三江平原寒地稻田水热过程及节水增温灌溉模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三江平原是我国9大商品粮基地之一,在国家的粮食安全中占有重要的地位。目前在黑龙江省新增200亿斤粮食的规划中,三江平原水田的种植面积还将继续扩大,在耕地面积增加的前提下,保持粮食稳定增产,提高单产也是保证粮食安全的重要途径。三江平原地下可开采水资源量已经达到极限,如何解决水资源的供需矛盾,是三江平原农业可持续发展亟待解决的紧迫问题。从区域可持续发展的角度、湿地保护的角度以及未来灌溉成本考虑,发展节水增产灌溉农业将是未来的方向。本文对三江平原寒地稻田水分交换过程、蒸散发、以及稻田热量平衡进行了系统的研究,并针对寒地稻作区农业的春季稻田土壤增温缓慢以及三江平原井灌水稻灌溉水温偏低,致使田间温度和土壤温度过低,影响水稻正常发育的问题,创新性地开展了一种适合三江平原寒地稻田的高效节水增产的水分调控模式—早期浅水增温结合中后期间歇灌溉模式(控I和控II)的研究,主要得到以下结论:
     (1)三江平原寒地常规淹灌稻田水热交换过程
     三江平原寒地淹灌水田(试验中)水稻非生理生态需水(棵间蒸发和渗漏)占绝大部分(部分属无益耗水),2010年占到总耗水量的62%;三江平原寒地稻田蒸散发在蒸发旺盛期或蒸腾旺盛期出现最大值,2010年稻田蒸散量在蒸发旺盛期出现峰值,为7.0mm/d,2011年最大值出现在蒸腾旺盛期,为7.2mm/d。2010年和2011年稻田整个生育期内的的平均蒸散速率分别为5.7mm/d和5.5mm/d;传统淹灌处理稻田蒸散发主要受气象因素的影响,蒸散发与净辐射、空气温度和饱和水汽压差的相关系数r分别为0.59,0.64和0.62,均在0.05置信度水平显著相关;对三江平原寒地常规淹灌稻田的热量平衡的研究表明,太阳净辐射能的大部分都分配给蒸散发所带来的潜热交换。
     (2)三江平原寒地稻田实际蒸散估算方法评估
     波文比能量平衡法估算的蒸散发较实测蒸散发偏低9.1%,但总体有较好的相关性(R2=0.87),RMSE值为0.75mm/d,MAE值为0.64mm/d,与观测值的一致性指数d为0.79;利用校正的作物系数Kc值与Penman-Monteith模型得到的估算ET与实测ETa比较的结果表明, PM-Kc模型低估了2011年水稻生长中期和后期的累积ET,但其相对误差均小于10%,而2011年的生长初期,PM-Kc模型得到的累积ET比实测的累积ETa高19.3%,以2011年生长初期为例进一步分析PM-Kc模型与实际蒸散ETa的关系,展现了随着间隔日数的增加,RMSE、MAE有降低的趋势,一致性系数有提高的趋势,PM-Kc模型得到的7日平均模拟实际蒸散与实测蒸散数据最为接近。
     (3)早期浅水增温结合中后期间歇灌溉模式(控I和控II)的节水潜力
     通过改进灌溉方式,在对作物生理需水(蒸腾耗水)影响很小的情况下保持浅水层或土壤表层干燥是减少水稻耗水量和后期稻田排水量的一种主要措施,早期浅水增温结合中后期间歇灌溉的节水效果较显著:2010和2011年控I和控II稻田蒸散总量分别减少了9.6%~10.3%、15.2%~15.8%,耗水总量分别减少14.0%~18.7%、20.5%~23.4%,排水总量分别减少了14.4%~30.4%、19.5%~43.5%。
     (4)早期浅水增温结合中后期间歇灌溉模式(控I和控II)的增温增产潜力
     不同水层控制的早期浅水增温结合中后期间歇灌溉模式(控I和控II)田间建立浅水层或无水层,有利于0~15cm的表层土壤温度的提升,晴天各层土壤平均地温分别比对照淹灌要高出0.5℃~1.2℃,尤其对以冷水灌溉的井灌稻区有着重要的意义。早期浅水增温结合中后期间歇灌溉模式可以促进水稻的有效分蘖,分蘖成穗率高,形成合理的高产群;控制无效分蘖,使得水稻光和产物用于穗生长,每穗实粒数增多,增大了水稻的“库”容,产量构成更合理,提高了收获期水稻地上生物量和籽实产量,2010年和2011年控I灌溉、控II灌溉的实际籽实产量分别增加9.4%~8.6%、12.7%~11.9%。
Sanjiang Plain is one of China's nine major commodity grain bases, playing animportant role in the country's food security.10billion kg grain are currently plannedto add in Heilongjiang Province, therefore, paddy acreage of Sanjiang Plain willcontinue to expand. And under the premise of the increase of cultivated area,increasing yields is also an important way to ensure food security. Exploitation ofunderground water resources in Sanjiang Plain has reached its limit, then how to solvethe contradiction between water supply and demand is an urgent problem to be solvedfor the sustainable agricultural development of Sanjiang Plain. From the perspectiveof regional sustainable development, wetland protection point of view, and irrigationcosts to consider, developing water-saving and yield-increasing irrigation mode willbe the forward way. Water exchange, evapotranspiration and heat balance of coldpaddy field at Sanjiang Plain are systematically studied, and then the irrigation modeof shallow water warming irrigation in the early stage combined with intermittentirrigation in the middle and late stage (control irrigation I and control irrigation II) isinnovatively proposed and studied, because soil warming of paddy field is slow andwater temperature of well irrigated paddy field is low, resulting in low fieldtemperature and soil temperature, affecting the growth of rice. The followingconclusions are obtained.
     (1) Water and heat exchange of cold paddy filed at Sanjiang Plain
     Evaporation and seepage, most of which have no value for rice growth, accountfor the vast majority of water consumption of cold paddy field in Sanjiang Plain.Evaporation and seepage accounted for62%of the total water consumption in2010.The maximum paddy field evapotranspiration appeared in the period of strongevaporation or the period of strong transpiration. The maximum paddy fieldevapotranspiration, appearing in the period of strong evaporation, was7.0mm/d in2010, while the maximum paddy field evapotranspiration, appearing in the period ofstrong transpiration, was7.2mm/d in2011. The average paddy filed evapotranspiration was5.7mm/d,5.5mm/d in2010,2011. The evapotranspiration oftraditional flooding irrigation paddy field is mainly affected by meteorological factors.The correlation coefficient r of evapotranspiration with net radiation, air temperatureand vapor pressure was0.59,0.64and0.62. Evapotranspiration was significantlyrelated to net radiation, air temperature and vapor pressure at the0.05confidencelevel. It was showed that most of solar net radiation was assigned to the latent heatcaused by evapotranspiration exchange through the study of the heat balance of coldtraditional flooding paddy field in Sanjiang Plain.
     (2) Evaluation of actual evapotranspiration estimation method
     Estimation evapotranspiration by Bowen ratio energy balance method was9.1%lower than measured evapotranspiration, but estimation evapotranspiration by Bowenratio energy balance method was overall well correlated with measuredevapotranspiration. Estimated evapotranspiration of the middle stage and the endstage by Penman-Monteith model combined with the corrected crop coefficient Kc(PM-Kc method) were all10%less lower than measured evapotranspiration of thesame stages, while estimated evapotranspiration of the early stage by PM-Kc methodwas19.3%higher than measured evapotranspiration of the same stage. With theincreasing interval, there were decreasing trends of RMSE and MAE and increasingtrends of d. The7-day mean data estimated by PM-Kc method perfomed best.
     (3) Water-saving potential of the irrigation mode of shallow water warmingirrigation in the early stage combined with intermittent irrigation in the middle andlate stage
     The results of this research showed that the irrigation mode of shallow waterwarming irrigation in the early stage combined with intermittent irrigation in themiddle and late stage could drastically reduce water consumption of rice bysignificant reducing evaporation and soil percolation, as the water layer of intermittentirrigation was shallow, and the field exposure was emphasized; hence, soil watercontent was reduced, and then evaporation and soil percolation was significantlyreduced. The total evapotranspiration of cold paddy field under control irrigation I andcontrol irrigation II was lower than that of flooding irrigation by9.6%~10.3%and 15.2%~15.8%, respectively, while the total water consumption of cold paddy fieldunder control irrigation I and control irrigation II decreased by14.0%~18.7%and20.5%~23.4%, respectively. And the drainage water of cold paddy field under controlirrigation I and control irrigation II was reduced by14.4%~30.4%and19.5%~43.5%,respectively.
     (4) Warming and yield-increasing potential of the irrigation mode of shallowwater warming irrigation in the early stage combined with intermittent irrigation inthe middle and late stage
     Shallow water layer or non-water layer was beneficial for the increase of0~15cm soil temperature. The average soil temperature of paddy field under shallowwater warming irrigation in the early stage was0.5℃~1.2℃higher than paddy fieldunder flooding irrigation at the sunny day of early rice growth stage, which wasbeneficial for the growth of cold rice. The irrigation mode could promote the materialproduction of effective tillering of rice, bringing about high percentage ofearring-tillers, thus forming the reasonable high-yield group, while it could controlineffective tillering to make photosynthetic product of rice for the growth of panicles,bringing about increase of filled grains per panicle, thus producing a more reasonableyield structure, with increase of aboveground biomass and seed yield. The actual yieldof rice under control irrigation I and control irrigation II was8.6%~9.4%and11.9%~12.7%higher than that under continuous flooding irrigation.
引文
Aboitiz M, Labadie J W, Heermann D F.1986. Stochastic soil moisture estimation andforecasting for irrigated fields [J]. Water Resources Research,22(2):180-190.
    Aboukhaled A., Alfaro A., Smith M., Lysimeter.1982. FAO Irrigation and DrainagePaper No.39.
    Allen, L. H., J r R R Valle.1994. Soybean leaf gas-exchange responses to carbondioxide and water stress [J]. Agron1J.,(86):625–636.
    Alves, P. A., L. S. Pereira.1998. Aerodynamic and surface resistance of completecover crops: How good is the “big leaf”?[J]. Tranc ASAE,41(2):345-351.
    Azooz R H, Lowery B, Daniel T C.1997. Impact of tillage and residue managementon soil heat flux.Agricultural and forest meteorology,(84):207~222.
    Baker, R., Dawe, D., Toung, T.P., Bhuiyan, S.I., Gerra, L.C.,2000. The outlook forwater resources in the year2020: challenges for research on water managementin rice production. Int. Rice Comm. Newsl.49:7–21
    Bald, B. L., Rosenberg, N. J.,1974. Lysimeteric calibration of the Bowen ratio-energybalance method for evapotranspiration estimation in the central Great Plains, J.Appl. Meteorol.,13:227-235.
    Bouman, B. A. M., Tuong T P.2001.Field water management to save water andincrease its productivity in irrigated lowland rice [J]. Agric Water Mange,49:11-30.
    Campbell GS.2003. Modeling sensible and latent heat transport in crop and residuecanopies. AGRONOMY JOURNAL95(6):1388-1392, NOV-DEC.
    Choudhury BJ,MonteithJL.1988. A four-layer model for the heat budget ofhomogenous land surfaces [J]. Q. J. R. Meteorol. Soe.,114:373-398.
    Coats, B.2003. Global rice production. In: Rice Origin, History, Technology andProduction (eds Smith CW, Dilday RH), Wiley, Hoboken, NJ, USA, pp.247–470.
    De Datta, S.K., Abilay, W.P., and Kalwar, G.N.,1973a. Water stress effects inflooded tropical rice. In: Water Management in Philippine Irrigation Systems:Research and Operations. IRRI, Los Ba os, Philippines, pp.19–36.
    De Datta, S.K., Krupp, H.K., Alvarez, E.I., and Modgal, S.C.1973b. Watermanagement in flooded rice. In: Water Management in Philippine IrrigationSystems: Research and Operations. IRRI, Los Ba os, Philippines, pp.1–18.
    Denning, G.L. and Mew, T.W.1998. China and IRRI: Improving China’s riceproductivity in the21st century. International Rice Research Institute, Manila,Philippines,104pp.
    Dittert, K., Lin Shan, Kreye, C., Zheng, X.H., Xu, Y.C., Lu, X.J., Shen, Q.R., Fan,X.L., and Sattelmacher, B.,2002. Saving water with Ground Cover RiceProduction Systems (GCRPS) at the price of increased greenhouse gas emissions?In: Bouman B.A.M., Hengsdijk, H., Hardy, B., Bindraban, P.S., Tuong, T.P.,Ladha, J.K.(Eds.), Water-wise Rice Production. International Rice ResearchInstitute, Los Ban os, Philippines, pp.197–206.
    Doorenbos J,Pruitt WO.1977. Guideline for predicting crop water requirements.In:FAO Irrigation and Drainage,Paper No.24. Food and AgriculturalOrganization of the United Nations,Rome, Italy. pp.193.
    Dugas, W. A., L. J. Fritschen, and L. W. Gay.1991. Bowen ratio, eddy correlation,and portable chamber measurements of sensible and latent heat flux overirrigated spring wheat. Agric. For. Meteorol.,56:1-20.
    Evett S R, A W Warrick, A D Mathias.1995. Wall material and capping effects onMicrolysimeter temperature and evaporation [J]. Soil Sci1Soc1Am. J.,(59):329–336.
    Evett, S.R. and Parkin, G.W.2005. Advances in soil water content sensing: Thecontinuing maturation of technology. Vadose Zone J.4(4):986‐991.
    Evett, S. R., Howell, T. A., Steiner, J. L. and Cresap, J. L.1993.Evapotranspiration bysoil water balance using TDR and neutron scattering. In Proc. National Conf. onIrrigation and Drainage Engineering Management of Irrigation and DrainageSystems, Integrated Perspectives,914‐921.
    Evett, S. R.2007. An overview of soil water sensing technologies and problems.Abstract in Intl. Soil Moisture Sensing Technology Conference: Current andFuture Research Directions in Soil Moisture Sensing. Honolulu, Hawaii:University of Hawaii‐Manoa.
    FAO.2002. World Agriculture: Towards2015/2030Summary Report. FAO, Rome,Italy.
    Fritshen, J. L., Gay, L. W., Simpson, J. R.,1983. The effect of a moisture step changesand advective conditions on the energy balance components of irrigated alfalfa.Extended Abstract,16th Conference on Agriculture and Forest Meteorology.April26-28, Fort Collins, CO, pp.83-86.
    Fuchs, M., Tanner, C.B.,1970. Error analysis of Bowen ratios measured bydifferential psychrometry. Agric. Meteorol.7:329-334.
    Guerra, L.C., Bhuiyan, S.I., and Tuong, T.P.1998. Producing more rice with lesswater.SWIM Paper5[M]. International Water Management Institute, Colombo,Sri Lanka. p.24
    Heilman, J. L., Brittin, C. L., Neale, C. M. U.,1989, Fetch requirements for Bowenratio measurements of latent and sensible heat fluxes. Agric. For. Meteorol.44:261-273.
    Held, A. A., Steduto, P., Orgaz, F., Matista, A., Hsiao, T. C.,1990. Bowen ratioenergy-balance technique for estimating crop net CO2assimilation andcomparison with a canopy chamber. Theor. Appl. Climatol,42:203-213.
    Hillel D.1971. Soil and Water: Physical Principles and Processes. New York:Academic Press.55
    Hongyun, H. and Liange, Z.2007. Chinese agricultural water resource utilization:problems and challenges. Water Policy9(S1):11–28
    Hukkeri, S.B. and Sharma, A.K.1980. Water-use efficiency of transplanted anddirect-sown rice under different water management practices. Indian J. Agric. Sci.50:240–243.
    Humphreys E, Muirhead W.1991. Agronomic options for reducing recharge underrice [J]. Aust Soil Water Conserve,4:22-29.
    Humphreys L, Muirhead W, Fawcett B J, et al.1992. Minimising deep percolationfrom rice [J]. Farmers Newsletter,172:41-43.
    IRRI.2002. Rice Almanac: Source Book for the Most Important Economic Activityon Earth,3rd edn. CABI Publishing, Oxon, UK.
    Janssen M, Lennartz B.2009. Water losses through paddy bunds: methods,experimental data, and simulation studies [J]. Journal of Hydrology,369(1/2):142-153.
    Kreye, C.2004. Greenhouse gas emissions (methane and nitrous oxide) and water usein a water-saving ground cover rice production system (GCRPS) in Beijing,North China:[thesis for Ph.D].Gerany Kiel: University of Kiel.
    Lee XH, Hu XZ.2002. Forest air fluxes of carbon, water and energy over non-flatterrain. Boundary Layer Meteorology,103,277-301.
    Legates, D.R., McCabe, G.J..1999. Evaluating the use of “goodness-of-fit” measuresin hydrologic and hydroclimatic model validation. Water Resour. Res.35(1):233-241.
    Li, F.S.,Liang, J. H.,Kang, S. Z.2007.Benefits of alternate partial root-zoneirrigation Oil growth,water and nitrogen use eficiencies modified by fertilizationand soil water status in maize. Plant Soil,295:279-291.
    Li, Q., Willardson, L., Li, L., Liu, C. and Wu, L.2004. Amelioration of saline–sodicsoil with mildly saline water in the Songnen Plain, northeast China. Soil Use andManagement20:439-443.
    Li, Y.H.,2001. Research and practice of water saving irrigation for rice in China. In:Barker, R., Loeve, R., Li, Y., Tuong, T.P.(Eds.), Water-saving irrigation for rice.Proceedings of an International Workshop.23–25March2001, at Wuhan,China, pp.135–144.
    Li, Y.H., Barker, R.2004. Increasing water productivity for paddy irrigation in China.Paddy Water Environment,2:187–193.
    Lin, S., Dittert, K., Tao, H.B., Kreye, C., Xu, Y.C., Shen, Q.R., Fan, X.L. andSattelmacher, B.2002. The ground-cover rice production system (GCRPS): asuccessful new approach to save water and increase nitrogen fertilizer efficiency?Water-Wise Rice Production, edited by Bouman, B.A.M et al., IRRI, ISBN971-22-0182-1, pp187-195.
    Lloyd, C. R., Shuttleworth, W. J., Gash, J. H. C., Turner. M.,1984. A microprocessorsystem for eddy-correlation. Agric. For. Meteorol.,33:67-80.
    Loeve, R., Dong, B., Molden, D., Li, Y.H., Chen, C.D. and Wang, J.Z.2004. Issues ofscale in water productivity in the Zhanghe irrigation system: implications forirrigation in the basin context. Paddy and Water Environment2:227–236. Malek,E.,1993. Comparison of the Bowen ratio-energy balance and stability-correctedaerodynamic methods for measurement of evapotranspiration. Theor. Appl.Climatol.48:167-178.
    Lu J., Ookawa T, Hirasawa T.2000. The effects of irrigation regimes on the water use,dry matter production and physiological responses of paddy rice. Plant Soil,(223):207-216.
    Maclean, J.L., Dawe, D.C., Hardy, B.and Hettel, G.P.2002. Rice almanac (thirdedition). IRRI, Los Ba os, Philippines,253pp.
    Manuel, I. C.2000. Francesc Simplifying daily evapotranspiration estimates overshortfull canopy crops[J]. Agron J.,92:628-632.
    Matsuno, Y., Giardano, M. and Barker, R.2007. Transfer of water from irrigation toother uses: lessons from case studies. Paddy and Water Environment5(4):211.
    Matthew B, Nick A, Sheridan M.2001. Quantifying the water budget of irrigated ricein the shepparton irrigation region, Australia [J]. Irrig Sci,20:99-105.
    Monteith JL.1973. Principle soil environmental physics, Edward Amold (Publishers)Limited.
    Moncrifee, J. B., Massheder, J. M., De Bruin, H., et al.,1997. A system to measuresurface fluxes of moment. Sensible heat, water vapor and carbon dioxide. Journalof Hydrology188-189:589-611.
    Muhammad A K, Abdur R, Muhammad Z.2007. Water use efficiency and economicfeasibility of growing rice and wheat with sprinkler irrigation in the Indus Basinof Pakistan [J]. Agricultural Water Management,87:292-298.
    N. Varadoat, b and I. Brauda, c and P.J. Rossd. Development and assessment of anefficient vadose zone module solving the1D Richards' equation and includingroot extraction by plants. Journal of Hydrology Volume323, Issues1-4,30May2006, Pages258-275.
    Olejnik J.,F. Eulenstein, A.Kedziora,et al.2001. Evaluation of a water model usingdata for bare soil and crop surfaces in middle Europe [J]. Agricultural and ForestMeteorology,(106):105-116.
    Or.D,Hanks R.J.1993. Irrigation scheduling considering soil variability and climaticuncertainty: simulation and field studies.In:Russo G eds.Water flow andsolute transport in soils[M].Advanced Series in Agricultural Sciences.(20):262-282.
    Penman HL.1948. Natural Evaporation from open water bare soil land, Proc. Roy.Soc., A.193:120-145.
    Phene, C. J., Reginato, R. J., Itier, B., and Tanner, B.R.1990. Sensing irrigation needs.In Management of Farm Irrigation Systems. Hoffman, G. J., Howell, T. A. andSolomon, K. H.(eds.) St. Joseph, Mich.: ASAE. pp207-261.
    Prueger J H, J L Hatfield, J K Aase, et al.1997. Bowen-ratio comparisons withlysimeter evapotranspiration [J]. Agron.J.,(89):730–7361.
    Rana G, Katerji N.2000. Measurement and estimation of actual evaporation in thefield under Mediterranean climate: a review [J]. European Journal of Agronomy,13(2):125-153.
    Roel, A., Heilman, J.L. and McCauley, G.N.1999. Water use and plant response intwo rice irrigation methods. Agric. Water Manage.39:35–46.
    Ross PJ.2003. Modeling soil water and solute transport-Fast, simplified numericalsolutions.AGRONOMY JOURNAL95(6):1352-1361, NOV-DEC.
    Sandhu B S, Khera K L, Singh B.1982. A note on the use of irrigation water andyield of transplanted rice in relation to time of last irrigation [J]. J Agric Sci,52:870-872.
    Seckler, D., Barker, R., Amarasinghe, U.,1999. Water scarcity in the twenty-firstcentury. International Journal of Water Resources Development15,29–42.
    Shan Lin, Dittert, K. and Sattelmacher, B.2002. The Ground Cover Rice ProductionSystem (GCRPS)–a successful new approach to save water and increasenitrogen fertilizer efficiency? In: Bouman, B.A.M., Hengsdijk, H., Hardy, B.,Bindraban, P.S., Tuong, T.P., Ladha, J.K.(Eds.), Water-wise Rice Production.International Rice Research Institute, Los Baňos, Philippines, pp.187–196.
    Shannon, M.C., Rhoades, J.D., Draper, J.H., Scardaci, S.C., Spyres, M.D.,1998.Assessment of salt tolerance in rice cultivars in response to salinity problems inCalifornia. Crop Science38:394–398.Spittlehouse, D. A., Black, T. A.,1980.Evaluation of the Bowen ratiorenergy balance method for determining forestevapotranspiration. Atmos. Oceans18:98-116.
    Shuttleworth WJ, Wallace JS.1985. Evaporation from sparse crops: an energycombination theory [J]. Q. J. R. Meteorol. Soe.,111:839一855.
    Shuttleworth WJ, Gurney RJ.1990. The theoretieal relationship between foliagetemperature and canopy resistance in sparse crops [J]. Q. J. R. Meteorol. Soe,116:498-51.
    Singh, K.B., Gajri, P.R., Arora, V.K.2001. Modelling the effects of soil and watermanagement practices on the water balance and performance of rice. AgriculturalWater Management,49,77–95.
    Singh M P.1993. Water percolation dynamics as influenced by submergence levelsand depth of puddling in rice fields [J]. Journal of the Indian Society of SoilScience,41(2):213-217.
    Solomon, K.H. and Davidoff, B.,1999. Relating unit and subunit irrigationperformance. Transactions of the ASAE,42(1):115-122.
    Swin bank WC.1951. The measurement of vertical transfer of heat and water vaporby eddy in the lower atmosphere. Meteorology,8,135-145.
    Tabbal, D.F., Bouman, B.A.M., Bhuiyan, S.I., Sibayan, E.B., Sattar, M.A.2002.On-farm strategies for reducing water input in irrigated rice: case studies in thePhilippines. Agricultural Water Management,56,93–112.
    Tao, H.B.2004. Yield and nitrogen uptake of lowland rice (Oryza Sativa L.) in awater-saving groundcover rice production system (GCRPS) in Beijing, NorthChina:[thesis for Ph.D].Germany Kiel:University of Kiel.
    Tao, H.B., Brueck, H., Dittert, K., Kreye, C., Lin, S. and Sattelmacher, B.. Growthand yield formation of rice (Oryza sativa L.) in the water-saving ground coverrice production system (GCRPS).Field Crops Research, In Press.
    Taylor SA.1971. The Physics of Soil Science. New York: Academic Press.32-59.
    Todd R W, S R Evett, T A Howell, et al.1998. Latent heat flux of irrigated alfalfameasured by weighing lysimeter and Bowen ratio-Energy balance [J]. ASAENo1982119, pp2.
    Tuong TP, Cabangon RJ, Wopereis MCS.1996. Quantifying flow processes duringland soaking of cracked rice soils. Soil Sci Soc A m J,(60):872-879.
    Tuong, T.P., Bhuiyan, S.I.1999.Increasing water-use efficiency in rice production:farm-level perspectives. Agricultural Water Management,40(3):117-122.
    Tyagi N K, Sharma D K, Luthra S K.2000. Determination of evapotranspiration andcrop coefficients of rice and sunflower with lysimeter [J]. Agricultural WaterManagement,45:41-54.
    Valentini RP, de Angelis MG, Monaco R.1996. Seasonal net carbon dioxide exchangeof a beech forest with the atmosphere. Globle Change Biology,2,199-208.
    Wang J, Yu Q, Lee X H.2007. Simulation of energy and CO2fluxes and crop growthat different time steps from hourly to daily Hydrological Process.21:2474-2492.
    Warhaft, Z.,1976. Heat and moisture flux in the boundary layer. Quart. J. Roy.Meterorol. Soc.102:703-704.
    Webb EK, Pearman GI, Leuning R.1980. Correction of flux measurements fordensity effects due to heat and water vapor transfer. Quarterly Journal RoyalMeteorological Society,106,85-106.
    Wegehenkel M.1997. SVAT—Modellierung auf GIS—Basis am beispiel deragrarlandschaft chorine [J]. Lands,(36):149-164.
    Willmott, C.J.,1984. On the evaluation of model performance in physical geography.In: G.L. Gaile, C.J. Willmott (Eds.), Spatial Statistics and Models. D. Reidel,Norwell, MA.
    Wilson K, Goldstein A, Falge E, et al.2002. Energy balance closure at FLUXNETsites[J]. Agric Forest Meteorol,113:223-243.
    Wright, J. L.1990. Comparison of ET measured with neutron moisture meters andweighing lysimeters. In Irrigation and Drainage,202‐209. S. R. Harris, ed. NewYork, N.Y.: ASCE.
    Xi Bin Ji,Er Si Kang,Rensheeng Chen,Wenzhi Zhao,Zhihui Zhang,Bowen Jin.2007.A mathematical model for simulating water balances in cropped sandy soil withconventional flood irrigation applied.ARUGULTURAL WATERMANAGEMENT,337-346.
    Yeh, G. T., Brutsaert, W. H.,1971. A solution for simultaneous turbulent heat andwater vapor transfer between a water surface and the atmosphere.Boundary-Layer Meteorol.2:64-82.
    Zhu ZL, Sun XM, Zhang RH.2003. Statistical analysis and comparative study ofenergy balance components estimated using micrometeorological techniquesduring HUBEX/IOP1998/99. Advances in Atmospheric Sciences,20,285-291.
    白泰山等.寒地水稻井灌节水高产栽培技术研究报告.1991.
    曹印龙.三江平原井灌稻区节水增温试验研究[D].东北农业大学,硕士学位论文,2008.
    陈发祖.梯度扩散理论在能量和物质输送计算中的若干问题[J].地理研究,1992,02.
    陈家宙,陈明亮,何圆球.不同水分状况下红壤水稻的水量平衡和生产能力[J].华中农业大学,2000,19(6):554-558.
    陈建耀,吴凯.利用大型蒸渗仪分析潜水蒸发对农田蒸散量的影响[J].地理学报,1997,52(5):439–446.
    程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻产量和水分生产率的影响[J].农业工程学报,2006,22(12):28-33.
    程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响[J].应用生态学报,2006,17(10):1859-1865.
    程满金,白明照,申利刚.2000.灌溉水温对高寒地区水稻的影响及增温措施.东北水利水电,19~21.
    程旺大,赵国平,张国平,等.水稻节水栽培的生态和环境效应[J].农业工程学报,2002,18(1):191-194.
    迟道才,王殿武.北方水稻节水理论与实践.北京:中国农业科学技术出版社,2003,15~23.
    迟道才,何宝安,吕凤良,等.沈阳地区水稻蒸发蒸腾量的数学模型研究[J].沈阳农业大学学报,1999,30(5):530-532.
    迟道才,王瑄,张玉龙.水稻节水高产灌溉模式及土壤水分能量调控标准研究[J].灌溉排水学报,2003,4:39-42.
    丛振涛,雷志栋,胡和平,等.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究Ⅰ:模型[J].水利学报,2005,36(5):575-579.
    丛振涛,雷志栋,胡和平,等.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究Ⅱ:模型验证与应用[J].水利学报,2005,36(6):741-745.
    崔国贤,沈其绒,崔国清,等.水稻旱作及对旱作环境的适应性研究进展[J].作物研究,2001,(3):70-74.
    丁加丽.控制灌溉水稻水分利用规律及蒸发蒸腾量模拟研究[D].博士毕业论文.河海大学.2007.
    邓慧平.农田水循环与能量分配的实验及其数值模拟.干旱区地理,1991,14(1):42-47.
    董斌,崔远来,李远华.水稻灌区节水灌溉的尺度效应[J].水科学进展,2005,16(6):833-839.
    段华平,卞新民,谢小立,等.农田水循环:地表-大气界面水分传输研究进展[J].中国农业气象,2003,24(1):36-40.
    范爱武,刘伟,王崇琦.土壤温度和水分日变化实验[J].太阳能学报,2002,23(6):721~723.
    范爱武,刘伟,王崇琦.不同环境条件下土壤温度变化的计算模拟[J].太阳能学报,2002,24(3):167~171.
    樊引勤.作物蒸发蒸腾量的测定与作物蒸发蒸腾量计算方法的研究[D].西北农林科技大学,硕士学位论文,2001.
    付强.三江平原井灌水稻田间生产过程节水技术组装与优化研究[D].东北农业大学博士学位论文.2000
    付强.节水灌溉系统建模与优化技术[M].四川:四川科学技术出版社.2002,48~68.
    付强,梁川,杨广林.关于三江平原井灌水稻节水增温灌溉的几点建议[J].节水灌溉,2002,(1):24~26.
    付强,梁川,杨广林.三井平原井灌水稻节水技术组装与综合优化研究[J].四川大学学报(工程科学版),2002,34(6):18~23.
    付强,梁川,杨广林.井灌水稻区晒水池内井水增温效果试验研究[J].四川大学学报(工程科学版),2002,34(4):14~18.
    付强,梁川,杨广林,等.三江平原井灌水稻区土壤渗透规律研究[J].农业系统科学与综合研究,2001,4(17):260-263.
    高峰.稻田土壤水分动态模拟研究[D].南京信息工程大学,2008.
    高俊风.不同水分状况下土壤—植物—大气连续系统水分热力学函数[J].华北农学报,1990,5(增刊).
    高志球,卞林根,陆龙烨,等.水稻不同生长期稻田能量收支、CO2通量模拟研究[J].应用气象学报,2004,15(2):129-140.
    葛帆,王钊.蒸渗仪及其应用现状[J].节水灌溉,2004,(2):30-35.
    龚元石,李保国.农田水量平衡模型对作物根系吸水函数及蒸散公式的敏感性[J].水土保持研究,1996,3(3):1-7.
    龚振平,赵艳忠,刘丽君等.井灌水稻池内水温分布规律与灌水方法的研究[J].东北农业大学学报,2001,32(3):222~227.
    郭家选,李巧珍,严昌荣,等.干旱状况下小区域灌溉冬小麦农田生态系统水热传输[J].农业工程学报.2008,24(12):20-24.
    国家林业局《湿地公约》履约办公室.湿地公约履约指南[M].北京:中国林业出版社,2001
    韩娟.利用大型蒸渗仪测定蒸发蒸腾量及作物蒸发蒸腾量计算方法的研究[D].西北农林科技大学,硕士学位论文,2000.
    何代元.水稻地膜覆盖增产原因及主要栽培技术[J].中国稻米,1997,(3):21.
    黄妮,刘殿伟,王宗明等.1986年-2005年三江平原水田与旱田的转化特征[J].资源科学,2009,31(2):324-329.
    黄义德,张自立,魏凤珍.水稻覆膜早作的生态生理效应[J].应用生态学报,1999,10(3):305-308.
    黄文江,黄义德,王纪华,等.水稻旱作对其生长量和经济产量的影响[J].干旱地区农业研究,2003,21(4):15-19.
    黄新宇,徐阳春,沈其荣,周春林,尹金来, Dittert.不同地表覆盖早作水稻和水作水稻水分利用效率的研究[J].水土保持学报,2003,17(3):140-143.
    贾红.稻田双源蒸散模型研究[D].南京信息工程大学,硕士学位论文,2008.
    贾红,胡继超,张佳宝,等.应用Shuttleworth-Wallace模型对夏玉米农田蒸散的估计[J].灌溉排水学报,2008,27(4).
    蒋彭炎,洪晓富,冯来定,等.水稻中期群体成穗率与后期群体光合效率的关系[J].中国农业科学,1994,27(6):8-14.
    金千瑜,欧阳由男,张国平.覆膜旱载水稻的产量与生育表现研究[J].浙江大学学报,2002,28(4):362-368.
    康绍忠,刘晓明,熊运章.冬小麦根系吸水模式的研究[J].西北农业大学学报,1992,(2).
    李保国,龚元石,左强等.农田土壤水的动态模型及应用.北京,科学出版社.2000.
    李家伦,洪钟祥,孙菽芬.青藏高原西部改则地区大气边界层特征[J].大气科学.2000,24(3):301-312.
    李胜功,赵哈林,何宗颖,等.灌溉与无灌溉大豆田的热量平衡[J].兰州大学学报(自然科学版),1997,33(1):98-104.
    李远华,张相莲,赵长友,等.水稻间歇灌溉的节水增产机理研究[J].中国农村水利水电(农田水利与小水电),1998,(11):12-15.
    李雪转,樊贵盛.非充分供水土壤水分入渗模型的试验研究[J].灌溉排水学报,2009,28(4):37-42.
    梁银丽,唐绍忠,钟量平.黄土旱塬小麦水分生产函数及供水模式[J].地理科学进展,1998,17(增刊):55-61.
    梁永超,胡峰,沈其荣,吕世华,吴良欢,张福锁.水稻覆膜旱作研究现转与展望.见:冯峰,张福锁,杨新泉,主编.植物营养研究进展与展望.北京:中国农业大学出版社,2000,114-127.
    梁永超,胡锋,朱遐亮,王广平王永乐.水稻覆膜旱作高产节水机理研究[J].中国农业科学,1999,32(l):26-32.
    林而达,许吟隆,蒋金荷,等.气候变化国家评估报告(Ⅱ):气候变化的影响与适应[J].气候变化研究进展,2006,2(2):51-56.
    凌启鸿.作物群体质量[M].上海科学出版社,2000.
    凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(3):1-11.
    凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报,1995,21(4):464-469.
    刘丙军,邵东国,沈新平.作物需水时空尺度特征研究进展[J].水科学进展,2007,23(5):258-264.
    刘昌明,王会肖.土壤—植物—大气界面水分过程与节水调控.1999,北京,科学出版社.
    刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998,(10);36–39.
    刘钰, R M Fernando, L S Pereira.微型蒸发器田间实测麦田与裸地土面蒸发强度的试验研究[J].水利学报,1999,(6):45–50.
    刘钰, LSPereira.对FAO推荐的作物系数计算方法的验证[J].农业工程学报,2000,16(5):26-30.
    刘兴土,马学慧.三江平原自然环境变化与生态保育[M].北京:科学出版社,2002,59~173.
    陆龙烨,程彦杰,卞林根,等.长江三角洲典型稻作区近地层二氧化碳等湍流通量的观测研究[J].地球物理学报,2003,46(6):751-759.
    罗良国,许健民,罗启仕等.北方稻田生态系统的水量平衡及水分效率研究[J].应用生态学报,1996,7(4):371-376.
    吕厚荃,于贵瑞.几种实际蒸散计算方法在土壤水分模拟中的应用[J].资源科学,2001(l1):85-90.
    马耀明,塚本修,吴晓鸣,等.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学.2000,24(5):715-722.
    马学慧,蔡省垣.我国泥炭基本性质的区域分异[J].地理科学,1991,11(1):30~41.
    毛晓敏,杨诗秀,雷志栋.叶尔羌灌区冬小麦生育期SPAC水热传输的模拟研究[J].水利学报.1998(7).
    茆智.水稻节水灌溉技术及其对环境的影响[J].中国工程科学,2002,4(7):8-16.
    茆智.水稻节水灌溉[J].中国农村水利水电(农田水利与小水电),1997(4):45-47
    闵安成,张一平,朱铭莪等.田间土壤的水势温度效应[J].土壤学报,1995,(2)
    莫兴国,刘苏峡.麦田能量转换和水分传输特征[J].地理学报,1997,52(1):37-43.
    彭世彰,俞双恩,张汉松,等.水稻节水灌溉技术[M].北京:中国水利水电出版社,1998.
    彭世彰,徐俊增,黄乾,等.水稻控制灌溉模式及其环境多功能性[J].沈阳农业大学学报,2004,35(5-6):443-445.
    彭世彰,徐俊增.农业高效节水灌溉理论与模式[M].2009,科学技术出版社.
    彭世彰,朱成立.作物节水灌溉需水规律研究[J].节水灌溉,2003,(2):5-9.
    彭世彰,朱成立.节水灌溉的作物需水量试验研究[J].灌溉排水学报,2003a,22(2):21-25.
    戚培同,古松,唐艳鸿,等.三种方法测定高寒草甸生态系统蒸散比较[J].生态学报,2008,1(28):203-211.
    祁永强,王介民,贾立,等.青藏高原五道梁地区湍流输送特征的研究[J].高原气象.1996,15(2):172-177.
    强小嫚,蔡焕杰,王健.波文比仪与蒸渗仪测定作物蒸发蒸腾量对比[J].农业工程学报,2009,2(25):12-17.
    秦钟,于强,许守华,等.华北平原农田水热通量与作物水分利用效率的特征与模拟[J].中国科学D辑地球科学.2004,34(增刊II):183-192.
    沈康荣,汪晓春,刘军,罗显书.水稻全程地膜覆盖湿润栽培法增产因子及关键栽培技术的研究.华中农业大学学报[J],1997,16(6):547-551.
    尚松浩,雷志栋,杨诗秀.冬季田间水热状况的数值模拟[J].灌溉排水.1997,16(3).
    司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,3(16):451-459.
    司徒淞,张薇.稻田高产节水灌溉方式的研究.中国水稻科学[J],1991,5(3):127-132.
    陶嘉杰,何贤康,金标.不同灌溉条件下的水稻需水规律及水分生产率分析[J].浙江水利科技.2007,4(152):14-19.
    王介民,刘晓虎,祁永强.应用涡旋相关方法对戈壁地区湍流输送特征的初步研究[J].高原气象.1990(2):120-129.
    王靖,于强,李湘阁,等.用光合-蒸散耦合模型模拟冬小麦水热通量的日变化[J].应用生态学报.2004,15(11):2077-2082.
    王全九,王文焰,白锦鳞.土壤水分运移热力学特性的研究[J].水土保持学报,1994,(1).
    王全九,来剑斌,李毅. Green-Ampt模型与Philip入渗模型的对比分析[J].农业工程学报,2002,8(2):13-16.
    王寅初,宋巨明,张计柱.地膜旱作水稻初步试验[J].山西农业科学,1985,3:14-15.
    王毅勇,杨青,张光等.三江平原大豆田蒸散特征及能量平衡[J].中国生态农业学报,2003,11(4):82-85.
    王笑影,梁文举,闻大中.间歇灌溉对北方水稻生理生态需水的影响[J].应用生态学报.2004,15(10):1911-1915.
    王笑影,梁文举,闻大中.北方稻田蒸散需水分析及其作物系数确定[J].应用生态学报.2005,16(1):69-72.
    王笑影,闻大中,梁文举.不同土壤水分条件下北方稻田耗水规律研究[J].应用生态学报.2003,14(6):925-929.
    王宗明,宋开山,刘殿伟,等.1954~2005年三江平原沼泽湿地农田化过程研究[J].湿地科学,2009,7(3):208-217.
    巫伯舜,谢秀先.水稻的旱种技术.北京:农业出版社,1985, p12-20.
    吴洪颜,申双和,徐为根.棉田SPAC水热传输的多层模式[J].南京气象学院学报.2001,24(1):137-142.
    吴凯,陈建耀,谢贤群.冬小麦水分耗散特性与农业节水[J].地理学报,1997,52(5):455–460.
    吴良欢,祝增荣,梁永超,等.水稻覆膜旱作节水节肥高产栽培技术[J].浙江农业大学学报,1999,25(1):41-42.
    吴一才,宋高山.地膜覆盖旱种水稻试验情况简报[J].辽宁农业科学,1982,(4):28-30
    谢贤群.一个改进的计算麦田总蒸发量的能量平衡-空气动力学阻抗模式.气象学报.1988.46(1).
    谢贤群.农田生态系统水分循环与生产力关系研究的内涵及研究战略[J].地理科学进展,1998,17(增刊):1-10.
    谢小立,段华平,王凯荣.红壤坡地农业景观(旱地)地表界面水分传输研究[J].中国生态农业学报,2003,11(4):55-58.
    许迪,刘钰.测定和估算田间作物蒸发量方法研究综述[J].灌溉排水,1997,16(4):54–59.
    杨建吕,王志琴,刘立军,等.旱种水稻生育特性与产量形成的影响[J].作物学报,2002,28(1):11-17.
    杨秋珍,李军,徐明.农田典型土壤降雨入渗特征研究[J].高原气象,2008,27(S1):175-182.
    杨晓光,沈彦俊,张录达.麦田水热传输的控制效应及非线性特征分析[J].北京农业大学学报,2000,5(1):101-104.
    姚德良,冯金朝,杜岳,等.红壤农田水热动态耦合模式和观测研究[J].中央民族大学学报.2001,10(2).
    俞双恩,彭世彰,王士恒,等.控制灌溉条件下水稻的群体特征[J].1997,16(2):20-23.
    张昆.三江平原湿地演替对土壤冻融过程及地气间热交换的影响[D].博士学位论文.中国科学院东北地理与农业生态研究所.2011.
    张利.作物棵间蒸发及叶面蒸腾量的研究[J].生态农业研究,1995,3(1):76–78.
    张矢,吴宪章,蒋本福.水稻陆稻地膜覆盖栽培的技术效应[J].黑龙江农业科学,1983,(5):20-24.
    张一平.土壤水分势力学函数的研究[J].西北农业大学学报,1990,(3).
    张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与CO2通量的测定[J].地理学报.2002,57(3):333-342.
    张振华,潘英华,蔡焕杰,等. Green-Ampt模型入渗率显式近似解研究[J].农业系统科学与综合研究,2006,22(4):308-311.
    赵其良,日本水稻旱种地膜覆盖栽培技术[J].辽宁农业科学,国外农学(水稻),1982,(5):34-37.
    赵其良,肖明贤.日本东北地区水稻旱种地膜覆盖栽培技术[J].辽宁农业科学,1982,(3):52-56.
    周利民,罗怀彬,古璇清.水稻节水灌溉机理研究[J].广东水利水电,2003(2):29-33.
    周顺亮,叶清,戴兴临,等.农田生态系统的热通量变化和农田小气候分析[J].江西农业学报.2008,20(7):10-14.
    朱德峰,程式华,张玉屏,等.全球水稻生产现状与制约因素分析[J].中国农业科学,2010,43(3):474-479.
    朱庭芸.水稻灌溉的理论与技术[M].北京:中国水利水电出版社,1998.
    朱治林.用波文比-能量平衡法估算农田蒸发量与Lysimeter的比较[A].见:左大康,谢贤群.农田蒸发研究[C].北京:气象出版社,1991.
    朱治林,孙晓敏,张仁华.淮河流域典型地面水热通量的观测分析[J].气候与环境研究,2001,2(6),214-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700