区域湿地和农田土壤有机碳变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳(Soil Organic Carbon)含量是与植物生长及生态系统功能有关的关键土壤属性。土壤有机碳库是陆地生态系统中最活跃碳库,全球土壤有机碳库分别是大气圈和植被圈碳库的2-3倍,其消长动态直接影响到未来气候变化趋势。人类干扰下土壤碳库动态特征及其过程机制,已成为生态学、土壤学等学科的重点研究领域。
     土壤有机碳库及其变化计量是土壤碳循环及固碳减排研究的重要科学内容。国内外研究表明,农田生态系统土壤碳库受到强烈的人为干扰,同时又可以在较短的时间尺度上进行人为调节。因此,土地利用变化和农业管理变化下中国农田有机碳库变化及其土壤固碳潜力的研究对于国家固碳减排战略及可持续农业发展途径选择具有重大科学意义。研究不同尺度的地理区域人为利用中土壤有机碳储存及其变化特点成为土壤学、生态学和农业科学的研究热点。
     本文以长江中下游地区特别是安徽省六安市域为对象,统计分析湿地和农业土壤在不同利用下的土壤有机碳变化,分析这种变化的空间尺度变异性,探讨影响土壤有机碳储存和积累的不同影响因素,期望为该区域农田土壤固碳和可持续土地利用及农业管理提供科学依据。研究的主要结果和认识如下:
     长江中下游地区河流湖泊湿地开垦为农田,土壤有机碳库损失严重。长江中下游地区湿地分布广,存在着湿地开垦强度大、土壤碳密度较低和土壤有机碳损失严重等土壤碳库变化问题。与原湿地土壤相比,不同垦殖方式下土壤有机碳含量都有不同程度降低,而且随开发利用年限增长而加剧。不过,湿地垦殖为水田后土壤有机碳含量有稳定或略有提高的趋势,特别是江汉平原湿地和皖江平原湿地开垦为水田后,土壤有机碳含量可提高35%-67%。湿地垦殖为水田是一种相对较好的农业固碳利用方式。
     皖江平原湿地表层土壤有机碳含量介于11.30-27.83 g·kg-1,且在土壤深层仍有较多的有机碳分布。围垦的农田土壤有机碳含量则明显降低,剖面深度分布的变异和地点间的变异远大于周边湿地。开垦为农田后,表层碳密度损失达18 tC·hm-2,全剖面达30 tC·hm-2。围垦损失的碳密度达到原湿地的40%以上。估算近50年来长江中下游地区湿地因垦殖导致的表土有机碳损失量为40-60 Tg C,而历史损失总计可能达0.15Pg C。
     以六安市域为空间尺度研究了土壤有机碳含量随土地利用及空间尺度变化的变异状况。研究结果表明市域内表层土壤有机碳含量表现非耕地土壤有机碳含量最高(12.27±2.90 g·kg-1)且变异系数最大(23.63%);水田土壤有机碳含量(11.50±1.08 g·kg-1)显著高于旱地土壤(8.11±1.17 g·kg-1),且变异系数(9.39%)也小于后者。市域内不同地貌单元上表土层有机碳平均含量表现为山地(14.60±3.14 g·kg-1)>丘陵(13.20±3.26 g·kg-1)>岗地(10.22±1.00 g·kg-1)>平原圩畈(10.05±1.36 g·kg-1)。县级尺度上变异系数为5.31%-24.95%,乡镇尺度上变异系数在3.80%~16.75%,全六安市范围内变异系数为2 0.1%。说明研究区域内土壤有机碳含量存在高度的空间变异性,主要受土地利用、地形地貌和农业活动等多种因素的复杂影响。其中地貌因子在较大尺度(县域)上更影响明显,而农业活动在较小尺度上具有重要影响。
     土壤有机碳含量还存在随土壤分类统计单元的变化。表层土壤有机碳含量土种内部的变异系数(4.29%~83.78%,平均值为44.04%)大于土种间的变异系数(32.00%);各土属间有机碳加权平均值为10.22(g·kg-1),变异系数为43.03%。亚类为单元的有机碳变异系数可能大于较低分类单元的变异系数。自然土壤变异系数较大,例如广泛分布于山地的粗骨土亚类,有机碳含量最高(16.95±16.17 g·kg-1),变异系数达95.37%。而人为利用的土壤有机碳含量变异系数较低,漂洗型水稻土亚类仅11.97%。而亚类之间变异系数为58.75%。土类的有机碳变异性也极大,变异系数以山地酸性棕壤类最大,达95.42%,最小的是岗地砂姜黑土类,为18.92%。因此,以分类单元统计,土壤有机碳含量变异系数有随分类单元的级别而提高的趋势。这是所研究区域的地形地貌和土地利用共同决定的。由于土地利用影响体现在高级别单元,因此,高级别分类单元统计有机碳含量变化将具有极高的变异性。
     以市域内霍山县为对象,研究了耕地土壤有机碳含量随县域内不同尺度空间的变化。结果表明,20年来该县农田表土有机碳含量明显提高,显示农田土壤的有机碳库积累,同时有机碳空间变异系数总体降低。例如,土种间有机碳含量的平均变异系数由1985年的48.62%降低到2005-2008年的14.64%。县域范围内耕地土壤有机碳含量的不同尺度的变异系数介于4.53%-14.91%,因不同尺度空间而异。研究结果表明村民组(自然村)尺度单元内有机碳含量的变异性最高,乡镇间有机碳含量变异性低于行政村间变异性。因此,从县级尺度的农田土壤碳库计量来说,以乡镇尺度采样研究比村级尺度的可靠性较高。影响县域内农田土壤有机碳含量与变异的动力因子主要是农业利用和农田基本建设,栽茶和种植水稻方式下农田土壤有机碳含量明显较高。在县域空间范围内,农业管理措施对农田有机碳含量产生的显著影响。
     因此,土壤有机碳随土地利用和农业管理的变化因空间和时间而异,区域土壤有机碳变化动态与生态系统功能、农业生产力的关系尚需要深入的研究。未来农业发展和气候变化下区域土壤碳库变化及不同人类活动的影响将仍是今后研究的课题。特别是定量分析表征气候变化、土地利用变化、人类活动强度及耕作管理对农田土壤有机碳收支的相互作用影响是区域土壤有机碳研究需要充分重视的领域。
Soil Organic Carbon is one of the key properties which have closely relationship with ecosystem functions and plant growth. Soil organic carbon pool, which is 2 to 3 times larger than the pool s of atmosphere and vegetation, is the most active pool in terrestrial ecosystems, and its dynamic will affect future climate change trends directly. The dynamic of soil carbon pool and its process mechanisms under human disturbance, has become the key research areas of ecology, soil science and other disciplines.
     The dynamic of soil organic carbon pool and its quantification are important contents for studying the carbon cycling and carbon sequestration. Domestic and international researches showed that soil carbon pool in cropland was disturbed strongly by agricultural managements, while it could be adjusted by human in a short time. Therefore, there will be an important scientific significance in carbon sequestration strategies and the options of sustainable agricultural development paths of China for the studies of SOC dynamics and its sequestration potential under landuse changes and agricultural managements. The studies of SOC dynamics under different scales of geographical regions have become the research focuses of soil science, ecology and agricultural science.
     This thesis studied the SOC dynamics of wetlands and croplands in the Yangtze River region in Lu'an city, Anhui province, and also analyzed the SOC variability of spatial scale, in order to explore the factors which impacted storage and accumulation of SOC and provided the scientific basis for SOC sequestration, land use sustainable and agricultural managements in this region. The main results are as follows:
     1. The soil in the regions of Yangtze River lost SOC seriously when the wetlands were reclaimed as croplands. Yangtze River wetlands, which were reclaimed deeply and had low SOC contents, were distributed widely. Compared with the original wetland soils, the soils under different cultivation methods have different decrements of SOC contents, and these decrements increased with the increments of the utilization years. However, there was a little increment in SOC when the wetlands were reclaimed as rice paddies. The SOC contents were increased by 35%-67% when the wetlands in Jianghan Plain and Wanjiang Plian wre reclaimed as the rice paddies. Therefore, wetland is reclaimed as rice paddy is one of the well approaches in carbon sequestration.
     2. The SOC contents in Wanjiang Plain wetland distributed between 11.30 to 27.83 g·kg-1, and there were still much SOC in deep soil. The SOC in wetlands reclaimed showed a decrease trend, and its distribution among the regions and soil deeps showed more variability than other wetlands. After reclaimed as croplands, the soils lost the SOC as 18 tC·hm-2 in topsoil and 30 tC·hm-2 in total soils, respectively. The SOC density of wetlands cultivated were only 40% of original. The loss of SOC storage estimated as 40-60Tg in recent 50 years, and 0.15PgC in history.
     3. The SOC content variation with the landuse and spatial changes in Lu'an was studied in this study. The results show that the SOC content (12.27±2.90g-kg-1) and coefficient of variation (23.63%) in uncultivated soil was highest in all the soils of Lu'an City; SOC content of paddy soil (11.50±1.08 g·kg-1) was significantly higher than that of dryland soil (8.11±1.17 g·kg-1), and the coefficient of variation (9.39%) is less than the latter. The topsoil SOC in different landscape units were Mountain (14.60±3.14 g·kg-1)> hill (13.20±3.26 g·kg-1)> hillock (10.22±1.00 g·kg-1)> Plain Wei Fan (10.05±1.36 g·kg-1). Under county scale, the coefficient of variation was between 24.95% and 5.31%,3.80% to 16.75% under township scale,20.1% in the whole range of Lu'an city. It indicated that there was a high degree of spatial variability in SOC content in this region, which mainly due to land use, topography, agricultural activities and the complexity of other factors. Topography factor affected more obviously than others under the larger landscape scale (county), but agricultural activities had the important influence in smaller scale;
     4. There were some differences in SOC content among soil classifications. The coefficient of variation in SOC within soil species (4.29%~83.78%, average 44.04%) is greater than that among soil types (32.00%); the soil organic carbon is a weighted average of 10.22 (g·kg-1), and coefficient of variation was 43.03% among soil classifications. Coefficient of variation in SOC under sub-class as a unit may be greater than that under lower taxa. Coefficient of variation (95.37%) among natural soils (e.g. widely distributed in the mountainous sub-soil and thick bone) showed larger than others, and also with the highest SOC (16.95±16.17 g·kg-1). The soil SOC of human use soils showed a lower coefficient of variation, with 11.97% only by rinse paddy soils sub-class. The coefficient of variation among sub-class was 58.75%. The coefficient of variation in SOC among soil types was also great, with the highest in mountain acid brown type (95.42%), and with the smallest in mound lime concretion black soil type (18.92%). Therefore, in taxa statistics, coefficient of variation of soil organic carbon content had the rising trend with the changes of taxa levels, which was determined by the topography of the study area, joint decisions and land use. Because the land use impact is reflected in the high-level unit, therefore, the SOC among the high-level taxa had a very high variability;
     5. We studied the changes of SOC content with the different scales in Huoshan County. The results showed that the SOC in the county's cropland showed an increase trend in recent 20 years, which indicated that soil organic carbon accumulated in this region's croplands, while the overall coefficient of variation of SOC showed a reduced trend. For example, the coefficient of variation of SOC content among species decreased from 48.62% in 1985 to 14.64% in average between 2005 and 2008. Within the county, the SOC content coefficient of variation was between 4.53%~14.91%, which induced by different scales of space. The results also showed that among the village group (villages) scale, variability of SOC was max; variability of SOC among township was lower than that among villages. Therefore, from the county scale for the quantification of cropland SOC, the town scale was more reliability than the village-scale. The impact factors of the changes of SOC content and its variability in county were mainly agricultural use and farmland capital construction. The soils planted tea and rice has the higher SOC. The SOC was effected significantly by agricultural management under county scale.
     Therefore, soil organic carbon changes with land use and agricultural management due to different space and time, the relationship between soil organic carbon dynamic, ecosystem function and agricultural productivity is still a need for advanced. The change of the regional soil carbon pool and the effects of human activities will continue to be the subject of future research under future agricultural development and climate change. In particular, the efforts of Characterization of quantitative analysis, climate change, land use change, human activity intensity and tillage management on soil organic carbon needs full attention in the future research of areas scale.
引文
1. Appsa M J, Kurzb W A, et al..Carbon budget of the Canadian forest product sector[J]. Environmental Science and Policy,1999, (2):25-41
    2. Aselmann I, Crutzen P J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions [J]. Journal of Atmospheric Chemistry,1989,8:307-358
    3. Batjesnh. Options for increasing carbon sequestration in West African soils:An exploratory study with special focus on Senegal [J]. Land Degrade, Dev,2001,12,131-142
    4. Berthrong S T, Jobbagy E G, Jackson R B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation [J]. Ecol Appl,2009,19,2228-2241
    5. Blanco-Can-qui H, LAL R. No-tillage and soil-profile carbon sequestration:an on-farm assessment[J]. Soil Science Society of America Journal,2005,80,201-213
    6. Boddey R M, Jantalia C P, Conceic P C, et al.. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture[J].Global Change Biol,2010,16,784-795
    7. Burke I C, Yonkr C M, Parton W J, et al.,.Texture, climate and cultivation effects on soil organic matter content in U.S. grassland soils[J]. Soil Science Society of America Journal,1989, (53):800-805
    8. Camberdella C A, Elliott E T. Carbon and nitrogen dynamics of some fraction from cultivated grassland soils [J]. Soil Science Society of America Journal,1994,58,123-130
    9. Chan K Y, Heenan D P, Oates A. Soil carbon fractions and relationship to soil quality, under different tillage and stubble management[J]. Soil & Tillage Research,2002, 63,133-139
    10. Chertov O G, Specom. A single tree model of pines and/raw humus soil ecosystem[J]. Ecological modeling,1990, (50):107-132/29
    11. Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science,2001,52,345-353
    12. Christensen B T. Physical fractionation of soil and organic matter in primary particle size and density separates [J]. Advance in Soil Science,1992,20,290
    13. Coleman,K, Jenkinson D S. RothC-26,3—A model for the turnover of carbon in soil. [C]// Powlson D S, Smith.P, Smith J U, (Eds,), Evaluation of Soil Organic Matter Models Using Existing Long- term Data sets, Proceedings of the NATO Advanced Research workshop, NATO ASI Series I, Springer-Verlag,Berlin,1996,38(1):237-246
    14. Constanza R, Arge R, Groot R, et al.. The value of the world's ecosystem services and natural capital [J]. Nature,1997,387:253-260
    15. Curtin D, Selles F, Wang H. Campbell C A, Biederbeck V O. Carbon dioxide emissions and transformation of soil carbon and nitrogen during wheat straw decomposition[J].Soil Science Society of American Journal,1998,62,1035-1041
    16. Davidson EA, Janssens IA.2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,440:165-173
    17. Davidson EA, Janssens IA, Luo Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10[J].Global Change Biology,2006,12:154-164
    18. Denman K L, Brasseur G, Chidthaisong A, et al. Couplings between Changes in the Climate System and Biogeochemistry, In:Solomon S, Qin D, Manning M, eds, Climate Change 2007:The Physical Science Basis, Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.2007
    19. Dixon R K, Brown S. Carbon pools and flux of global forest ecosystem[J]. Science,1994, 263,185-190
    20. Dolan M S, Clapp C E, Allmaras R R, et al. Soil organic carbon and nitrogen in a Minnesota soil a related to tillage, residue and nitrogen managemen[J]. Soil & Tillage Research,2006,89,221-231
    21. Douglas C L J, Rickman R W. Estimating crop residue decomposition from air temperature, initial nitrogen content, and residue placement [J].Soil Science Society of American Journal, 1992,56,272-278
    22. Elliott E T, Cambardella C A. Physical separation of soil organic matter[J]. Agriculture Ecosystem Environment,1991,34,407-419
    23. Esther G, Bas V W. Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955~2005)[J]. Geodema,2007,14,341-354
    24. Fabrizzi K P, Moron A, Garcia F O. Soil carbon and nitrogen organic fractions in degraded vs. non degraded mollisols in Argentina[J]. Soil Science Society of American Journal,2003, 67,1831-1841
    25. Fisher M J, Rao I M, Ayarza C E, et al. Carbon storage by introduced deep rooted grasses in the South American Savannas[J]. Nature,1994,371:236-238
    26. Fontaine S, Barot S, Barre P, et al. Stability of organic carbon in deep soil layers cont rolled by fresh carbon supply [J]. Nature,2007,450:277-280
    27. Franzluebbers A J, Haney R L, Honeycutt C W, et al.. Climatic influences on active fractions of soil organic matter[J]. Soil Biology & Biochemistry,2001,33:1103-1111
    28. Frolking S E, Mosier A R, Ojima D S et al. Comparision of N2O emissions from soils at three temperate agricultural sites:Simulations of year- round measurements by four models [J]. Nutrient Cycling in Agroecosystems,1998, (52):77-105
    29. Garten J,C T, Post W M Ⅲ, Hanson P J, et al.. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999,45:115-145
    30. Hansen S, Jensen H E, Nielsen N E, Svendsen H. DAISY-soil Plant Atmosphere System Model, NPo forskning fra Milj(?)styrelsen, A10[J]. Milj(?)ministeriet, Copenhagen,1990,272
    31. Harrison A F, Harkness D D, Bacon P J. The use of bomboo- 14C for studying organic matter and N and P [A]. Heal O W, eds, Nutrient Cycling in Terrestrial Ecosystems:Field Methods, Application and Interpretation [C]. Barking:Elsevier Applied Sci,1990
    32. Harsen S, Jensen H E, Nielsen N E, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY[J]. Fer Res,1991, (27):245-259
    33. Homann P S, Kapchinske J, Boyce A. Relations of mineral-soil C and N to climate and texture:regional differences within the conterminous USA[J]. Biogeochemistry,2007, 85(3):303-316
    34. Hook P B, Burke I C. Biogeochemistry in a short grass landscape:Control by topography, soil texture, and microclimate[J].Ecology,2000,81(10):2686-2703
    35. Houghton J T, Ding Y, Griggs D J.2001, Climate Change 2001 The Scientific Basis [M].New York Cambridge University Press,183-237
    36. Houghton J T, Jenkins G J, Ephraums J J. Climate Change The IPCC Scientific Assessment [M]. New York:Cambridge University Press,1990
    37. Hoyle F C, Murphy D V. Seasonal changes in microbial function and diversity associated with stubble retention versus burning[J]. Australian Journal of Soil Research 2006,44(4):407-423
    38. Hu S, Zhang W. Impact of global change on biological processes in soil:Implications for agro-ecosystem management[J]. Journal of Crop Improvement,2004, (12):289-314
    39. Huang Y, Yu Y Q, Zhang W, et al. Agro-C:a bio-geophysical model for simulating the carbon budget of agro-ecosystems [J]. Agr Forest Meteorol,2009,149:106-129
    40. Huang Y, Zhang W, Sun W J, et al.. Net primary production of Chinese croplands from 1950 to 1999[J]. Ecol Appl,2007,17:692-701
    41. Huang Yao, LIU Shi-liang, SHEN Qi-rong, et al.. Model establishment for simulating soil organic carbon dynamics [J]. Scientia Agricultura Sinica,2001,34(5):532-536
    42. Huang Yao, Zhou-guang-sheng, WU Jin-shui, et al.. Modeling Carbon Budgets of Terrestrial Ecosystems of China[M]. Beijing:Science Press,2008
    43. IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan,2006
    44. James J M, Canziani O F, Leary N A, et al..2001, Climate Change 2001:Impacts, Adaptation and Vulnerability[M]. Cambridge:Cambridge University Press,31-36
    45. Jenkinson D S. Studies on the decomposition of plant material in soil Ⅱ, Partial sterilization of soil and the soil biomass[J]. J,Soil,Sci,1966,(17):280-302
    46. Jenkinson D S. The turnover of organic carbon and nitrogen in soil[J]. Philo,Trans, R, SOC, B,1990,329:361-368
    47. Jenny H. Factors of Soil Formation[M]. New York:McGraw-Hill,1941:22-75
    48. Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Eco-logical Applications,2000,10:423-436
    49. Jones M B, Donnelly A. Carbon sequestration in temperate grass-land ecosystems and the influence of management, climate and elevated CO2[J]. New Phytologist,2004,164 (3): 423-439
    50. Kaonga ML, Coleman K. Modeling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26,3model[J].Forest Ecology and Management, 2008,(256):1160-1166
    51. Kemp P R, Waldecker D G, Owensby C E, et al.. Effect of elevated CO2 and nitrogen fertilization pretreatments on decomposition tall-grass prairie leaf litter[J]. Plant Soil,1994, 165,115-127
    52. Kern J S, Johnson M G. Conservation tillage impacts on national soil and atmospheric carbon levels [J]. Soil Science Society of America Journal,1993,57:200-210
    53. Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on globe warming[J]. Biogeochemistry,2000,48(1):21-25
    54. Kirschbaum MUF. Soil respiration under prolonged soil warming:Are rate reduction caused by acclimation or substrate loss [J]. Global Change Biology,2004,10:1870-1877
    55. Knorr W, Heimann M. Uncertainties in global terrestrial biosphere modeling, Part Ⅰ:a comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme [J]. Global Biogeochemistry,2001a,15:207-225
    56. Knorr W, Heimann M. Uncertainties in global terrestrial biosphere modeling, Part Ⅱ:global constraints for a process-based vegetation model[J]. Global Biogeochemistry,2001b, 15:227-246
    57. Kuzyakov Y, Domanski G. Carbon input from plants into the soil, Review[J]. Plant Nutrient and Soil Science,2000,163:421-431
    58. Lal R. Forest soil and carbon sequestration[J]. Forest Ecology and Management,2005,220, 242-258
    59. Lal R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment[J]. Soil & Tillage Research,1997,43:81-107
    60. Lal R. Soil carbon dynamics in cropland and rangeland[J]. Environmental Pollution,2002, 116:353-362
    61.Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science,2004,304(11):1623-1627
    62. Lal R. Soil erosion and the global carbon budget[J]. Environment International,2003,29(4): 437-450
    63. Lefroy R D B, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance [J]. Plant and Soil, 1993,155/156:399-402
    64. Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events:I Model structure and sensitivity[J]. Journal of Geophysical Research,1992, 97,9759-9776
    65. Li C S, Zhang Y H, Frolking S, et al.. Modeling soil organic carbon change in croplands of China[J]. Ecol Appl,2003,13:327-336
    66. Li C, Folkring S, Folkring T A. A model of nitrous oxide evolution from soil driven by rainfall events-1:Model structure and sensitivity[J]. Journal of Geophysical Res,1992, (97): 9759-9776
    67. Li C, Zhuang Y H, Frolking S, Galloway J, Harriss R, Moore B, Ⅲ, Schimel D, Wang X K. Modeling soil organic carbon change in croplands of China[J]. Ecological Applications, 2003,13(2):327-336
    68. Liao J D, Boutton TW, Jastrow J D. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland[J]. Soil Biology & Bio-chemistry,2006,38 (11):3184-3196
    69. Lu F, Wang X, Han B, et al.. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland[J].Glob Change Bio,2009,15:281-305
    70. Mannering J V, Fenster C R. What is conservation tillage?[J]. Soil Water Conservation, 1987,38:141-143
    71. Mcdaniel P A and Munn L C. Effect of temperature on the relationship between organic carbon and texture in Mollisoils and Aridisoils[J]. Soil Science Society of America Journal,1985, (49):1486-1489
    72. Milne E, Adamat R A, Batjes N H, et al.. National and sub- national assessments of soil organic carbon stocks and changes:The GEFSOC modeling system[J]. Agriculture, Ecosystems and Environment,2007,(122):3-12
    73. Mo X G,Liu S X Lin Z H, et al. Prediction of crop yield, water consumption and water use efficiency with a SVAT—crop growth model using remotely sensed data on the North China Plain[J].EcologicalModelling,2005,183:301-322
    74. Mo X G, Liu S X, Lin Z H, et al. Simulating temporal and spatial variation of evapotransp iration over the Lushi basin[J]. Journal of Hydrology,2004,285:125-142
    75. Mosier A R. Soil processes and global change[J]. Biology and Fertility,1998,27(3):221-229
    76. Ni J, Carbon storage in terrestrial ecosystems of China:Estimates at different spatial resolutions and their responses to climate change [J]. Climatic Change,2001,49:339-358
    77. Odes J M. An introduction to organic matter in mineral soil[A]. Minerals in Soil Environments [C] Madison, W I:SSSA Publication Incoporation,1989
    78. Pacala S W. Hurtt G C, Baker D, et al.. Consistent land- and atmosphere-based US carbon sink estimates[[J].Science,2001,292:2316-2320
    79. Pan G X, Li L Q, Wu L S, Zhang X H. Storage and sequestration potential of topsoil organic carbon in China's paddy soils[J].Global Change Biology,2003,10:79-92
    80. Pan G X, Xu X W, Smith P, et al.. An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring[J]. AgrEcosystm Environ,2010,136:133-138
    81. Pan Genxing, Li Liangqing Zhang Qi, et al.. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration[J]. Journal of Environmental Science,2005,17(1):1-7
    82. PAN Gen-xing. Soil Science of Earth Surface System[M]. Beijing Geological Publishing House,2000
    83. Parton W J, Scurlock J MO, Ojima D S, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J].Global Biogeochemical Cycles,1993,7(4):785-810
    84. Paul E S, Ack W. Assessing Brazil carbon budget I. Biotic carbon pools [J].Forest Ecology and Management,1995,75:77-86
    85. Paul K I, Polglase P J, Nyakuengama J G, et al.. Change in soil carbon following afforestation[J]. Forest Ecol Manage,2002,168:241-257
    86. Penman J, Gytarsky M, Hiraishi T, et al.. Good practice guidance for land use, land-use change and forestry, Institute for Global Environmental Strategies (IGES),2003, http:// www.ipcc-nggip.imges.or.jp
    87. Percival H J, Parfittrl, Scottna, Factors controlling soil carbon levels in New Zealand grasslands:is clay content important?[J]. Soil Science Society of America Journal,2000,64: 1623-1630
    88. Piao S L, Fang J Y, Ciais P, et al.. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458:1009-1013
    89. Post W M,Kwon K C. Soil carbon sequestration and land-use change:processes and potential[J]. Global Change Biology,2000, (6):317-327
    90. Post W M, Kwon K C. Soil carbon sequestration and land-use change:processes and potential[J]. Glob Change Biol,2000,6:317-328
    91. Post W M, Mann L K. Changes in soil organic carbon and nitrogen as a result of cultivation [A].In:Bouwman A F, Soils and the greenhouse effect[M]. New York:John Wiley and Sons,1990,401-406
    92. Raich J W and Potter C S. Global patterns of carbon dioxide Emissions from soil[J].Global Biogeochemical Cycles,1995,9(1):23-36
    93. Richter D D, Markewitz D, Trumbore S E, et al.. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature,1999,400:56-58
    94. Rickman R W, Douglas C L, Albrecht S L, Berc J L. Tillage, crop rotation, and organic amendment effect on changes in soil organic matter [J]. Environmental Pollution,2002,116: 405-411
    95. Rickman R W, Douglas C L, Albrecht S L, Bundy L G, Berc J. CQESTR:a model to estimate carbon sequestration in agricultural soils[J]. Journal of Soil and Water Conservation, 2001,56(3):237-242
    96. Roldan A, Caravaca F, Hernandez M T, et al., No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristic under maize in Patzcuaro watershed [J], Soil and Tillage Research,2003,172:65-73
    97. Romkens P, van der Plicht J, Hassink J. Soil organic matter dynamics after the conversion of arable land to pasture[J].Biology and Fertility of Soils,1999,28(3):277-284
    98. Sahrawat K L. Organic matter accumulation in submerged soils[J]. Advances in Agronomy, 2004,81:169-201
    99. Schlesingerwh. Evidence from chrono sequence studies for a low carbon storage potential of soil[J]. Nature,1990,348:232-234
    100. Sherrod L A, Peterson G A, Westfall D G, et al.. Cropping intensity enhances soil organic carbon and nitrogen in a no- till agro-ecosystem[J]. Soil Science Society of American Journal,2003,67:1533-1543
    101. Smith JL, Halvorson JJ,Bolton JH. Soil properties and microbial activity across a 500 m elevation gradient in a semi — arid environment[J].Soil Biology and Biochemistry, 2002,34:1749-1757
    102. Smith P, Powlson D S. Considering manure and carbon sequestration[J]. Science.2000: 287-427
    103. Song G H, Li L Q, Pan G X et al. Topsoil Organic carbon storage of China and its loss by cultivation[J].Biogeochemistry,2005,74:47-62
    104. Sperow M, Eve M, Paustian K. Potential soil C sequestration on U,S, Agricultureal soils[J].Climatic Change,2003,57:319-339
    105. Sun W J, Huang Y, Zhang W, et al. Carbon sequestration and its potential in agricultural soils of China [J].Glob Biogeochemitry,2010,24:GB3001,doi:10,1029/2009GB003484
    106. Tan Z, Lal R, Owens L, et al. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice[J]. Soil and Tillage Research,2007,92(1-2):53-59
    107. Tang H J, Qiu JJ, Van Ranst E, Li C S. Estimations of soil organic carbon storage in cropland of China based on DNDC model [J]. Geoderma,2006,134:200-206
    108. Thorney J H M, Verberne E L J. A model of nitrogen flows in grass land[J]. Plant Cell and Environment,1989,(12):863-886
    109. Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility [J]. Nature,1993,371:783-785
    110. Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices[J]. Nature,2000,418:671-677
    111. Torbert H A, Prior S A, Rogers H H, et al.. Review of elevated atmospheric CO2 effects on agro-ecosystems:residue decomposition processes and soil C storage[J].Plant and Soil,2000, 224:59-73
    112. Trumbore S. Carbon respired by terrestrial eco-system:Recent progress and challenges [J]. Global Change Biology,2006,12:141-153
    113. U. S. Environmental Protection Agency, Inventory of U. S, greenhouse gas emissions and sinks:1990~2006[M]. Washington, DC:2008
    114. Valentini R, Matteucci G, Dolman A J, et al.. Respiration as the main determinant of carbon balance in European forests [J].Nature,2000,404:861-865
    115. West T O, Post W M. Soil organic carbon sequestration rates by tillage and crop rotation:A global data analysis[J]. Soil Science Society of America Journal,2002,66:1930-1946
    116. Xie Z B, Zhu J G, Liu G, et al.. Soil organic carbon stocks in China and changes from 1980s to 2000s, Glob Change Biology[J].2007,13:1989-2007
    117. Yu Y, Guo Z, Wu H, et al.. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000, Glob—Bio-geo-chemitry,2009,23:GB2021, doi:10,1029/2008GB003428
    118. YU Yong- qiang, Huang Yao, Zhang Wen. Modeling farmland soil organic carbon dynamics in eastern China:Model validation and sensitivity analysis[J].Geography and Geo-Information Science,2006,22(6):83-88
    119. YU Yong-qiang, Huang Yao, Zhang Wen, et al.. Modeling farmland soil organic carbon dynamics in eastern China:Spatial-temporal pattern[J].Geography and Geo- Information Science,2007,23(1):97-100
    120. Zhang Wen, Yu Yongqiang, Sun Wen-juan, et al. Simulation of soil organic carbon dynamics in Chinese rice paddies from 1980 to 2000[J]. Pedosphere,2007,17(1):1-10
    121.蔡海生,赵小敏,朱德海.鄱阳湖湿地整理与可持续管理探讨[J].人民长江,2007,2,38(2):73-76
    122.蔡述明,杜耘,曾艳红.长江中下游水土环境的主要问题及其对策[J].长江流域资源与环境,2002,11(6):564-568
    123.曹丽花,赵世伟.土壤有机碳库的影响因素及调控措施研究进展[J].西北农林科技大学学报,2007,35(3):177-187
    124.长江水利委员会.长江流域地图集[M].北京:中国地图出版社,1999
    125.陈晨,梁银丽,吴瑞俊,等.黄土丘陵沟壑区坡地土壤有机碳变化及碳循环初步研究[J].自然资源学报,2010,25(4):668-676
    126.池富旺,张培松,罗微,等.中大尺度下橡胶园土壤全氮和有机质含量的空间分布特征[J].热带作物学报,2009,30(5):613-619
    127.陈静,王学军,陶澍.天津地区土壤有机碳和粘粒对PAHs纵向分布的影响[J].环境科学研究,2005,18(4):79-83
    128.陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004
    129.陈庆强,沈承德,易惟熙.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563
    130.陈全胜,李凌浩,韩兴国.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系[J].生态学报,2004,24(4):831-836
    131.陈小梅,刘菊秀,邓琦,等.降水变率对森林土壤有机碳组分与分布格局的影响[J].应用生态学报,2010,21(5):1210-1216
    132.陈玉华,李俊涛,徐建军.垸田开发与江汉平原湿地演化[J].北华大学学报(自然科学 版),2007,10,8(5):443-446
    133.陈竹青.长江中下游生态径流过程的分析计量[D].河海大学,2005,6,13-21
    134.慈恩,杨林章,程月琴,等.耕作年限对水稻土有机碳分布和腐殖质结构特征的影响[J].土壤学报,2008,45(5):950-956
    135.董元华, 徐琪.水成土壤演化中有机质含量变化的研究[J].生态学报,1990,10(4):323-327
    136.窦鸿身, 姜加虎.洞庭湖[M].合肥:中国科学技术大学出版社,2000:344
    137.段文霞,朱波,刘锐,等.人工柳杉林生物量及其土壤碳动态分析[J].北京林业大学学报,2007,29:55-59
    138.范广阔.更新方式对杉木林土壤有机碳质量和土壤呼吸的影响[D].福建农林大学,2008
    139.范俊方,王伯先.浙北嘉湖平原沉积环境与土壤发育的探讨[J].土壤学报,1993,30(1):52-59
    140.方华军,杨学明,张晓平,等.坡耕地黑土有机碳空间异质性和格局研究[J].水土保持通报,2005,25(3):20-24
    141.郭广芬.未来气候变化对我国土壤有机碳储藏的影响[D].中国气象科学研究院,2006
    142.郭胜利,马玉红,车升国,等.黄土区人工与天然植被对凋落物量和土壤有机碳变化的影响[J].林业科学,2009,10(10):14-18
    143.郭熙,郭晓敏,谭雪明,陈防,农田养分空间变异研究——以江西省泰和县苏溪镇为例[J],江西农业大学学报,2004,26(1):73-77
    144.国家计委气候办, 加拿大森林碳收支与土壤碳动态研究进展介绍[EB/OL], http:// www,ccchina,gov,cn/cn/News Info,asp?News Id=4183
    145.何淑勤,郑子成,不同土地利用方式下土壤团聚体的分布及其有机碳含量的变化[J],水土保持通报,2010,30(1):7-10
    146.侯传庆,上海土壤[M],上海:上海科技出版社,1995
    147.胡春华,朱海虹,鄱阳湖典型湿地沉积物粒度分布及其动力解释[J],湖泊科学,1995,7(1):21-32
    148.胡宁,娄翼来,梁雷,保护性耕作对土壤有机碳、氮储量的影响[J],生态环境学报,2009,18(6):223-226
    149.黄鸿翔,中国土壤资源现状、问题及对策[J],土壤肥料,2005,(1):1-6
    150.黄山,芮雯奕,彭现宪,等,稻田转变为旱地下土壤有机碳含量及其组分变化特征[J],环境科学,2009,30(4):1146-1151
    151.黄小洋,钱海燕,鄱阳湖湿地生态安全现状调研[J],苏南科技开发,2007,8,25-27
    152.黄雪夏,倪九派,高明,等,重庆市土壤有机碳库的估算及其空间分布特征[J],水土保持学报,2005,19(1):54-58
    153.黄耀,关于中国陆地生态系统碳循环研究的几点思考[J],世界科技研究与发展,2001,23(1):66-68
    154.黄耀,刘世梁,沈其荣,等,环境因子对农业土壤有机碳分解的影响[J], 应用生态学报,2002,(13)6:709-714
    155.黄耀,刘世梁,沈其荣,等,农田土壤有机碳动态模拟模型的建立[J],中国农业科学,2001,34(5):532-536
    156.黄耀,孙文娟,近20年来中国大陆农田表土有机碳含量的变化趋势[J],科学通报,2006,51,750-763
    157.黄耀,孙文娟,张稳,于永强,中国陆地生态系统土壤有机碳变化研究进展[J],中国科学:生命科学,2010,40(7):577-586
    158.贾树龙,任图生, 保护性耕作研究进展及前景展望[J],中国生态农业学报,2003,11(3):152-154
    159.姜小三,潘剑君,李学林,江苏表层土壤有机碳密度和储量估算和空间分布分析[J],土壤通报,2005,8,36(4):501-503
    160.解宪丽, 孙波,周慧珍,不同植被下中国土壤有机碳的储量与影响因子[J],土壤学报,2004,9,41(5):687-699
    161.孔玉华,姚风军,鹏爽,等,不同利用方式下草地土壤碳积累及汇/源功能转换特征研究[J],草业科学,2010,27(4):40-45
    162.雷咏雯,危常州,李俊华,不同尺度下土壤养分空间变异特征的研究[J],土壤,2004,36(4):376-381
    163.李长生,土壤碳储量减少:中国农业之隐患—中美农业生态系统碳循环对比研究[J],第四纪研究,2000,20(4):345-350
    164.李海波,韩晓增,王风,不同土地利用下黑土密度分组中碳、氮的分配变化[J], 土壤学报,2008,45(1):112-119
    165.李江涛,张斌,彭新华,施肥对红城性水稻土顺粒有机物形成及团聚体稳定性的影响[J],土壤学报,2004,41(6):912-917
    166.李景宜,陕西渭河下游湿地环境风险因素分析[J],地理科学,2007,27(3):372-375
    167.李菊梅, 王朝辉,李生秀, 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J],土壤学报,2003,40(2):232-238
    168.李克让,王绍强,曹明奎,中国植被和土壤碳储量[J],中国科学,2003,33(1):72-80
    169.李忠佩, 王效举, 红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[J],应用生态学报,1998,9(4):365-370
    170.林培松,高全洲,韩江流域典型区几种森林土壤有机碳储量和养分库分析[J],热带地理,2009,29(4):329-333
    171.刘海燕,曹艳英,汉平原湿地开发及其对环境的影响[J],地理学与国土研究,1998,14(2):16-20
    172.刘纪远,王绍强,陈镜明,1990~2000年中国土壤碳氮蓄积量与土地利用变化[J],地理学报,2004,59:483-496
    173.刘建业,秦泰毓,黄金平,等,不同利用方式对都阳湖湖滩草洲土壤生态系统影响的研究——圩区土壤生态系统的特点及其演变[J],农村生态环境,1987,2,25-29
    174.刘全友,童依平,北方农牧交错带土地利用现状对生态环境变化的影响[J],生态学报,2003,23(5):1025-2030
    175.刘章勇,江汉平原涝渍地生态恢复与开发利用技术研究[D],中国农业大学,2004,6
    176.刘子刚,张坤民,黑龙江省三江平原湿地土壤碳储量变化[J],清华大学学报(自然科学版),2005,45(6):788-791
    177.陆彦椿,长江中下游低洼圩区土壤改良与增产潜力[J],土壤,1994,3
    178.毛建华,邱小剑,游海,等,鄱阳湖典型湿地土壤空间分布格局研究[J],江西师范大学学报(自然科学版),2007,3,31(2):215-218
    179.孟凡德,长江中下游湖泊沉积物理化性质与磷及形态的关系研究[D],首都师范大学,2005,4,25-27
    180.缪琦,史学正,于东升,等,气候因子对森林土壤有机碳影响的幅度效应研究[J],土壤学报,2010,47(2):270-278
    181.莫兴国,薛玲,林忠辉,华北平原1981—2001年作物蒸散量的时空分异特征[J],自然资源学报,2005,20(2):181-187
    182.庞统, 杨国清,雷州林业局龙门林场土壤分类、性状及可持续利用对策研究[J],中南林业调查规划,2003,22(4):50-55
    183.潘根兴,李恋卿,张旭辉,土壤有机碳与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议[J], 南京农业大学学报,2002,25(3):100-109
    184.潘根兴,赵其国,中国农田土壤碳库演变研究:全球变化和国家粮食安全[J], 地球科学进展,2005,20(4):384-393
    185.潘根兴,中国土壤有机碳和无机碳库量研究[J],科技通报,1999,(15):330-332
    186.潘竟虎,王建,王建华,长江、黄河源区高寒湿地动态变化研究[J],湿地科学,2007,5(4):298-303
    187.彭琴,董云社,齐玉春,氮输入对陆地生态系统碳循环关键过程的影响[J],地球科学进展,2008,23(8):874-882
    188.邱建军,唐华俊,北方农牧交错带耕地土壤有机碳储量变化模拟研究—以内蒙古自治区为例[J],中国生态农业学报,2003,11(4):86-88
    189.邱建军,王立刚,唐华俊,东北三省耕地土壤有机碳储量变化的模拟研究[J],中国农 业科学,2004,37(8):1166-1171
    190.邵国生,张建波,洞庭湖湿地农业生态系统特点及调控[J],资源科学,1992,16(1):48-52
    191.邵月红,潘剑君,孙波,不同森林植被下土壤有机碳的分解特征及碳库研究[J],水土保持学报,2005年6月,19(3):24-28
    192.盛婧,赵德华,陈留根,农业生产措施对土壤碳库的影响[J],生态环境,2006,15(2):386-390
    193.沈南,西南地区几类土壤的特性和系统分类研究[D], 西南农业大学,2008,6
    194.师育新, 安徽巢湖杭埠河流域环境变化的湖泊沉积地球化学记录[D],中国科学院广州地球化学研究所,2006,6,12
    195.史小丽, 秦伯强,长江中下游地区湖泊的演化及生态特性[J],宁波大学学报(理工版),2007,6,20(2):221-226
    196.宋长春,沼泽湿地生态系统土壤CO2和CH4排放动态及影响因素[J],环境科学,2004,4:1-6
    197.苏永中,赵哈林,土壤有机碳储量、影响因素及其环境效应的研究进展[J],中国沙漠,2002,22(3):220-228
    198.孙维侠,史学正,于东升,我国东北地区土壤有机碳密度和储量的估算研究[J],土壤学报,2004,41(2):298-330
    199.唐国勇,彭佩钦,苏以荣,洞庭湖区不同利用方式下农田土壤有机碳含量特征[J],长江流域资源与环境,2006,15(2):219-222
    200.陶波,葛全胜,李克让,邵雪梅,陆地生态系统碳循环研究进展[J],地理研究,2001,20(5):564-573
    201.田应兵,若尔盖高原湿地生态系统的与土壤碳、硒变化的研究[D],西南农业大学,2003,6,21
    202.田应兵, 宋光煜, 艾天成,湿地土壤及其生态功能[J],生态学杂志,2002,21(6):36-39
    203.佟守正,吕宪国,松嫩平原重要湿地恢复研究进展[J],地理科学,2007,27(1):127-128
    204.童成立,吴金水,郭胜利,向万胜,刘守龙,土壤有机碳周转SCNC模型的研究与开发[J],计算机与农业,2001,12,10-12/311
    205.万猛, 田大伦, 樊巍, 豫东平原农林复合系统土壤有机碳时空特征[J],中南林业科技大学学报,2009,29(2):1-5
    206.王春梅,刘艳红,邵彬,量化退耕还林后土壤碳变化[J],北京林业大学学报,2007,29:112-119
    207.王丹丹,史学正,于东升,等,东北地区早地土壤有机碳密度的主控自然因素研究[J],生态环境学报,2009,18(3):1049-1053
    208.王晶,张旭东,解宏图,等,现代土壤有机质研究中新的量化指标概述[J],应用生态学报,2003,14(10):1809-1812
    209.王立刚, 邱建军, 高产粮区农业生态系统土壤碳氮循环的模拟研究—以河北省曲周县为例[J],中国农业大学学报,2003,8(增刊):31-35
    210.王丽丽,宋长春,葛瑞娟, 宋艳宇,刘德燕,三江平原湿地不同土地利用方式下土壤有机碳储量研究[J],中国环境科学,2009,29(6):656-660
    211.王平,李凤民,刘淑英,长期施肥对土壤生物活性有机碳库的影响[J],水土保持学报,2010,2,24(1):224-228
    212.王绍强,陈育峰,陆地表层碳循环模型研究及其趋势[J],地理科学进展,1998,17(4):64-72
    213.王绍强,刘纪远,于贵瑞,中国陆地土壤有机碳蓄积量估算误差分析[J],应用生态报,2003,14(5):797-802
    214.王绍强, 周成虎, 李克让,中国土壤有机碳库及空间分布特征分析[J],地理学报,2000,55(5): 533-544
    215.王绍强,周成虎,夏洁,碳循环研究的最新动向[J],地球科学进展,2000,15(5):592-597
    216.王学雷,许厚泽,蔡述明,长江中下游湿地保护与流域生态管理[J],长江流域资源与环境,2006,15(5):564-568
    217.王毅勇,杨青,王瑞山,三江平原大豆田氮循环模拟研究[J],地理科学,1999,19(6):555-558
    218.王永芬,莫兴国,王艳芬, 内蒙古草原生态系统蒸散及其主要分量的年级和季节变化[J], 植物生态学报,2008,32(5):1052-1060
    219.魏孝荣,邵明安,高建伦,黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J],环境科学,2008,29(10):2879-2884
    220.吴乐知,蔡祖聪,中国土壤有机质含量变异性与空间尺度的关系[J],地球科学进展,2006,21(9):965-972
    221.吴雅琼,刘国华,傅伯杰,等,森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J],生态学报,2007,27(11):4678-4684
    222.武天云,黄土高原和北美大平原主要农业土壤的有机碳现状和动态对比研究[D],兰州大学,2003
    223.向成华,栾军伟,骆宗诗,宫渊波,川西沿海拔梯度典型植被类型土壤活性有机碳分布[J],生态学报2010,30(4):1025-1034
    224.肖飞,洪湖湿地结构与生态功能评价及系统稳定性研究[D],中国科学院测量与地球科学研究所,2003,6,15-27
    225.熊汉锋,梁子湖湿地土壤—水—植物系统碳氮磷转化研究[D],华中农业大学,2005,10
    226.徐炳成,梁银丽,黄土高原旱塬农田生态系统碳氮循环特征[J],生态农业研究,2000,8(2):42-46
    227.徐华君,殷志刚,阿尔泰山区土壤有机碳组成及分布规律研究[J],干旱地区农业研究,2008,26(1):33-36
    228.徐琪,长江中下游湿地生成演变与“四水”关系[J],土壤通报,1992,23(6):241-243
    229.许泉, 芮雯奕, 刘家龙, 等, 我国农田土壤碳氮耦合特征的区域差异[J],生态与农村环境学报,2006,22(3):57-60
    230.许信旺, 潘根兴,侯鹏程,不同土地利用对表层土壤有机碳密度的影响[J],水土保持学报,2005,19(6):193-195/200
    231.杨达源, 李徐生, 张振克,长江中下游湖泊的成因与演化[J], 湖泊科学,2000,12(3):226-232
    232.292, 杨景成,韩兴国,黄建辉,等,土壤有机质对农田管理措施的动态响应[J],生态学报,2003,23(4):787-796
    233.杨奇勇, 杨劲松,不同尺度下耕地土壤有机质和全氮的空间变异特征[J],水土保持学报,2010,24(3):100-104
    234.杨青,刘吉平,中国湿地土壤分类系统的初步探讨[J],湿地科学,2007,5(2):111-116
    235.杨秀华,丁青坡,石灰岩类土壤基层分类在地力评价中的应用——以辽宁省瓦房店市为例[J],科技创新导报,2010,18,6
    236.杨学明,张晓平,方华军,农田土壤固碳对缓解全球变化的意义[J],地理科学,2003,23(1):101-1061
    237.杨学明,张晓平,方华军,用RothC-26,3模型模拟玉米连作下长期施肥对黑土有机碳的影响[J],中国农业科学,2003,36(11):1318-1324
    238.尹云锋,蔡祖聪,钦绳武,长期施肥条件下潮土不同组分有机质的动态研究[J],应用生态学报,2005,16(5):875-878
    239.于贵瑞,全球变化与陆地生态系统碳循环与碳蓄积[M],北京:气象出版社,2003:275-297
    240.于永强,黄耀,张稳,等,华东地区农田土壤有机碳时空格局动态模拟研究[J],地理与地理信息科学,2007,1,23(1):7-10
    241.于永强,黄耀,张稳,华东地区农田土壤有机碳动态模拟研究——模型的验证与灵敏度分析[J],地理与地理信息科学,2006,22(6):83-88
    242.于永强,黄耀,张稳,华东地区农田土壤有机碳时空格局动态模拟研究[J],地理与地理信息科学,2007,23(1):97-100
    243.苑韶峰,杨丽霞,土壤有机碳库及其模型研究进展[J],土壤通报,2010,6,41(3):738-743
    244.展争艳,李小刚,张德呈,利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响[J],土壤学报,2005,42(5):777-782
    245.张福春,朱志辉,中国作物的收获指数[J],中国农业科学,1990,23:83-87
    246.张甘霖,何跃,龚子同,人为土壤有机碳的分布特征及其固定意义[J],第四纪研究,2004,24(2):149-159
    247.张甘霖,杜国华,龚子同,区域性土壤形成特征及其在土壤基层分类和土壤质量评价中的应用[J], 山地学报,2002,20(2):170-175
    248.张国雄,江汉平原垸田特征及其在明清时期的发展演变(续)[J],农业考古,1989(2):238-248
    249.张国雄,江汉平原垸田特征及其在明清时期的发展演变[J],农业考古,1989(1)227-233
    250.张剑, 杉木人工林土壤有机碳动态及其稳定性研究[D],中国科学院沈阳应用生态研究所,2008
    251.张金波,宋长春,杨文燕,三江平原沼泽湿地开垦对表土有机碳组分的影响[J],土壤学报,2005,42(5):857-859
    252.张君, 宫渊波, 王巧红, 土壤碳现状及其对全球变化的响应[J], 四川林业科技,2005,26(5):56-611
    253.张林,孙向阳,乔永,高程达,曹吉鑫,阿拉塔,宝音贺希格, 不同放牧强度下荒漠草原土壤有机碳及其δ13C值分布特征[J], 水土保持学报,2009,23(6):149-153
    254.张琪,李恋卿,潘根兴,等,近20年来宜兴市域水稻土有机碳动态及其驱动因素[J],第四纪研究,2004,24(2):236-242
    255.张小全,陈先刚,武曙红,土地利用变化和林业活动碳贮量变化测定与监测中的方法学问题[J],生态学报,2004,24:2068-2073
    256.张学雷, 陈杰, 张甘霖, 海南岛不同地形上某些土壤化学性质的多样性分析[J],应用生态学报,2004,15(8):1368-1372
    257.张勇,史学正,赵永存,等,滇黔桂地区土壤有机碳储量与影响因素研究[J],环境科学,2008,29(8):2314-2319
    258.章明奎,砂质土壤不同粒径颗粒中有机碳、养分和重金属状况[J],土壤学报,2006,43(4):584-591
    259.周纯亮,吴明,刘满强,胡锋,中亚热带3种人工林土壤有机碳含量与碳密度的动态变化[J],土壤通报,2010,41(3):568-572
    260.周广胜,张新时,郑元润.中国陆地生态系统对全球变化的反应模式研究进展[J].地理科学进展,1997,12(3):270-275/29
    261.周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105
    262.周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J].植物营养与肥料学报,2006,12(6):765-771
    263.周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734
    264.周晓宇,张称意,郭广芬.气候变化对森林土壤有机碳贮藏影响的研究进展[J].应用生态学报,2010,21(7):1867-1874
    265.朱雪竹,黄耀,杨新中.模拟酸雨对不同土壤有机碳和作物秸秆分解的影响[J].应用生态学报,2009,20(2):480-484
    266.庄亚辉.全球生物地球化学循环研究的进展[J].地学前缘,1997,4(1):163-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700