基于稳定氢氧同位素技术的植被—土壤系统水分运动机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺已成为制约干旱和半干旱地区经济和社会发展的瓶颈问题,同时也是限制干旱和半干旱生态系统中森林植被分布和生物多样性的关键因子。北京山区不仅是北京市区的重要生态屏障,也是整个华北平原生态屏障的重要环节,该区不仅易干旱,而且也处于严重缺水的状态。因此,为了揭示本区域森林植被如何在有限的水资源分布和水分输入的情况下正常的生长发育并发展成为不同的森林生态系统,需要对森林植被在不同季节利用水分的方式和来源进行探索和检验,最终得出森林植被-土壤系统水分运动机制。本研究选取侧柏(Platycladus orientalis(Linn.) Franco)、刺槐(Robinia pseudoacacia Linn.)、栓皮栎(Quercus variabilis Blume)和油松(Pinus tabulaeformis Carr.)四种北京山区的典型森林生态系统,构建植被-土壤系统水分运动机制。对水文、土壤、植被和地形等因子进行野外调查与观测,将基于不同时空尺度采集的降水水样、土壤水样和植被样进行稳定同位素分析,研究不同时间尺度降水氢氧稳定同位素的变化特征,通过对降雨影响下土壤水和植物水同位素特征的分析,分析土壤水和植物水的动态变化和水分运动机制,进而基于直观法和多元混合模型方法,对森林生态系统用水来源进行定量评估,提出森林生态系统的水分利用模式。主要研究结果如下:(1)研究区的大气降水线方程为δ2H=6.42δ180-5.91(R2=0.90,n=52),斜率和截距均小于全球大气降水线,研究区氘盈余d变化表现为冬半年较高,夏半年较低;大气降水δ’8O和温度、降水量均呈一定的负相关关系,且具有一定的季节变化特征,降雨过程中的δ2H和δ18O会随着降雨量的累加而不断贫乏;降雨δ’8O与树干流δ’8O、穿透雨δ’8O的关系为当降雨量12.4mm时,Δ>0,当降雨量小于9.0mm,Δ<0,叶面积指数与各典型森林生态系统的林内穿透雨δ18O呈微弱的正相关关系;(2)不同立地条件下的森林生态系统的土壤含水率差异明显,栓皮栎和油松的土壤含水率整体均远大于侧柏和刺槐;旱季大雨对除土壤表层以外的其他各层的土壤水势影响有限;典型森林生态系统不同层次土壤水分特征曲线具有明显差异;(3)土壤水样品的δ18O和δ2H的变化具有一定的规律性,其平均值整体随土壤深度的增加而减小,深层土壤在长时间尺度上保持相对稳定,而上层土壤则受环境因子影响较大。地下水的δ18O和δ2H随时间变化很小,受环境因子的影响很小,可以说是常年保持稳定;(4)植物水样品的则因植物不同而有所差异,侧柏、栓皮栎和林下灌木的δ18O和δ2H的平均值分别为-6.95‰、-6.54‰、-6.69和-67.99‰、-67.91‰、66.07‰,整体较为接近,而刺槐和油松的δ180和δ2H的平均值分别为-4.97‰、-4.92‰和-71.25‰、-73.16‰,其整体较为接近,但较之侧柏、栓皮栎和林下灌木则整体偏小,各植物种的δ18O和δ2H的变异系数则分别较为相似:(5)不同森林生态系统在旱季土壤剖而δ2H受降水影响明显,在雨季则相对稳定:在北京山区前期降水必须达到一定的闽值才能被植被所大量利用,降水低于4.6mm,对植被的补给作用有限,而大于12.1mm,则可以对土壤和植被进行充分补给;(6)侧柏根系约50%分布在0-20cm处,刺槐0-50cm分布的根系约占所有根系的70%,栓皮栎<2mm的根系主要分布在0-60cm,油松的整体根系生物量较少;不同森林生态系统土壤水分情况受不同植被根系分布特征影响;(7)不同森林生态系统的水分利用模式具有明显的季节差异,其在旱季受前期降水影响较大,而在雨季受其影响则相对较小;(8)侧柏对各层土壤水分的利用受前期降水量、叶面积指数、土壤含水率、根系生物量等因素的影响。
Water resources shortage has become a key issue that constrains the development in economics and society in arid and semi-arid areas and an important factor that limits the forestdistribution and biodiversity in arid and semi-arid ecosystems. Beijing mountainous area is drought-prone and water-short, which are also the key ecological shelter for Beijing and an important part for the whole North China Plain. To reveal the way forests survive and thrive in Beijing mountainous area, the water use patterns in different seasons need to be investgated to enhance understanding of how seasons change has altered plant moisture use dynamics. In this study, P.orientalis, R.pseudoacacia, Q.variabilis and P.tabulaeformis were selected to build the plant-soil water movement system. By field investigation, different samples based on different temporal and spatial scales were collected for isotopic analysis. By measuring isotopic compositions of different samples, plant-soil water movement was analyzed, and based on direct inference method and multi-source mass balance method; plant water use patterns were established. The major results were as follows:(1) the LMWL was δ2H=6.42δ18O-5.91(R2=0.90, n=52), with smaller slope and intercept. The d-excess went higher in winter and became lower in summer.δ18O in rainfalls had negative relationship with temperature and precipitation and showed seasonal patterns. Values of δ2H and δ18O were decreasing as the rainfall continued. When the precipitation was12.4mm and9.0mm, the△were above and below0, respectively. In each forest ecosystem, LAI all had positive relationships with the δ18O in the throughfall;(2) soil water content (SWC) varied under different site conditions, SWC of Q.variabilis and P.tabulaeformis were generally higher than that of P.orientalis and R.pseudoacacia. In dry season, heavy rain had little impact on the deeper soil water potential but the surface soil. And the soil moisture characteristic curves of different soil depths in different forest ecosystems varied significantly;(3) the average values of δ18O and δ2H in soil water samples increased as soil depths grew and the upper soil layer could be easily affected by environmental factors. Average values of δ18O and δ2H in groundwater remained constantly;(4) different plants had distinct isotopic signatures. The average values of δ18O and δ2H in P.orienlalis, Q.variahilis and understory shrubs were-6.95‰,-6.54‰,-6.69and-67.99‰,-67.91‰,66.07‰, respectively, while in R.pseudoacucia and P.tabulaeformis were-4.97‰,-4.92‰and-71.25‰,-73.16‰, respectively. And the coefficients of variation in δ18O and δ2H of different plants were similar to each other;(5) δ2H in the soil profile was affected sigfinicantly by the rainfall in dry season, but was less affected in wet season. The anticipant precipitation should reach a threshold before it could be utilized by plants, which was at least4.6mm. When it was12.1mm, it could fully recharge the soil water and the plants;(6) approximately50%of the root of P.orientalis distributed in0-20cm,70%of the root of R.pseudoacacia distributed in0-50cm, root of<2mm of Q.variahilis mainly distributed in0-60cm and root biomass of P.tabulaeformis was generally smallest;(7) water use patterns of different forest ecosystems had significant seasonal variations, which was was more affected by the rainfall in dry season, but was less affected in wet season; and soil moisture contents of different forest ecosystems were affected by different root distribution patterns;(8) the water use of different soil depths was affected by pre-precipitation, LAI, soil water content and root biomass.
引文
1. 北京市海淀区地方志编纂委员会.北京市海淀区志[M].北京:北京出版社,2003.
    2. 蔡明刚,黄奕普,陈敏,等.厦门大气降水的氢氧稳定同位素研究[J].台湾海峡,2000,19(4):446-453.
    3. 曹燕丽,卢琦,林光辉.氢稳定性同位素确定植物水源的应用与前景[J].生态学报,2002,22(1):111-117.
    4. 陈锦芳,曹建平,黄奕普.厦门沿岸地区大气降水中氢、氧同稳定同位素组成及其影响因素[J].海洋性研究,2010,28(1):11-17.
    5. 程云.缙云山森林水源涵养机制及其生态功能价值评价研究[D].北京林业大学博士学位论文,2007.
    6. 段德玉,欧阳华.稳定氢氧稳定同位素在定量区分植物水分利用来源中的应用[J].生态环境学报,2007,16(2):655-660.
    7. 巩国丽,陈辉,段德玉.利用稳定氢氧稳定同位素定量区分白刺水分来源的方法比较[J].生态学报,2011,31(24):7533-7541.
    8. 何兴东,高玉葆.干旱区水力提升的生态作用[J].生态学报,2003,23(5):996-1002.
    9. 侯士彬,宋献方,于静洁,等.太行山区典型植被下降水入渗的稳定同位素特征分析[J].资源科学,2008,30(1):86-92.
    10.胡楠,范玉龙,丁圣彦,等.陆地生态系统植物功能群研究进展[J].生态学报,2008,28(7):3302-3311.
    11.霍亚贞等.北京自然地理[M].北京:北京师范学院出版社,1989.
    12.贾国栋,余新晓,邓文平,等.北京山区典型树种土壤水分利用特征[J].应用基础与工程科学学报,2013,21(3),待刊.
    13.贾国栋,余新晓,樊登星,等.太行山两侧地区大气降水氢氧稳定同位素特征研究[J].人民黄河,2011,33(7):34-36.
    14.来剑斌,王全九.土壤水分特征曲线模型比较分析[J].水土保持学报,2003,17(1):137-140.
    15.刘喜云.3S技术支持下的山地土壤基层分类及大比例尺制图研究—以鹫峰国家森林公园为例[D].北京林业大学博士学位论文,2007.
    16.刘鑫,宋献方,夏军,等.黄土高原岔巴沟流域降水氢氧稳定同位素特征及水汽来源初探[J].资源科学,2007,29(3):59-66.
    17.聂云鹏,陈洪松,王克林.石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J].植物生态学报,2011,35(10):1029-1037.
    18.史宇.北京山区主要优势树种森林生态系统生态水文过程分析[D].北京林业大学博士学位论文.2011.
    19.孙守家,孟平,张劲松,等.利用氘同位素研究太行山南麓枣树水分利用的季节性变化[J].2011,47(5):46-53.
    20.孙双峰,黄建辉,林光辉,等.稳定同位素技术在植物水分利用研究中的应用[J].生态学报,2005,25(9):2362-2371.
    21.涂林玲,王华,冯玉梅.桂林地区大气降水的和同位素的研究[J].中国岩溶,2004,23(4):304-309.
    22.王成,金永焕,刘继生,等.延边地区天然赤松林单木根系生物量的研究[J].北京林业大 学学报,1999,21(1):44-49.
    23.王昆,刘颖慧,高琼,等.植物根系水力再分配模型参数分析与尺度转换[J].植物生态学报,2006,30(6):969-975.
    24. 王鹏.基于氢氧稳定同位素的农田SPAC系统水分运移规律研究—以山西省运城市董村农场为例[D].中国科学院研究生院博士学位论文,2010.
    25.王永森,陈建生,汪集旸,等.降水过程中氢氧稳定同位素理论关系研究[J].水科学进展,2009,20(2):204-208.
    26. 王勇.鹫峰国家森林公园土壤系统分类研究[D].北京林业大学博士学位论文,2009.
    27. 卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响[J].地球化学,1994,23(1):33-41.
    28.吴军年,王红.张掖大气降水的δ18O特征及水汽来源[J].安徽农业科学,2011,39(3):1601-1604.
    29.徐丽宏,时忠杰,王彦辉,等.六盘由主要植被类型冠层截留特征[J].应用生态学报,2010,21(10):2487-2493.
    30.徐庆,刘世荣,安树青,等.卧龙地区大气降水氢氧稳定同位素特征的研究[J].林业科学研究,2006,19(6):679-686.
    31.严昌荣,白涛,蔡绍平,等.稳定性同位素技术在植物水分研究中的应用[J].湖北林业科技,1998,4:29-33.
    32.杨梅学,姚檀栋,田立德,等.藏北高原夏季降水的水汽来源分析[J].地理科学,2004,24(4):426-431.
    33. 于津生,虞福基,刘德平.中国东部大气降水的氢、氧同位素组成[J].地球化学,1987,1:22-26.
    34.余新晓,鲁绍伟,靳芳,等.中国森林生态系统服务功能价值评估[J].生态学报,2005,25(8):2096-2102.
    35.袁国富,张佩,薛沙沙,等.沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据[J].植物生态学报,2012,36(10):1033-1042.
    36.章新平,姚檀栋.我国降水中δ18O的分布特点[J].地理学报,1998,53(4):356-364.
    37.赵良菊,肖洪浪,程国栋,等.黑河下游河岸林植物水分来源初步研究[J].地球学报,2008,29(6):709-718.
    38.郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983,13:801-806.
    39.周雅聃,陈世苹,宋维民,等.不同降水条件下两种荒漠植物的水分利用策略[J].植物生态学报,2011,35(8):789-800.
    40. Asbjornsen H, Mora G, Helmers M J. Variation in water uptake dynamics among contrasting agriculturaland native plant communities in the Midwestern U.S. [J]. Agriculture Ecosystems & Environment,2007,121(4):343-356.
    41. Benjamin L, Knobel L L, Hall L F, et al. Development of a local meteoric water line for Southeastern Idaho, Western Wyoming, and South-central Montana. Idaho Falls:US Geological Survey. Report nr 2004-5126.23 p.
    42. Benoit GR, Kirkham D. The effect of soil surface conditions on evaporation of soil water [J]. Soil Science Society of America,1963,27(5):495-498.
    43. Berman E, Gupta M, Gabrielli C, et al. High-frequency field-deployable isotope analyzer for hydrological applications. Water Resources Research,2009,45:W10201, doi: 10.1029/2009WR008265.
    44. Borghetii M, Cinnirella S, Magnani F, et al. Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill [J]. Trees,1998,12:187-195.
    45. Boyer J S. Plant productivity and environment [J]. Science,1982,218(4571):443-448.
    46. Brooks J R, Barnard H R, Coulombe R, et al. Ecohydrologic separation of water between treesand streams in aMediterranean climate [J]. Nature Geoscience,2010,3(2):100-104.
    47. Brooks J R, Meinzer F C, Coulombe R, et al. Hydraulic redistribution of soil water during summer drought in twocontrasting Pacific Northwest coniferous forests [J]. Tree Physiology, 2002,22:1107-1117.
    48. Brunel J P, Simpson H J, Herczeg A L, et al. Stable isotopecomposition of water vapor as an indicator of transpiration fluxesfrom rice crops [J].Water Resources Research,1992,28: 1407-1416.
    49. Burgess S S, Adams M A, Turner N C, et al. Characterization of hydrogen isotope profiles in an agroforestry system:implications for tracing water sources of trees [J]. Agricultral Water Management,2000,45:229-241.
    50. Cheng X L, An S Q, Li B, et al. Summer rain pulse size andrainwater uptake by three dominant desert plants in a desertifiedgrassland ecosystem in northwestern China [J]. Plant Ecology,2006, 184:1-12.
    51. Chimner R A, Cooper D J. Using stable oxygen isotopes to quantifythe water source used for transpiration by native shrubs in the SanLuis Valley, Colorado U.S.A [J]. Plant and Soil,2004, 260(1-2):225-236.
    52. Clark I D, Fritz P. Environmental isotopes in hydrogeology [M]. New York:Lewis Publishers, 1997, pp.328.
    53. Craig H. Isotopic variations in meteoric waters [J]. Science,1961,133(3465):1702-1703.
    54. Dansgaard W. Stable isotopes in precipitation [J]. Tellus,1964,16:436-468.
    55. Darling W G, Bath A H. A stable isotope study of recharge processes in the English Chalk [J]. Journal of Hydrology,1988,101(1-4):31-46
    56. Dawson T E, Ehleringer J R. Streamside trees that do not usestream water [J]. Nature,1991,350: 335-337.
    57. Dawson T E, Mambelli S, Plamboeck A H, et al. Stable isotopes in plant ecology [J]. Annual Review of Ecology and Systematics,2002,33:507-559.
    58. Dawson T E, Pate J S. Seasonal water uptake and movement in root systems of Australian phreatophytic plants of dimorphic root morphology:a stable isotope investigation [J]. Oecologia, 1996,107:13-20.
    59. Dawson T E. Hydraulic lift and water use by plants:implicationsfor water balance, performance and plant-plant interactions [J]. Oecologia,1993,95:565-574.
    60. DeLucia E H, Schlesinger W H. Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants [J]. Ecology,1991,72:51-58.
    61. Deniro M J, Epstein S. Relationship between the oxygen isotoperatios of terrestrial plant cellulose, carbon dioxide, and water[J].Science,1979,204(4388):51-53.
    62. Dodd MB, Lauenroth WK, Welker JM. Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community [J]. Oecologia,1998,117(4):504-512.
    63. Donovan L A, Ehleringer J R. Water stress and use of summerprecipitation in a Great Basin shrub community [J]. Functional Ecology,1994,8:289-297.
    64. Drake P L, Franks P J. Water resource partitioning, stem xylem hydraulic properties, and plant water use strategies in a seasonally dry riparian tropical rainforest [J]. Oecologia,2003,137(3): 321-329.
    65. Eggemeyer K D, Awada T, Harvey F E, et al. Seasonal changes in depth of water uptake for encroachingtrees Junipcrus virginiana and Pinus ponderosa andtwo dominant C4 grasses in a semiarid grassland [J]. Tree Physiology,2009,29(2):157-169.
    66. Ehleringer J R, Bowling D R, Flanagan L B, et al. Application of stable isotope technique in the research of plant water use [J]. Plant Biology,2002,4:181-189.
    67. Ehleringer J R, Phillips S L, Schuster W S F, et al. Differcntialutilization of summer rains by desert plants, implications forcompetition and climate change[J]. Oecologia,1991,88:430-434.
    68. Eichinger L, Merkel B, Nemeth G, et al. Seepage velocity determinations in unsaturated Quartemary grave [R]. Munich:Recent Investigations in the Zones of Aeration, Symposium Proceedings,1984.
    69. Ellsworth PZ, Williams DG. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil,2007,291:93-107.
    70. Ettayi N, Bouchaou L, Michelot J L, et al. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco[J]. Journal of Hydrology, 2012,438-439:97-111.
    71. Fahey T J, Yavitt J B, Joyce G. Precipitation and through-fall chemistry in Pinus contorta spp. latifolia ecosystems, south-eastern Wyoming [J]. Canadian Journal of Forest Research,1988,18: 337-345.
    72. Faquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:503-37.
    73. Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves [J]. Australian journal of plant physiology,1982,9:121-137.
    74. Farquhar GD, Cernusak LA, Barnes B. Heavy water fractionation during transpiration [J]. Plant Physiology,2007,143(1):11-18.
    75. Farris F, Strain 13 R. The effects of water stress on leaf H218O enrichment [J]. Radiation and Environmental Biophysics,1978,15:167-202.
    76. Feng X, Epstein S. Climate implication of an 800-year hydrogen isotope time series from bristlecome pine trees [J]. Science,1994,263(5175):1079-1081.
    77. Feng X. Trends in intrinsic water-use efficiency of natural trees for the past 100-200 years:a response to atmospheric CO2 concentration[J].Geochimica et Cosmochimica Acta,1999, 63(13):1891-1903.
    78. Flanagan L B, Ehleringer J R, Marshall J I). Differential uptake of summer precipitation among co-occurring trees and shrubs in pinyon-juniper woodland [J]. Plant, Cell and Environment, 1992,15:831-836.
    79. Gan K S, Wong S C, Yong J W, et al.18-O spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves [J]. Plant Physiology,2002,130(2):1008-1021.
    80. Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle [J]. Annual Review of Earth and Planetary Sciences,1996,24:225-262.
    81. Gazis C, Feng X H. A stable isotope study of soil water:evidence for mixing and preferential flow paths [J]. Geoderma,2004,119:97-111.
    82. Gonfiantini R, Gratziu S, Tongiorgi E. Oxygen isotopic composition of water in leaves. In: Isotopes and Radiation in Soil-Plant Nutrition Studies. International Atomic Energy Agency, Vienna,1965,405-410.
    83. Gregg J. The differential occurrencethe mistletoe, Phoradendron juniperinum, on its host. Juniperus osteosperma in the Western United States[C]. Salt Lake City, USA:University of Utah,1991, pp.78.
    84. Han D M, Kohfahl C, Song X F, et al. Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China [J]. Applied Geochemistry,2011, 26(5):863-883.
    85. Hasselquist N J, Allen M F. Increasing demands on limited water resources:consequences for two endangered plants in Amargosa Valley, USA [J]. American Journal of Botany,2009,96(3): 620-626.
    86. Helene C J, Roberto G, Yves T, et al. Oxygen-18 variations of rainwater during precipitation: application of the Rayleigh model selected rainfalls in Southern France [J]. Journal of Hydrology,2004,289:165-177.
    87. Hobson K A, Wasenaar L I. Stable isotope ecology:an introduction [J]. Oecologia,1999,120: 312-313.
    88. Hsiao T C, Acevedo E. Plant response to water deficits, water-use efficiency, and drought resistance [J]. Agricultural Meteorology,1974,14(1-2):59-84.
    89. Hsieh J C, Chadwick O A, Kelly E F, et al. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration [J]. Geoderma,1998,82(1-3):269-293.
    90. Hultine K R, Scott R L, Cable W L, et al. Hydraulic redistribution by a dominant, warm-desertphreatophyte:seasonal patterns and response toprecipitation pulses [J]. Functional Ecology,2004,18:530-538.
    91. Jackson P C, Meinzer F C, Bustamante M. Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem [J]. Tree Physiology,1999,19:717-724.
    92. Jackson R C, Cavelier J, Goldstein G, et al. Partitioning of waterresources among plants of a lowland tropical forest [J]. Oecologia,1995,101:197-203.
    93. Jia G D, Yu X X, Deng W P, et al. Determination of minimum extraction times for water of plants and soils used in isotopic analysis [J]. Journal of Food, Agriculture & Environment,2012, 10(3&4):1035-1040.
    94. Jia G D, Yu X X, Deng W P, et al. Seasonal water use patterns of semi-arid plants in China [J]. The Forestry Chronicle,2013,89(2):169-177.
    95. Kizito F, Dragila M 1, Sene M, et al. Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelianagro-ecosy stems [J]. Journal of Arid Environments,2012,83:69-77.
    96. Koster R D, Dirmeyer P A, Guo Z C. et al. Regions of Strong Coupling Between Soil Moisture and Precipitation [J]. Science,2004,305(5687):1138-1140.
    97. Leffler A J, Peek M S, Ryel R J, et al. Hydraulic redistribution through the root systems of senesced plants [J]. Ecology,2005,86(3):633-642.
    98. LinG, Sternberg LSL. Hydrogen isotopic fractionation during water uptake in coastal wetland plants, pp.497-510. In Stable Isotopes and Plant Carbon-Water Relations (J. Ehleringer, A. Hall and G. Farquhar, eds.). Academic Press,1993, San Diego.
    99. Liu W J, Liu W Y, Li P J, et al. Dry season water uptake by two dominant canopy tree species in a tropicalseasonal rainforest of Xishuangbanna, SW China [J]. Agricultural and Forest Meteorology,2010,150:380-388.
    100. Liu Y H, Xu Z, Duffy R, et al. Analyzing relationships among water uptake patterns, rootlet biomassdistribution and soil water content profile in a subalpine shrublandusing water isotopes[J]. European Journal of Soil Biology,2011,47:380-386.
    101. Ludwig F, Dawson T E, Kroon H, et al. Hydraulic lift in Acacia tortilis trees on an East African savanna [J]. Oecologia,2003,134:293-300.
    102. Luo Y H, Sternberg L. Spatial D/H heterogeneity of leaf water [J]. Plant Physiology,1992,99: 348-350.
    103. McCole A A, Stern L A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water [J]. Journal of Hydrology,2007,342:238-248.
    104. Meinzer E C, Andrade J L, Goldstein G, et al. Partioning of soil water among canopy trees in seasonally dry tropical forest[J].Oecologia,1999,121:293-301.
    105. Meinzer FC, Clearwater MJ, Goldstein G. Water transport in trees:current perspectives, new insights and some controversies [J]. Environmental and Experimental Botany,2001,45: 239-262.
    106. Mora G, Jahren A H. Isotopic evidence for the role of plantdevelopment on transpiration in deciduous forests of southern UnitedStates. Global Biogcochem. Cycles,2003,17:doi: 10.1029/2002GB001981.
    107. Moreira M Z, Sternberg L, Ncpstad D C. Verticalpatterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon:an isotopic approach [J]. Plant andSoil,222:95-107.
    108. Moreira MZ, Sternberg LSL, Nepstad DC. Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon:an isotopic approach [J]. Plant and Soil,2000,222(1-2):95-107.
    109. Neumann R B, Cardon Z G. The magnitude of hydraulic redistribution by plant roots:a review and synthesis of empirical and modeling studies [J]. New Phytologist,2012,194(2):337-352.
    110. O'Leary MH. Carbon isotope fractionations in plants. Phytochemistry,1981,20:553-567.
    111. O'Leary MH. Carbon isotopes in photosynthesis. Bioscience,1988,38:328-336.
    112. Ohte N, Koba K, Yoshikawa K., et al. Water utilization of natural and planted trees in the semiarid desert of Inner Mongolia, China [J]. Ecological Applications,2003,13(2):337-351.
    113. Oliveira R S, Dawson T E, Burgess S, et al. Hydraulic redistribution in three Amazonian trees [J]. Oecologia,2005,145(3):354-363.
    114. Pate J S. Carbon isotope discrimination and water-use efficiency. In:Unkovich M, Pate J, McNeill A, et al. eds. Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Dordrecht:Kluwer Academic,2001,19-36.
    115. Penuelas J, F ilella I. Deuterium labelling of roots providesevidence of deep water access and hydraulic lift by Pinus nigra in aMediterranean forest of NE Spain [J]. Environmental and Experimental Botany,2003,49(3):201-208.
    116. Phillips D L, Gregg J W. Source partitioning using stable isotopes:coping with too many sources [J]. Oecologia,136:261-269.
    117. Phillips S L, Ehleringer J R. Limited up take of summerprecipitation by bigtooth maple (Acer grand identutum Nutt) and Gambel's oak (Quercus gambelii Nutt)[J].Trees,1995,9:214-219.
    118. Querejeta J I, Estrada-Medina H, Allen M F, et al. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate [J]. Oecologia,2007,152: 26-36.
    119. Romero-Saltos H, Sternberg L, Moreira M Z, et al. Rainfall exclusion in an eastern Amazonianforest alters soil water movement and depth of water uptake [J]. American Journal of Botany,2005,92(2):443-455.
    120. Rose K L, Graham R C, Parker D R. Water Water source utilization byPinus jeffreyi and Arctostaphylos patulu on thin soils over bedrock [J]. Oecologia,2003,134:46-54.
    121. Schwinning S, Davis K, Richardson L, et al. Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau [J]. Oecologia,2002,130: 345-355.
    122. Schwinning S, Ehleringer J R. Water use trade-offs and optimal adaptions to pulse-driven arid ecosystems [J]. Journal of Ecology,2001,89:464-480.
    123. Schwinning S, Starr B I, Ehleringer J R. Summer and winter drought in a cold desertecosystem (Colorado Plateau) part I:effects onsoil water and plant water uptake [J]. Journal of Arid Environments,2005,60:547-566.
    124. Scott R L, Cable W L, Hultine K R. The ecohydrologic significance of hydraulic redistribution in asemiarid savanna [J]. Water Resources Research,2008,44(2), doi:10.1029/2007WR006149.
    125. Smith S D R. Ecophysiology of plants in the intermountain lowlands. New York: Springer-Verlag,1990,179-241.
    126. Sokal R R, Rohlf F J. Biometry:the principles and practice of statistics in biological research [C]. W.H. Freeman and Company, New York, USA.
    127. Sternberg L S L, Mulkey S S, Wright S J. Oxygen isotope ratiostratification in a tropical moist forest [J]. Oecologia,1989,81:51-56.
    128. Stratton L C, Goldstein G, Meinzer F C. Temporal and spatial partitioning of water resourcesamong eight woody species in a Hawaiian dry forest [J]. Oecologia,2000,124: 309-317.
    129. Tilman D, May R M, Lehman C L, et al. Habitat destruction and extinction debt [J]. Nature, 1994,371:65-66.
    130. Valentini R S, Mugnozza G E, Ehleringer J R. Hydrogen andcarbon isotope ratios of selected species of a Mediterraneanmacchia ecosystem[J]. Functional Ecology,1992,6:627-631.
    131. Valentini R, Mugnozza G S, Angelis P D, et al. Coupling watersources and carbon metabolism of natural vegetation at integratedtime and space scales [J]. Agricultural and Forest Meteorology, 1995,73:297-306.
    132. Wang P, Song X F, Han D M, et al. A study of root water uptake of crops indicated by hydrogen and oxygenstable isotopes:A case in Shanxi Province, China [J]. Agricultural Water Management,2010,97:475-482.
    133. Warren J M, Brooks J R, Draglia M I, et al. In situ separation of root hydraulic redistributionof soil water from liquid and vapor transport [J]. Oecologia,2011,166:899-911.
    134. Wershaw R L, Friedman I, Heller S J. Hydrogen isotope fractionation of water passing through trees [A]. In:Hobson Fand Speers M. eds. Advances in Organic Geochemistry [C]. New York: Pergamon,1966, pp.55-67.
    135. West A G, Hultine K R, Burtch K G, et al. Seasonal variations in moisture use in a pinon-juniper woodland [J]. Oecologia,2007,153:787-798.
    136. Wetzel K. A new interpretation of the meteoric water line [J]. Isotopenpraxis,1988,24(8): 311-317.
    137. White J W C, Cook E R, Lawrence J R, et al. The D/H ratios of sap in trees:Implications of water resources and tree ring D/H ratios. Geochimica et Cosmochimica Acta,1985,49: 237-246.
    138. White J W C. Stable isotope ratios in plants. A review of currenttheory and some potential applications [A]. In:Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecologicalresearch, ecological studies[C]. Springer, New York,1989,68:142-162.
    139. White J W C. The climatic significance of D/H ratios in white pine in the Northeastern United States. Dissertation, New York:Columbia University,1983.
    140. Williams D G, Ehleringer J R. Intra-and interspecific variation for summer precipitation use in pinyon-juniper woodlands [J]. Ecological Monographs,2000,70:517-537.
    141. Wilson KB, Hanson PJ, Mulholand PJ, et al. A comparison of methods for determining forest evapotranspiration and its components:sap-flow, soil water budget, eddy covariance and catchment water balance [J]. Agricultural and Forest Meteorology,2001,106:153-168.
    142. Woodward F I, Cramer W. Plant functional types and climatic changes:Introduction[J]. Journal of Vegetation Science,1996,7:306-308.
    143. Xu Q, Li H B, Chen J Q, et al. Water use patterns of three species in subalpine forest, Southwest China:the deuterium isotope approach [J]. Fcohydrology,2011,4:236-244.
    144. Yakir D, DeNiro M J, Gat J R. Natural deuterium and oxgen-18enrichment in leaf water of cotton plants grown under wet and dryconditions:evidence for water compartmentation and its dynamics [J]. Plant Cell & Environment,1990,13:49-56.
    145. Yakir D, Ting I, Deniro M J. Natural abundance 2H/1H ratios of water storage in leaves of peperomiacongesta HBK during water stress [J]. Journal of Plant Physiology,1994,144: 607-612.
    146. Yang H, Auerswald K, Bai Y F, et al. Complementarity in water sources among dominant speciesin typical steppe ecosystems of Inner Mongolia, China [J]. Plant and Soil,2011,340: 303-313.
    147. Yapp C J. A model for the relationship between precipitation D/H ratios and precipitation intensity[J].Geophysical Research,1982,87(2):9614-9620.
    148.Zencich SJ,Froend RH, Turner JV, et al. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer [J]. Oecologia,2002,131(1):8-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700