三峡库区不同厚度紫色土坡面水文过程及侵蚀响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在水文土壤学的理论框架下,以紫色土剖面构造(包括土层厚度,层次,界面,孔隙,结皮,根系等)对紫色土坡面水文过程和侵蚀过程的影响机理为主要研究内容,在原位小区尺度紫色土坡面上,对典型厚度紫色土坡面水文和侵蚀过程进行了初步研究。通过野外调查和模拟降雨试验,初步得出了典型厚度紫色土坡耕地坡面水文过程和产流机制,揭示了地表径流和壤中流共同作用下紫色土坡面土壤侵蚀发生发展过程;研究了不同起始条件(降雨强度和地表结皮)对坡面薄层紫色土水分和壤中流过程的影响;探讨了紫色土性质与坡面水文和侵蚀过程间的内在联系,阐明了紫色土剖面构造对土壤过程的深刻影响。通过开展以上内容研究,探讨了紫色土坡面地表径流和壤中流共同作用下的土壤侵蚀机理,深化了对紫色土坡面产流和侵蚀机理的认识。论文主要结果如下:
     (1)所有小区土壤均表现为土体砾石含量高,土壤颗粒以砂粒和粉粒为主,剖面层次发育程度低,具有典型的幼年土特征;土层厚度为23cm,31cm以及45cm小区不含耕作淀积层,为新成土,而59cm和76cm小区存在较明显的耕作淀积层,为淋溶土,说明土层越厚的紫色土具有相对高的土体发育程度。所有小区耕作层土壤具有较高的饱和导水率(34mmh-1~78mmh-1之间),但随土层深度的增加,饱和导水率均表现出逐渐下降的趋势,然而,薄层土壤剖面各土层之间下降幅度大,厚层土壤剖面土层之间变化较为平缓。
     (2)在所有场次降雨过程中,所有降雨分配组分均与土层厚度间表现出线性相关性:地表径流和土壤蓄水量随土层厚度的增加而增加,壤中流和深层入渗量则随土层厚度的增加而减少。厚层紫色土坡面比薄层紫色土坡面表现出更高的地表径流量和土层蓄水能力,而壤中流和深层入渗则显著小于薄层紫色土。运用水文土壤学的方法,通过野外入渗试验和模拟降雨试验在小区尺度上探讨了设定雨强60mm h-1,历时2h恒雨强条件下,地表裸露的坡耕地上典型厚度紫色土坡耕地坡面产流特征。结果表明:对于地表径流,土层厚度为23cm小区表现为蓄满产流,而土层厚度为45cm和76cm小区均表现为超渗产流;对于壤中流,土层厚度为76cm小区以基质流为主,而土层厚度为23cm小区则表现出明显的优先流特征,45cm小区则在A层以基质流为主,在AC层以优先流为主。不同厚度紫色土剖面构造的差异是导致小区间水文过程和产流机制差异的主要原因。
     (3)不同雨强条件下,薄层紫色土小区存在比厚层小区更加明显的壤中流和深层入渗等水文过程,薄层小区侵蚀总量均显著小于厚层小区。侵蚀总量从23cm小区60mmh-1雨强条件下的105gm-2h-1增加到76cm小区120mm h-1雨强条件下的4220gm-2h-1。23cm,31cm小区随雨强的增加地表侵蚀强度增加幅度不大,表现出较强的抗侵蚀能力,相反,45,59,76cm小区随雨强的增加侵蚀速率急剧增加,反映出较弱的抗侵蚀能力。
     (4)通过原位人工模拟降雨试验,运用数理统计方法对描述土壤水分过程和壤中流过程的参数进行了分析,定量研究了降雨强度和表土结皮程度(用0-5mm表土容重表征)对薄层紫色土坡面土壤水分和壤中流的影响。结果表明:土壤水分湿润峰平均运移速率在0.28-1.63mm/s之间,优先流特征明显;降雨强度和表土结皮程度是影响土壤水分过程和壤中流过程的主要因素,降雨强度增加有利于优先流的发生和发展,而表土结皮的形成是阻碍优先流发生和发展的主要原因。
     本研究证明了紫色土剖面构造(包括层次,土层厚度,界面,孔隙,结皮,根系等)对土壤过程(包括水文过程和侵蚀过程)的重要影响。对于紫色土坡面上所体现出的各种错综复杂的产流机制和侵蚀过程,其原因不仅仅是土壤厚度本身,同时还有在土壤水文和侵蚀过程中起到决定性作用的土壤发育或成土特性以及人为影响因子。其中,土壤发育或成土特征包括土壤质地,机械组成,砾石含量,土壤剖面田间饱和导水率垂直变异趋势,土壤层次,土壤结皮等,而土壤人为影响方面则包括人为耕作扰动强度和耕作年限等。相比较于传统的土壤发生学和水文学,水文土壤学作为新兴交叉学科,在对三峡紫色土地区不同厚度坡耕地坡面水文及侵蚀调查和研究过程中发挥了极其重要的作用,使得先前相互独立的传统意义上的土壤学和水文学得到有效融合,产生了很好的协同效应。作为新兴交叉学科的水文土壤学能为研究类似紫色土区域土壤异质性明显的生态系统过程提供新的思路。
Focusing on how purple soil architecture (e.g., horizon interface, soil thickness, soil-rock interface, porosity, surface seal, and root architecture) exerts a first-order control on soil processes (including hydrological processes and the associated erosional responses), this study investigated the plot-scale hydrological and erosional characteristics of the sloping lands with different purple soil thickness under the theoretical framework of hydropedology. Firstly, various hydrological processes and flow generation mechanisms were identified in each purple soil plot with different soil thickness through field survey and in situ rainfall simulation experiments, and the soil erosion characteristics under the simultaneous influence of surface flow and subsurface flow were also investigated. Second, we studied the impact of boundary conditions, including soil surface seal and rainfall intensity, on soil water and subsurface flow in shallow purple soil slope. Lastly, the relationship between purple soil properties and hydrological/erosional characteristics was discussed, and the main controls on the hydrological and erosion responses in purple soils exerted by the purple soil architecture were illustrated. Collectively, the purple soil erosional regimes under the simultaneous influence of various flow generation mechanisms were studied, which altogether deepen the knowledge of both hydrological processes and soil erosion regime in the purple soil area. The main results of the study can be presented as follows.
     (1) In general, the soil profiles of all plots showed high rock fragment content and low clay content, while sand and silt were the dominant particle size fractions. It indicates that the purple soils of this area exhibited minimal horizon development and displayed features of Inceptisols for the23,31and45cm plots, and Alfisol for the59and76cm plots which showed a more significant trend of clay translocation from the upper to the lower soil layer. The data imply that thick soils reflect deeper soil development than thin soils. All of the plots displayed high Kfs values (ranged from34to78mm h-1) in the plow layer but decreased with increasing soil depth. Overall, thin soils showed higher decreasing values than that of thick soils.
     (2) For all the rainfall events, all portion parts of rainfall water showed approximately linear relationships with the soil thickness:surface flow and soil storage water were positively related to soil thickness, while subsurface flow and deep percolation were negatively related to soil thickness. Compared to thin soils, thick soils had higher surface flow and soil storage water but lower subsurface flow and deep percolation. Through adopting the hydropedological approach, hydrological processes of the typical sloping land plots along a hillslope with different soil thickness were investigated by conducting rainfall simulation experiments (designed rainfall intensities of60mm/h for2hours) using a portable rainfall simulator. The results can be summarized as follows. First, the23cm plot was in the form of saturated overland flow, while the45and76cm plots were infiltration-excess overland flow as to the surface flow generation mechanism. Second, as to the subsurface flow generation mechanism, the23cm plot mainly took the form of preferential flow, conversely, the76cm plot mainly in the form of matrix flow. However, in between the above two cases, the45cm plot displayed mainly the matrix flow in the A horizon and mainly the preferential flow in the AC horizon. Our results indicated that those markedly different soil architectures among soils with different thickness in the purple soil area were the main reason for different flow generation mechanisms among these three experimental plots.
     (3) Due to their more distinct hydrological processes of subsurface flow and deep percolation in thin soils than those of thick soils, the soil erosion rates were significantly lower in thin soils than in thick soils in all rainfall events, which increased from211g m-2h-1for the23cm plot with rainfall of60mm h-1to4220g m-2h-1for the76cm plot with rainfall of120mm h-1. The23and31cm plots showed a modest increase in soil erosion rate as rainfall intensity increased, which implies that they exhibited strong anti-erosion capacities. On the contrary, the45,59and76cm plots showed a dramatic increase in soil erosion rate, indicating a high erodibility characteristic.
     (4) By applying mathematical statistics methods, the parameters of the water-content wave and subsurface stormflow hydrograph which derived from in-situ simulated rainfall were analysised, and the effects of rainfall intensity and surface soil bulk density (0~5mm depth) on subsurface stormflow of a shallow purple soil slope was studied. Results show that the wetting front velocities are between0.28and1.63mm/s, which are much higher than the velocities expected from flows that are driven by the combined gradients of gravity and capillarity, so they represent preferential flow. Rainfall intensity and surface soil bulk density are the most important factors affect soil water movement and subsurface stormflow. Increasing the rainfall intensity facilitated the initiating and sustaining of preferential flow, while surface seal is the main reason impedes preferential flow.
     Our study demonstrated that purple soil architecture (e.g., soil thickness, horizon interface, soil-rock interface, porosity, surface seal, and root architecture) exerted a first-order control on hydrological processes and the associated erosional dynamics at the plot scale. More than the soil thickness itself, distinct pedogenic features (e.g., mechanical composition, rock fragments, KfS variation pattern in the soil profile, horizonation, and surface seal) and anthropogenic impacts (e.g., human intervention intensity and cultivation period) of the purple soils with different soil thickness were the main causes of differential hydrological and erosional characteristics among the experimental plots. Our study indicated that, relative to its parent disciplines of both pedology and hydrology, synergistic integration was generated by the hydropedological approach in the plot-scale hydrological and erosion processes investigations on the sloping lands with different soil thickness in the Three Gorges Area of China. The emerging interdisciplinary field of hydropedology promotes the holistic study of various ecological processes across space and time in the landscape with distinct soil heterogeneity as the purple soil area in this study.
引文
1.卜崇峰,蔡强国,程琴娟,等.紫色土表土结皮发育特征的试验研究.土壤学报,2007,44(3):385-391.
    2. 蔡崇法,丁树文,张光远,等.三峡库区紫色土坡地养分状况及养分流失.地理研究,1996,15(3):77-83.
    3. 曾宪勤,刘宝元,刘瑛娜,等.北方石质山区坡面土壤厚度分布特征-以北京市密云县为例.地理研究.2008,27:1281-1289.
    4. 陈明霞.坡地土壤侵蚀机理及生态调控研究.福建师范大学硕士学位论文,2005年4月.
    5. 程冬兵,蔡崇法.室内基于土壤水分再分布过程推求紫色土导水参数.农业工程学报,2008,24(7):7-12.
    6. 程冬兵,张平仓,李亚龙,等.紫色土典型三角形层状剖面入渗模拟.水科学进展,2010,21(3):315-320.
    7. 丁树文,王峰,蔡崇法,等.三峡库区秭归盆地岩性构造对坡地紫色上某些特性影响.华中农业大学学报,2000,19:129-132.
    8. 高美荣,刘刚才,朱波.四川紫色土丘陵区不同耕作制的产流过程初步分析.水土保持学报,2000,14(5):118—121.
    9. 辜世贤.紫色上侵蚀特征及允许侵蚀量化学法确定.西南农业大学硕士学位论文,2004年5月.
    10.郭跃.川中丘陵区上壤侵蚀的特征与行为方式.水上保持学报,2002,16(6):9-12.
    11.郝俊萍.三峡库区典型小流域非点源污染模拟研究.[硕士论文].武汉:华中农业大学图书馆,2008.
    12.何丙辉,缪驰远,吴咏,等.遂宁组紫色土坡耕地土壤侵蚀规律研究.水土保持学报,2004,18(3):9—15.
    13.何毓蓉,2003.中国紫色土.北京:科学出版社,59-114.
    14.何毓蓉,黄成敏,宫阿都.中国紫色土的微结构研究兼论在ST制土壤基层分类上的应用.西南农业学报,2002,15(1):65—69.
    15.黄丽,张光远,丁树文,等.侵蚀紫色土土壤颗粒的研究.土壤侵蚀与水土保持学报,1999,5(1):35—39.
    16.黄兆强.浅析紫色土的性状与土壤侵蚀.福建水土保持,1996(1):7-9.
    17.蒋锐,朱波,唐家良,等.紫色丘陵区典型小流域暴雨径流氮磷迁移过程与通量.水利学报,2009,40(6):659-666.
    18.李军健,吕刚,黄建国.紫色土旱坡地土壤水分时空分布特征.西南农业大学学报(自然科 学版),2006,28(1):161-164.
    19.李燕,高明,魏朝富,等.紫色土水分一维水平运动的数值模拟.西南农业大学学报(自然科学版),2006,(4):627-632.
    20.李云涛,唐峰.土壤类型与抗冲性关系特性分析.国外建材科技,2006,27(4):117—119.
    21.刘宝元,谢云,张科利.上壤侵蚀预报模型.北京:中国科学技术社,2001,158-160.
    22.刘创民,李昌哲,史敏华,等.多元统计分析在森林土壤分析类型分辨中的应用.生态学报,1996,16(1):444-447.
    23.刘刚才,高美容,林三益.紫色土两种耕作制的产流产沙过程与水土流失观测准确性分析.水土保持学报,2002,16(4):108—113.
    24.刘刚才,林三益,刘淑珍.四川丘陵区常规耕作制下紫色土径流发生特征及其表面流数值模拟.水利学报,2002,33(12):101-108.
    25.刘刚才,朱波,华代龙,等.四川低山丘陵区紫色土不同土地利用类型的水蚀特征.水土保持学报,2001,15(6):98—103.
    26.刘宏伟,余钟波,崔广柏.湿润地区土壤水分对降雨的响应模式研究.水利学报,2009,40(7):822-829.
    27.骆东奇,侯春霞,魏朝富,等.旱地紫色土团聚体特征的指标比较.山地学报,2003,21(3):348--353.
    28.骆东奇,侯春霞,魏朝富,等.紫色土团聚体抗蚀特征研究.水土保持学报,2003,17(2):20-23+27.
    29.莫斌,朱波,高美荣,等.紫色泥页岩的侵蚀产沙特点及影响因素分析.水土保持研究,2005,(01):129-131.
    30.祁生林,张洪汀,何凡,等.长江三峡花岗岩林地坡面降雨渗流与水土流失关系研究.工程地质学报,2006,14(3):365-369.
    31.芮孝芳.水文学原理.北京:中国水利水电出版社,2004,131-152.
    32.盛丰,王康,张仁铎,等.田间尺度下土壤水流非均匀运动特征的染色示踪研究.水利学报,2009,40(1):101-108.
    33.史德明,韦启潘,梁音,等.中国南方侵蚀土壤退化指标体系研究.水土保持学报,2000,14(5):1-9.
    34.史志华.基于GIS和RS的小流域景观格局变化及其土壤侵蚀响应.[博士论文].武汉:华中农业大学图书馆.2003.
    35.王先拓,王玉宽,傅斌,等.川中丘陵区紫色土坡耕地产流特征试验研究.水土保持学报,2006,20(5):9-19.
    36.伍光和,田连恕,胡双熙,等.自然地理学.北京:高等教育出版社,2000,355-360.
    37.夏立忠,李运东,马力,等.基于SCS模型的浅层紫色土柑桔园坡面径流的计算参数确定.土 壤,2010,42(6):1003-1008.
    38.谢庭生,何英豪.湘中紫色土丘岗区水土流失规律及土壤允许侵蚀量的研究.亚热带水土保持,2006,18(3):36—39.
    39.徐佩,王玉宽,傅斌,等.紫色上坡耕地壤中产流特征及分析.水上保持通报,2006,26(6):14-17.
    40.徐佩,王玉宽,傅斌,等.紫色土坡耕地壤中产流特征及分析.水土保持通报,2006,26(6):14-17.
    41.徐勤学,王天巍,李朝霞,等.紫色土坡地壤中流特征.水科学进展,2010,21(2):229-234.
    42.张本家,高岚.辽宁土壤之土壤厚度与抗蚀年限.水土保持研究,1997,4(4):57-59.
    43.中国科学院成都分院土壤研究室,中国紫色土(上篇).北京:科学出版社,1994,1-277.
    44.周万村.三峡库区土地自然坡度和高程对经济发展的影响.长江流域资源与环境,2001,10(1):15-21.
    45.朱波,汪涛,况福虹,等.紫色土坡耕地硝酸盐淋失特征.环境科学学报,2008,28(3):525-533.
    46. Anderson M G, Burt T P. Process Studies in Hillslope Hydrology, John Wiley and Sons: Chichester,1990a,539.
    47. Anderson M G, Burt T P. Subsurface runoff. In Process Studies in Hillslope Hydrology, Anderson M.G. and Burt T.P. (Eds.), John Wiley & Sons:New York,1990,365-400.
    48. Arnold J G, Fohrer N. SWAT2000:current capabilities and research opportunities in applied watershed modeling. Hydrological Processes,2005,19(3):563-572.
    49. Assouline S, Selker J S, Parlange J Y. A simple accurate method to predict time of ponding under variable intensity rainfall. Water Resources Research,2007,43(3):W03426.
    50. Badoux A, Witzig J, Germann P, et al. Investigations on the runoff generation at the profile and plot scales, Swiss Emmental. Hydrological Processes,2006,20:377-394.
    51. Bakker M M, Govers G. Kosmas C, et al. Soil erosion as a driver of land-use change. Agriculture, Ecosystems & Environment,2005,105 (3):467-481.
    52. Barbiero L, Parate R H, Descloitres M, et al. Using a structural approach to identify relationships between soil and erosion in a semi-humid forested area, South India. Catena,2007,70:313-329.
    53. Bathurst J C, Moretti G, El-Hames A, et al. Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees. Hydrology and Earth System Sciences,2007,11(1):569-583.
    54. Beven K. J, Kirkby M J, Schofield N, et al. Testing a physically based flood forecasting model (topmodel) for three U.K. catchments. Journal of Hydrology,1984,69(1-4):119-143.
    55. Beven K, Germann P. Macropores and water flow in soils. Water Resources Research,1982, 18(5):1311-1325.
    56. Birkeland P W. Soils and Geomorphology,3rd ed., Oxford Univ. Press, New York.1999.
    57. Bouma J. Using soil survey data for quantitative land evaluation. Advances in Soil Science,1989, 9:177-213.
    58. Brooks S M, Richards K S. Establishing the role of pedogenesis in changing soil hydraulic properties, Earth Surf. Processes Landforms,1993,18,573-578.
    59. Bryan R B, Hawke R M, Rockwell D L. The influence of subsurface moisture on rill system evolution. Earth Surface Processes and Landforms,1998,23:773-789.
    60. Burns D A, Plummer L N, McDonnell J J, et al. The geochemical evolution of riparian ground water in a forested piedmont catchment. Ground Water,2003,41(7):913-925.
    61. Burt T P. Storm runoff generation in small catchments in relation to the flood response of large basins. In Floods, Hydrological, Sedimentological and Geomorphological Implications, Beven K. and Carling P. (Eds.), John Wiley & Sons.1989,11-35.
    62. Buttle J M, Creed I F, Pomeroy J W. Advances in Canadian forest hydrology,1995-1998. Hydrological Processes,2000,14(9):1551-1578.
    63. Buttle J M, Dillon P J, Eerkes G R. Hydrologic coupling of slopes, riparian zones and streams:an example from the Canadian Shield. Journal of Hydrology,2004,287(1-4):161-177.
    64. Calvo-Cases A, Boix-Fayos C, Imeson A. Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in SE Spain. Geomorphology,2003,50:269-291.
    65. Catani F, Segoni S, Falorni G. Accurate basin scale soil depth modelling and its impact on shallow landslides prediction. European Geosciences Union General Assembly 2007:Geophysical Research Abstracts, Vienna, Austria.2007,9(10828).
    66. Cerda A. Effects of rock fragment cover on soil infiltration, interill runoff and erosion. European Journal of Soil Science,2001,52,59-68.
    67. Chmberlin T W. Interflow in the mountainous forest soils of coastal british Columbia, Mountain Geomorphology, Ed. D. Slaymaker and H.J. McPherson, Tantalus Research, Vancouver,1972, pp. 121-127.
    68. Clothier B E, Green S R, Deurer M. Preferential flow and transport in soil:progress and prognosis. European Journal of Soil Science,2008,59(1):2-13.
    69. Dahlke H E, Behrens T, Seibert J, et al. Test of statistical means for the extrapolation of soil depth point information using overlays of spatial environmental data and bootstrapping techniques. Hydrological Processes,2009,23,3017-3029.
    70. Dietrich W E, Reiss R, Hsu M L, et al. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes,1995,9,383-400.
    71. D'Odorico P. A possible bistable evolution of soil thickness. Journal of Geophysical Research, 2000,105 (B11):25927-25935.
    72. Dunne T, Black R D. An experimental investigation of runoff production in permeable soils. Water Resources Research,1970,6(2),478-490.
    73. Dunne T, Moore T R, Taylor C H. Recognition and prediction of runoff-producing zones in humid regions. Hydrological Sciences Bulletin,1975,20(3):305-327.
    74. Dunne T. Field studies of hillslope flow processes. In:Kirkby, M. J. (Ed.), Hillslope Hydrology. John Wiley & Sons, Ltd.,1978:227-289.
    75. Duran J. Sands, powders, and grains:an introduction to the physics of granular materials, Springer-Verlag, New York.1999.
    76. Ela S D, Gupta S C, Rawls W J. Macropore and surface seal interactions affecting water infiltration into soil. Soil Science Society of America Journal,1992,56:714-721.
    77. Eppes M C, McFadden L D, Matti J, et al. Influence of soil development in the geomorphic evolution of landscapes:An example from the Transverse Range of California, Geology,2002,30, 195-198.
    78. Flury M, Fluhler H, Jury W A, et al. Susceptibility of Soils to Preferential Flow of Water:A Field Study. Water Resources Research,1994,30(7):1945-1954.
    79. Follain S, Minasny B, McBratney A B, et al. Simulation of soil thickness evolution in a complex agricultural landscape at fine spatial and temporal scales. Geoderma,2006,133,71-86.
    80. Frankenberger J R, Brooks E S, Walter M T, et al. A GIS-based variable source area hydrology model. Hydrological Processes,1999,13,805-822.
    81. Freer J, McDonnell J J, Beven K J, et al. The role of bedrock topography on subsurface storm flow. Water Resources Research,2000,38(12),1269, doi:10.1029/2001WR000872.
    82. Freeze R A. Role of subsurface flow in generating surface runoff-1.Base flow contributions to channel flow. Water Resources Research,1972,8(3),609-623.
    83. Fujimoto M, Ohte N, Tani M. Effects of hillslope topography on hydrological responses in a weathered granite mountain, Japan:comparison of the runoff response between the valley-head and the side slope. Hydrological Processes,2008,22(14):2581-2594.
    84. Gabbard D S, Huang C, Norton L D, et al. Landscape position, surface hydraulic gradients and erosion processes. Earth Surface Processes and Landforms,1998,23:83-93.
    85. Gabet E J, Mudd S M. A theoretical model coupling chemical weathering rates with denudation rates. Geology,2009,37,151-154.
    86. Garey A F, Wilson G V. The Role of Subsurface Flow in Hillslope and Stream Bank Erosion:A Review. Soil Science Society of America Journal,2010,74:717-733.
    87. Germann P F, Helbling A, Vadilonga T. Rivulet approach to rates of preferential infiltration. Vadose Zone Journal,2007,6 (2):207-220.
    88. Gessler P E, Chadwick O A, Chamran F, et al. Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Science Society of America Journal,2000,64,2046-2056.
    89. Gochis D J, Vivoni E R, Watts C J. The impact of soil depth on land surface energy and water fluxes in the North American Monsoon region. Journal of Arid Environments,2010,74(5): 564-571.
    90. Goovaerts P. Geostatistics for Natural Resources Evaluation. Applied Geostatistics. Oxford University Press, Oxford.1997.
    91. Guzha A C. Effects of tillage on soil microrelief, surface depression storage and soil water storage. Soil and Tillage Research,2004,76:105-114.
    92. Heppell C M, Chapman A S, Bidwell V J, et al. A packed lysimeter experiment to investigate the effect of surface sealing on hydrology and pesticide loss from a heavy clay soil.1. Hydrological characteristics. Soil Use and Management,2004,20:384-393.
    93. Hincapie I, Germann P F. Impact of initial and boundary conditions on preferential flow. Journal of Contaminant Hydrology,2009,104(1-4):67-73.
    94. Hopp L, McDonnell J J. Connectivity at the hillslope scale:Identifying interactions between storm size, bedrock permeability, slope angle and soil depth. Journal of Hydrology,2009,376: 378-391.
    95. Horton R E. An approach toword a physical interpretation of infiltration capacity. Proc. Soil Sci. Soc.Am.,1941,5,399-417.
    96. Horton R E. Hydrologic interrelations of water and soils. Proc. Soil Sci. Soc. Am.,1937,1, 401-429.
    97. Horton R E. The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union,1933, 14,446-460.
    98. Howard A D, McLane C F. Erosion of cohesionless sediment by groundwater seepage. Water Resources Research,1988,24(10):1659-1674.
    99. Huang C, Laflen J M. Seepage and soil erosion for a clay loam soil. Soil Science Society of America Journal,1996,60:408-416.
    100. Huang C, Wells L K, Norton L D. Sediment transport capacity and erosion processes:model concepts and reality. Earth Surface Processes and Landforms,1999,24:503-516.
    101. Hutchinson D G, Moore R D. Throughflow variability on a forested hillslope underlain by compacted glacial till. Hydrological Processes,2000,14(10),1751-1766.
    102. Jarvis N J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors, and consequences for water quality. European Journal of Soil Science,2007,58:523-546.
    103. Jia H Y, Lei A L, Lei J S, et al. Effects of hydrological processes on nitrogen loss in purple soil. Agricultural Water Management,2007,89:89-97.
    104. Kinnell P I A. Runoff as a factor influencing experimentally determined interrill erodibilities. Aust. J. Soil Res.,1993,31 (3):333-342.
    105. Kitayama K, Schuur E A G, Drake D R, et al. Fate of a wet montane forest during soil ageing in Hawaii, J. Ecol.,1997,85:669-679.
    106. Kuriakose S L, van Beek L P H, van Westen C J. Parameterizing a physically based shallow landslide model in a data poor region. Earth Surface Processes and Landforms,2009,34 (6) 867-881.
    107. Langnera H W, Gaberb H M, Wraitha J M, et al. Preferential Flow through Intact Soil Cores: Effects of Matric Head. Soil Science Society of America Journal,1999,63:1591-1598.
    108. Li X Y, Contreras S, Sole-Benet A, et al. Controls of infiltration-runoff processes in Mediterranean karst rangelands in SE Spain. Catena,2011,86:98-109.
    109. Li X Y, Yang Z P, Li Y T, et al. Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils. Hydrology and Earth System Sciences,2009, 13:1133-1144.
    110. Liebenow A M, Elliot W J, Laflen J M, et al. Interrill erodibility:collection and analysis of data from cropland soils. Trans. ASAE,1990,33,1882-1888.
    111. Lin H S, Kogelmann W, Walker C, et al. Soil moisture patterns in a forested catchment:A hydropedological perspective. Geoderma,2006,131:345-368.
    112. Lin H, Bouma J, Owens P, et al. Hydropedology:Fundamental issues and practical applications. Catena,2008,73(2):151-152.
    113. Lin H, Bouma J, Wilding L, et al. Advances in hydropedology. Advances in Agronomy,2005,85: 1-89.
    114. Lin H, Zhou X. Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. European Journal of Soil Science,2008,59:34-49.
    115. Lin H. Hydropedology:Towards New Insights into Interactive Pedologic and Hydrologic Processes across Scales, Journal of Hydrology,2011,406(3-4):141-145.
    116. Lin H. Linking principles of soil formation and flow regimes. Journal of Hydrology,2010, 393(1-2):3-19.
    117. Lin H. Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the shale hills catchment. Vadose Zone Journal,2006,5:317-340.
    118. Liu G C, Li L, Wu L S, et al. Determination of Soil Loss Tolerance of an Entisol in Southwest China. Soil Science Society of America journal,2009,73:412-417.
    119. Liu G C, Tian G L, Shu D C, et al. Characteristics of surface runoff and throughflow in a purple soil of southwestern China under various rainfall events. Hydrological Processes,2005,19, 1883-1891.
    120. Lobkovsky A E, Jensen B, Kudrolli A, et al. Threshold phenomena in erosion driven by subsurface flow. Journal of Geophysical Research,2004,109:F04010.
    121. Lohse K A, Dietrich W E. Contrasting effects of soil development on hydrological properties and flow paths. Water Resources Research,2005,41, W12419.
    122. Luk S, Abrahams A D, Parsons A J. A simple rainfall simulator and trickle system for hydro-geo-morphical experiments. Physical Geography,1986,7,344-356.
    123. Mandal U K, Rao K V, Mishra P K, et al. Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain. European Journal of Soil Science,2005, 56:435-443.
    124. Martin C S. Effect of a porous sand bed on incipient sediment motion. Water Resources Research, 1970,6(4):1162-1174.
    125. Martinez-Zavala L, Jordan A. Effect of rock fragment cover on interrill soil erosion from bare soils in Western Andalusia, Spain. Soil Use and Management,2008,24,108-117.
    126. Martz L W. The variation of soil erodibility with slope position in a cultivated Canadian prairie landscape. Earth Surface Processes and Landforms,1992,17,543-556.
    127. McAuliffe J R. Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert bajadas, Ecol. Monogr.,1994,64,111-148.
    128. McDaniel P A, Regan M P, Brooks E, et al. Linking fragipans, perched water tables, and catchment-scale hydrological processes, Catena,2008,73:166-173.
    129. McDonald E V, Pierson F B, Flerchinger G N, et al. Application of a soil water balance model to evaluate the influence of Holocene climate change on calcic soils, Mojave Desert, California, Geoderma,1996,74:167-192.
    130. McDonnell J J. A rationale for old water discharge through macropores in a steep, humid catchment. Water Resources Research,1990,26(11):2821-2832.
    131. McDonnell J J, Freer J, Hooper R, et al. New method developed for studying flow in hillslopes. EOS, Transactions of the American Geophysical Union,1996,77(47),465.
    132. McFadden L D, McDonald E V, Wells S, et al. The vesicular layer and carbonate collars of desert soils and pavements:Formation, age and relation to climate change, Geomorphology,1998,24: 101-145.
    133. McGlynn B L, McDonnell J J. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research,2003b,39(4), doi:10.1029/2002WR001525.
    134. Meerveld 1 T, Weiler M. Hillslope dynamics modeled with increasing complexity. Journal of Hydrology,2008,361:24-40.
    135. Mendonca Santos M L, Guenat C, Bouzelboudjen M, et al. Threedimensional GIS cartography applied to the study of the spatial variation of soil horizons in a Swiss floodplain. Geoderma, 2000,97(3-4):351-366.
    136. Mermut A R, Luk S H, Romkens M J M, et al. Micromorphological and mineralogical components of surface sealing in loess soils from different geographic regions. Geoderma,1995, 66(1-2),71-84.
    137. Meyer M D, North M P, Gray A N, et al. Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest. Plant and Soil,2007,294 (1-2):113-123.
    138. Michael D G, Thomas W G. Macropore flow on a reclaimed surface mine:infiltration and hillslope hydrology. Geomorphology,2001,39:151-169.
    139. Minasny B, McBratney A B. A rudimentary mechanistic model for soil production and landscape development. Geoderma,1999,90,3-21.
    140. Mohr E C J, van Baren F A, van Schuylenborgh J. Tropical Soils:A Comprehensive Study of Their Genesis, Mouton-Ichtiar Baru-Van Hoeve, Paris.1972.
    141. Montgomery D R, Dietrich W E, Torres R, et al. Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resources Research,1997,33(1):91-109.
    142. Mukhlisin M, Taha M R, Kosugi K. Numerical analysis of effective soil porosity and soil thickness effects on slope stability at a hillslope of weathered granitic soil formation. Geosciences Journal,2008,12(4):401-410.
    143. Newman B D, Wilcox B P, Graham R C. Snowmelt-driven macropore flow and soil saturation in a semiarid forest. Hydrol. Processes,2004,18:1035-1042.
    144.Nimmo J R, Perkins K. S, Schmidt K. M, et al. Hydrologic characterization of desert soils with varying degrees of pedogenesis:1. Field experiments evaluating plant-relevant soil water behavior. Vadose Zone Journal,2009,8,480-496.
    145.Ohrstrom P, Persson M, Albergel J, et al. Field-scale variation of preferential flow as indicated from dye coverage. Journal of Hydrology,2002,257:164-173.
    146. Onda Y, Dietrich W E, Booker F. Evolution of overland flow after severe forest fire, Point Reyes, California. Catena,2007,72:13-20.
    147. Owoputi L O, Stolte W J. The role of seepage in erodibility. Hydrol. Processes,2001,15:13-22.
    148. Pelletier J D, Rasmussen C. Geomorphically based predictive mapping of soil thickness in upland watersheds. Water Resources Research,2009,45, W09417.
    149. Perroux K M, Smiles D E, White I. Water movement in uniform soils during constant-flux infiltration. Soil Science Society of America Journal,1981,45:237-240.
    150. Peters D L, Buttle J M, Taylor C H, et al. Runoff production in a forested, shallow soil, Canadian Shield basin. Water Resources Research,1995,31:1291-1304.
    151. Phillips J D. The convenient fiction of steady-state soil thickness. Geoderma,2010,156,389-398.
    152. Poesen J, Ingelmo-Sanchez F. Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position. Catena,1992,19,451-474.
    153. Poesen J, Lavee H. Rock fragments in topsoils:significance and processes. Catena,1994,23, 1-28.
    154. Reynolds W, Gregorich E, Curnoe W. Characterization of water transmission properties in tilled and untilled soils using tension infiltrometers. Soil and Tillage Research,1995,33:117-131.
    155. Rhoton F E, Lindbo D L. A soil depth approach to soil quality assessment. Journal of Soil and Water Conservation,1997,52,66-72.
    156. Rockwell D L. "The influence of groundwater on surface flow erosion processes." Earth Surf. Processes Landforms,2002,27(5):495-514.
    157. Scherrer S, Naef F. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrological Processes,2003,17(2):391-401.
    158. Sidle R C, Tsuboyama Y, Noguchi S, et al. Stormflow generation in steep forested headwaters:a linked hydrogeomorphic paradigm. Hydrological Processes,2000,14(3):369-385.
    159. Sidle R C, Tsuboyama Y. A comparison of piezometric response in unchanneled hillslope hollows: coastal Alaska and Japan. Journal of the Japanese Society of Hydrology and Water Resources, 1992,5:3-11.
    160. Southard R J, Buol S W. Subsoil blocky structure formation in some North Carolina paleudults and paleaquults, Soil Sci. Soc. Am. J.,1988,52,1069-1076.
    161. Stolte W J, Rudra R P, Dickinson W T. The impact of seepage on soil erosion. Transactions of the American Society of Agricultural Engineers,1990,33(2):475-479.
    162. Talebi A, Troch P A, Uijlenhoet R. A steady-state analytical slope stability model for complex hillslopes. Hydrological Processes,2008,22 (4):546-553.
    163. Tani M. Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer. Journal of Hydrology,1997,200:84-109.
    164. Tesfa T K, Tarboton D G, Chandler D G, et al. Modeling soil depth from topographic and land cover attributes. Water Resources Research,2009,45, W10438.
    165. Tromp-van Meerveld H J, Peters N E, McDonnell J J. Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA. Hydrological Processes,2007,21:750-769.
    166. Tsuboyama Y, Sidle R C, Noguchi S, et al. Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resources Research,1994,30(4):879-890.
    167. Uchida T, Kosugi K, Mizuyama T. Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashia, central Japan. Water Resour. Res.,2002, 38(7):1119.
    168. Uchida T, Kosugi K, Mizuyama T. Effects of pipeflow on hydrological process and its relation to landslide:A review of pipe flow studies in forested headwater catchments. Hydrol. Processes, 2001,15:2151-2174.
    169. Uchida T, Kosugi K, Mizuyama T. Runoff characteristics of pipeflow and effects of pipeflow on rainfallrunoff phenomena in a mountainous watershed. Journal of Hydrology,1999,222(1-4): 18-36.
    170. van Breemen N, Buurman P. Soil Formation, Springer, New York.1998.
    171. Van Oost K, Van Muysen W, Govers G, et al. Simulation of the redistribution of soil by tillage on complex topographies. European journal of soil science,2003,54,63-76.
    172. Van Wesemael B, Mulligan M, Poesen J. Spatial patterns of soil water balance on intensively cultivated hillslopes in a semi-arid environment:the impact of rock fragments and soil thickness. Hydrological Processes,2000,14(10):1811-1828.
    173. Vervoort R W, Radcliffe D E, West L T. Soil structure development and preferential solute flow, Water Resour. Res.,1999,35,913-928.
    174. Vieira B C, Fernandes N F. Landslides in Rio de Janeiro:the role played by variations in soil hydraulic conductivity. Hydrological Processes,2004,18:791-805.
    175. Wang D, Lowery B, Norman J M, et al. Ant burrow effects on water flow and soil hydraulic properties of Sparta sand. Soil and Tillage Research,1996,37(2-3):83-93.
    176. Wang J, Endreny T A, Hassett J M. Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine. Hydrological Processes,2006,20:3825-3834.
    177. Wei C F, Ni J P, Gao M, et al. Anthropic pedogenesis of purple rock fragments in Sichuan Basin, China. Catena,2006,68(1):51-58.
    178. Weiler M, McDonnell J J, Tromp-van Meerveld H J, et al. Subsurface stormflow. In Encyclopedia of Hydrological Sciences, vol.3, Anderson MG, McDonnell JJ (eds). Wiley:Chichester.2005, 1719-1732.
    179. Weiler M, Naef F. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes,2003,17:477-493.
    180. Weyman D R. Measurements of the downslope flow of water in a soil. Journal of hydrology,1973, 20:267-288.
    181. Whipkey R Z, kirkby M J. Flow within the soil. In Hillslope Hydrology, Kirkby, M.J. (Ed.). John Wiley & Sons, Ltd.,1978.121-144.
    182. Wilcox B P, Newman B D, Bres D, et al. Runoff from a semiarid ponderosa pine hillslope in New Mexico. Water Resources Research,1997,33:2301-2314.
    183. Wilson G V, Cullum R F, R?mkens M J M. Ephemeral gully erosion by preferential flow through a discontinuous soil-pipe. Catena,2008,73(1):98-106.
    184. Woolhiser D A, Fedors R W, Smith R E, et al. Estimating infiltration in the Upper Split Wash Watershed, Yucca Mountain, Nevada. Journal of Hydrologic Engineering,2006,11:123-133.
    185. Wu W, Sidle R C.A distributed slope stability model for steep forested basins. Water Resources Research,1995,31:2097-2110.
    186. Yanda P Z. Use of soil horizons for assessing soil degradation and reconstructing chronology of degradation processes:The case of Mwisanga Catchment, Kondoa, central Tanzania. Geomorphology,2000,34:209-225.
    187. Zehetner F, Miller W P. Erodibility and runoff-infiltration characteristics of volcanic ash soils along an altitudinal climosequence in the Ecuadorian Andes. Catena,2006,65,201-213.
    188. Zhang J H, Quine T A, Ni S J, et al. Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion. Global Change Biology,2006,12:1834-1841.
    189. Zheng F, Huang C, Norton L D. Vertical hydraulic gradient and run-on water and sediment effects on erosion processes and sediment regimes. Soil Science Society of America Journal,2000,64: 4-11.
    190. Assouline S. Rainfall-induced soil surface sealing:a critical review of observations, conceptual models, and solutions. Vadose Zone Journal,2004,3:570-591.
    191. Jia H Y, Lei A L, Lei J S, et al. Effects of hydrological processes on nitrogen loss in purple soil. Agricultural Water Management,2007,89:89-97.
    192. Onda Y, Dietrich W E, Booker F. Evolution of overland flow after severe forest fire, Point Reyes, California. Catena,2007,72:13-20.
    193. Romkens M J M, Prasad S N, Parlange J Y. Surface seal development in relation to rainstorm intensity. In:R.B. Bryan (Editor), Soil Erosion-Experiments and Models. Catena Supplement, 1990,17,1-11.
    194. Roth C H. Bulk density of surface crusts:depth functions and relationships to texture. Catena, 1997,29(3-4):223-237.
    195. Wang D, Lowery B, Norman J M, et al. Ant burrow effects on water flow and soil hydraulic properties of Sparta sand. Soil and Tillage Research,1996,37(2-3):83-93.
    196. Weiler M, Naef F. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes,2003,17(2):477-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700