology, 1996,30:3473-3476
    140. Nodvin,S.C., Driscoll,C.T., and Likens,G.E. The effect of pH on sulfate adsorption by a forest siol. Soil Science, 1986,142:69-75
    141. Pan Genxing. Acidification of soil in Mount Lushan over the last 35 years. Pedosphere , 1992,2(2) : 179-182
    142. Parker,G.G. Throughfall and stemflow in the forest nutrient cycle. Advances in ecological research, 1983,13:57-113
    143. Parker,G.G. Evaluation of dry deposition, Pollutants damage, and forest heath with through fall studies. In: Lucier,A.A. and Haines, S.G. Eds. Mechnisms of forest response to acidic deposition. Springer Verlag, New York. 1990 :122-153
    144. Patil, S.G., Sarma, V.A.K. and Van Loon,G.W. Acid rain, cation dissolution, and sulphate retention in three tropical soils. The Journal of Soil Science, 1989,40:85-93
    145. Potter,C.S., Ragsdale, H.L. and Swank, W.T. Atmospheric deposition and foliar leaching in a regenerating southern appalachian forest canopy . Journal of Ecology, 1991, 79:97-115
    146. Randlett, D.L., Zak ,D.R., and Macdonald, N.W. Sulfate adsorption and microbial immobilization in northern hardwood forests along and atmospheric deposition gradient. Canada Journal Forest Reseach, 1992,22:1843-1850
    147. Record, F.A., Bubenick,D.V., and Kindya,R.J. Acid rain information book. Noyes data corporation. Park Ridge, New Jersay, U.S.A. 1982.
    148. Reynolds ,B., Glowler,D., Smith, R.I., et al. Atmospheric inputs and catchment solute fluxes for major ions in five Welsh upland Catchments. Journal of Hydrology, 1997,194:305-329
    149. Reuss,J.U., Cosby,BJ. and Wright,R.F. Chemical processes governing soil and water acidification. Nature, 1987,329:27-31
    150. Rochelle,B.P., Church M.R and David,M.B. Water,Air,and Soil pollut. 1987,33: 73.
    151. Schaefer,D.A. and Reiners, W. A. Throughfall chemistry and canopy Processing mechanisms. In Lindberg,S.E., Page ,A.L. and Norton,S.A. Eds. Acid precipitation, Vol 3 :aources, deposition and canopy interaction. Springer Verlab. 1990:241-278
    
    
    152. Schindler,S.C. and Mitchell,M.J. Dynamics of 35S in horizons and leachates from a hardwood forest spodosol. Soil Biology and Biochemistry, 1987,19:531-538
    153. Schindler,S.C. , Mitchell,M.J. and Scott,T.J. et al Incorporation of 35S-sulfate into inorganic and organic constituents of two forest soils. Soil Science Society of American journal, 1986,50:457-462
    154. Schulze,E.D. Air pollution and forest decline in a spruce (Picea abies) forest. Science, 1989,244:776-783
    155. Shanley,J.B. Sulfate retention and release in soils at Panola Mountain Georgia. Soil Science, 1992,153(6) :499-508
    156. Shriner,D.s. and Henderson,g.S. Sulfur distribution and cycling in a deciduous forest watershed. J. Environ. Qual., 1978,7:392-397
    157. Singh,B.R. Sulfate sorption by acid forest soils:2 sulfate adsorption isotherms with and without organic matter and oxides of aluminum and iron. Soil Science, 1984,138(4) :294-297
    158. Singh,B.R. Sulfate sorption by acid forest soils:3. Desorption of sulfate from adsorbed surfaces as a function of time,desorbing ion, pH, and amount of adsorption. Soil Science, 1984,138:346-353
    159. Smith, R.A. and Alexander,R.B. Correlations between stream sulphate and regional SO2 emissions. Nature, 1986,322(21) : 722-724
    160. Stanko.K.M. and Fitzgerald, J.W. Sulfur transformations in forest soils collected along an elevational gradient. Soil Biology and Biochemistry,1990,22:213-216
    161. Stiddard,J.L., Jeffrias,D.S. Lukewile, A. et al. Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 1999,401:575-578
    162. Strehl,C., and Prietzel,J. Method for the partitioning of organic sulphur in forest soil O layers. Soil Biology and Biochemistry, 1998,30(13) : 1725-1731
    163. Swank, W.T., Fitzgerald,J.W. and Ash,J.T. Microbial transformation of sulfate in forest soils. Science, 1983,223:182-184
    164. Tao Fulu and Feng zongwei. Terrestrial ecosystem sensitivity to acid deposition in south China. Water, Air. and Soil Pollution, 2000,118:231-243
    165. Terelak, H. Motowicka ,Terelak,T. and Paster Nacki.J et al The contents of sulfur forms in mineral soils of Poland. Pamietnic pulanski (Supplement) , 1988,91,59
    166. Tripathi, D and Karan Singh . Vertical distribution of S in representative soil groups of Himachal pradesh. Journal of the Indian society of soil science 1992,43(3) : 447-453
    167. Ulrich, B., Mayer, R., and Khanna,P.K. Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Science, 1980,130(4) : 193-199
    168. Ulrich,B. and Pankrath, Eds. Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht. 1983.
    
    
    169. Work Group I.. Effects on Soils . in Impact Assessment United States-Canada Memorandum of Intent. Final Report, Jamuary, 1983:4-53-4-56
    170. Van Breemen, N., Visser, W.F.J., and Rape, Th. Biogeochemistry of an oak-woodland ecosystem in the Netherlands affected by acid atmospheric deposition. Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen,the Netherlands, 1989
    171. Vogt, R.D., Godzik, S., Kotowski, M., et al. Soil, soil water and streamwater chemistry in some polish sites with varying acid deposition. Journal Ecology chemistry, 1994, 3:325-356
    172. Webster K E. Newell A D. Baker L A. et al, Climatically induced rapid acidification of a softwater seepage lake. Nature, 1990,347(27) :374-375
    173. Werner K., Andreas,D., and Ulrich, H. Sulfate concentrations in Norway spruce needles in relation to atmospheric SO2: a comparision of trees from various forests in Germany with trees fumigated with SO2 in growth chambers. Tree Physiology. 1993,12:1-3
    174. Yawmey,H.W. and Leaf, E.J. The contribution of through fall and stemflow to nutrient element cycling in red pine plantations. Agronomy Abstract, 1970:164
    175. Zhang Fuzhu, Zhang Jingyang, Zhang hongrui et al. Chemcal composition of precipitation in a forest area of Chongqing, southwest China. Water, air, and soil pollution, 1996,90:407-415
    176. Zhao, D., Seip,H.M., Zhao.Di., et al. Pattern and cause of acidic deposition in the Chongqing region, Sichuan Province, China. Water ,air, soil pollution, 1994, 77:27-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700