保护性耕作对旱区小麦—菘蓝轮作土壤生态及作物生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降水稀少是黄土高原西部半干旱农区农业发展的主要限制因素之一,传统农业的精耕细作使干旱雨养农业区土壤质量下降,水土流失严重,贮水能力差,土地生产力水平低下。国内外研究表明,免耕、覆盖和留茬等保护性耕作措施具有增加土壤蓄水保墒能力、培肥地力、减少水土流失、增加土壤入渗、提高水资源的利用率和提高产量的多重效果。2007-2008年,在国家科技支撑计划项目(2006BAD15B06)资助下,在黄土高原半干旱区甘肃定西市安定区李家堡镇设计田间试验,设计传统耕作(T)、免耕(NT)和免耕秸秆覆盖(NTS)3种不同耕作措施和小麦-菘蓝双序列轮作,研究保护性耕作对轮作后茬土壤物理质量、土壤生物质量、作物生理生化特性、光合特性和产量的影响,探讨保护性耕作小麦-菘蓝轮作模式高效利用水分的增产机理和适宜耕作方式。研究得出如下结论:
     1.保护性耕作可以降低麦药轮作土壤容重和提高总孔隙度,显著提高饱和导水率。在T、NT和NTS不同耕作与W→I和I→W不同轮作序列处理中,后茬菘蓝地和小麦地0-30cm深度土壤容重均为NTSNT>T。饱和导水率表现为NTS>NT>T,不同耕作处理间差异显著。比较而言,保护性耕作I→W轮作改善土壤质量效果较好。
     2.免耕覆盖措施能在低温季节明显提高土壤温度,高温季节有效降低土壤温度,有助于作物出苗和根系生长。气温冷凉的播种期和出苗期,菘蓝和小麦不同深度土壤温度表现为NTS>NT>T,小麦地播种期0-15cm土壤平均温度NTS较T提高2.33℃,出苗期NTS较T提高3.00℃;菘蓝播种期NTS处理0-15cm土壤平均地温NTS较T提高2℃。进入7月高温季节,0-15cm小麦地平均温度NTS较T降低2.71℃;菘蓝NTS较T降低1.96℃。小麦地免耕覆盖调节土壤温度效果较好。
     3.在不同轮作模式下免耕覆盖措施均能显著提高耕作层土壤含水量。在小麦和菘蓝生育期,两种轮作后茬0-30cm、30-200cm和0-200cm土壤平均含水量均为NTS>T>NT,小麦生育期W→I轮作NTS土壤0-30cm平均含水量较NT和T分别提高6.67%和6.64%;I→W轮作0-30cm土壤平均含水量NTS较NT和T分别提高5.81%和3.36%。菘蓝生育期,W→I轮作0-30cm土壤平均含水量NTS较NT和T分别提高3.87%和3.16%;I→W轮作0-30cm土壤平均含水量NTS较NT和T分别提高5.46和4.79%。小麦生育期,保护性耕作I→W轮作耕作层土壤含水量较高。菘蓝生育期,保护性耕作W→I轮作耕作层土壤含水量较高。
     4.保护性耕作可以有效提高土壤酶活性和土壤微生物数量。菘蓝地和小麦地不同深度土壤脲酶、碱性磷酸酶、蔗糖酶和过氧化氢酶活性均表现为NTS>NT>T,0-30cm土壤水解酶和氧化还原酶活性均值也为NTS>NT>T,以NTS处理效果最为显著。保护性耕作I→W轮作提高土壤水解酶活性和过氧化氢酶活性较好。从T、NT到NTS,两种轮作土壤各层微生物数量总体呈逐渐升高的变化趋势,0-30cm土壤细菌、真菌、放线菌数量和微生物总数均值均为NTS>NT>T。各耕作处理小麦地土壤细菌数量较菘蓝地减少了10倍左右,微生物总数也减少了10倍左右。保护性耕作W→I轮作有利于土壤微生物的增殖。
     5.保护性耕作有利于叶绿素合成,延缓Chla降解,免耕覆盖能显著提高作物相关保护酶活性和脯氨酸含量,降低MDA伤害和细胞膜透性,保护细胞结构完整,有利于作物生长发育。菘蓝和小麦叶片Chla、Chlb和Chl(a+b)年均值均为NTS>NT>T。菘蓝叶片MDA均值T>NT>NTS,CAT活性NTS较NT和T分别提高122.24%和85.01%,CAT对菘蓝减轻活性氧伤害起了重要作用。小麦叶片MDA含量均值T>NT>NTS,SOD活性均值NTS>T>NT,CAT活性NTS>T>NT,CAT活性NTS较NT和T分别提高91.45%和103.58%,CAT和SOD协同对小麦起了重要生理保护作用。菘蓝叶片平均脯氨酸含量NTS>NT>T,平均细胞膜透性T>NT>NTS。小麦平均脯氨酸含量NT>NTS>T,平均细胞膜透性T>NT>NTS,说明保护性耕作减轻了作物细胞膜损坏,有利于细胞结构完整和正常生理功能发挥。
     6.保护性耕作可以提高作物Pn和叶片水平水分利用效率。不同耕作处理菘蓝和小麦净光合速率日变化均呈双峰光合午休变化趋势,光合午休为气孔限制所致,Pn日均值和年均值均为NTS>NT>T,WUEl年均值为NTS>NT>T。
     7.保护性耕作可以显著提高了作物产量和产量水平水分利用效率。菘蓝干根产量、干叶产量和WUEy以及小麦产量和WUEy均表现NTS>NT>T。菘蓝NTS干根产量较T提高20.34%,WUEy较T提高20.31%;NTS干叶产量较T提高11.26%,WUEy较T提高11.23%。小麦NTS产量较T提高44.20%,WUEy较T提高40.39%。
Less rainfall is the important limiting factor of agriculture development in semi-arid regions on the Western Loess Plateau. Traditional agriculture measure led to declined soil quality, serious soil erosion, low field capacity and productivity in the region. Many studies showed that conservation tillage ,such as no-tillage, stubble cover, and stubble standing could increase soil water holding capacity, fertility and infiltration, water use efficiency and productivity, it could also reduce soil erosion.This study was finacially supported by 2006BAD15B06 project, and carried out from 2007 to 2008 year in Semi-arid Loess Plateau of Gansu Dingxi. Three treatments, traditional tillage (T), no-tillage (NT) and no-tillage with straw mulch (NTS) were involved in W→I and I→W rotations experiment. Effects of conservation tillage on soil physical and biological characteristics, crop physiological and biochemical characteristics, photosynthetic characteristics and yield were studied to explore the mechanism of increasing water use efficiency and improving production under appropriated conservation tillage. Main results showed that:
     1.Conservation tillage could decrease soil bulk density, increase soil porosity and saturated hydraulic conductivity. In W→I and I→W rotations under T, NT and NTS different tillage methods,soil bulk density showed NTS NT>T too. Soil saturated hydraulic conductivity were NTS>NT>T in two rotation, and showed significant difference between treatments. In comparison, conservation tillage improved soil quality better in I→W rotation.
     2.NTS could improve soil temperature in cool season, and decrease soil temperature in hot season, this could help crops emergence and roots growth. At sowing and seedling stage of wheat and Isatis, soil temperature in different depths showed NTS> NT>T. Soil average temperature of NTS was increased by 2.33℃than that of T at 0-15cm layer in wheat sowing. At wheat seedling stage, soil average temperature of NTS was increased by 3.00℃than T. At Isatis sowing, soil average temperature of NTS was increase by 2℃than T in 0-15cm depth. In hot season,wheat field average temperature was reduced by 2.71℃than T in 0-15cm soil depth,and that of Isatis of NTS was reduced by 1.96℃than T. Wheat field was better at soil temperature adjusting than Isatis field under different tillage methods.
     3. NTS could increase soil water content of plough layer significantly in W→I and I→W rotations. During wheat and Isatis growing period, average soil moisture of two rotations in 0-30cm,30-200cm and 0-200cm all indicated NTS>T>NT. In 0-30cm depth,during wheat growing period,soil average water moisture of NTS was increased by 6.67% and 6.64% than NT and T respectively in W→I rotation,and In I→W rotation,soil average water content of NTS was increased by 5.81% and 3.36% than NT and T. In growth period of Isatis, Isatis average soil water content of NTS was increased by 3.87% and 3.16% than NT and T in W→I rotation,and In I→W rotation, wheat field average water content of NTS was increased by 5.46% and 4.79% than NT and T. Comparing two rotations, soil water content in W→I was higher during Isatis growing period, but that of I→W was higher during wheat growing period.
     4. Conservation tillage could significant improve soil enzyme activities and soil microorganisms quantity in W→I rotation. In Isatis field and wheat field, soil urease, alkaline phosphatase and invertase hydrolase activitise showed NTS>NT>T in same soil depth. In 0-30cm soil depth, all soil average hydrolase and oxidoreductase activities were NTS>NT>T, NTS had the significant effect to increase enzyme activities. Compared with W→I, I→W increased soil hydrolase and oxidoreductase activities better. From T, NT to NTS, quantity of soil microorganisms were increased gradually in W→I and I→W rotations at different layer. All soil bacteria, fungi, actinomycetes and total microbes were NTS> NT> T in 0-30cm depth. The number of soil bacteria in wheat field was reduced about 10 times than that of Isatis field in same layer under different tillages, and the total number of microorganisms decreased by 10 times too. W→I rotation was conducive to microbial proliferation under T, NT and NTS different tillage methods.
     5. Conservation tillage could help Chla and Chlb to synthesis and delay leaves’Chla degradation. NTS increased crops protective enzymes activities and proline content significantly, and induced MDA content and cell membrane permeability,so that protected cell membrane and were conducive to crop growth and development.Isatis and wheat leaves’annual average content of Chla, Chlb and Chl (a+b) all showed NTS>NT>T. Isatis leaves’averge MDA content was T>NT>NTS,averge CAT activity was NTS>T>NT, CAT activity under NTS was increased by 122.24% and 85.01% than NT and T.This showed that Conservation tillage played an important role in reducing reactive oxygen damage by increasing CAT activity on Isatis. Wheat average SOD activity ws NTS>T>NT, average CAT activity was NTS>T>NT.Wheat average CAT activity of wheat leaves under NTS was increased by 91.45% and 103.58% than under NT and T.Averge MDA content was T>NT>NTS. It also showed that CAT and SOD played positive roles to protect crops cells physiological function.Under different tillages,Isatis average proline content showed NTS>NT>T,and average cell membrane permeability showed T>NT>NTS.Wheat leaves average proline content showed NT>NTS>T,and average cell membrane permeability showed T>NT>NTS. It indicated conservation tillages reduced crops cells membrane damage, and it was beneficial to cell structural integrity and physiological function.
     6. consevation tillage could improve crop Pn and WUEl. Wheat and Isatis diurnal change of Pn were midday depression and bimodal trend under different tillage,and midday depression of photosynthesis were caused by stomatal limitation.The daily and annual means of Pn were NTS>NT>T, and average annual WUEl were NTS>NT>T on two crops. 7. Conservation tillage helped crops to increase yield and water use efficiency. Isatis’s dry roots yield, dry leaves yield and WUEy were NTS>NT>T. Compared with T,dry roots yield under NTS was increased by 20.34%,WUEy under NTS was 20.31% higher than T; Isatis dry leaves yield under NTS was improved by 11.26% than T, WUEy was 11.23% higher than T. Wheat production and WUEy showed NTS> NT> T too.wheat production under NTS was improved by 44.20% than T, and wheat WUEy under NTS was increased by 40.39% than that of T.
引文
[1] Adem H H.Management of tillage and crop residues for double-cropping in fragile soils of south-eastern Australia[J].Soil and Tillage Research,1984,(4):577-589.
    [2] Alvey S,Yang C H,Buerkert A.Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soil[J].Biology and Fertility of Soils,2003,(37):73-82
    [3] Angers D A,Bolinder M A,Carter M R,et al.Impact of tillage practices on organic carbon and nitrogen storage cool,humid soils of eastern Canada[J].Soil and Tillage Research,1997,(41):191-201
    [4] Azooz R H,A r shad M A.Soil infiltration and hydraulic conductivity under long 2 term no 2 tillage and conventional tillage systems[J].Canadian Journal of Soil Science,1996,76(2):143-152
    [5] Barber R G, Orellana M, Navarro F.Effects of conservation and conventional tillage systems after land clearing on properties and crop yield in Santa Cruz,Bolivia[J].soil&tillage research,1996(38):133-152
    [6] Barlow E E W R,Boersma L,Young J L.Photosynthesis,transpiration,and leaf elongation in corn seedlings at suboptimal soil temperatures[J].Agron J,1977,(69):95-100
    [7] Bhattacharyya R,Kundu S,Pandey S C,et al.Tillage and irrigation effects on crop yields and soil properties under the rice–wheat system in the Indian Himalayas[J].Agricultural Water Management,2008,95(9):993-1002
    [8] Blevins R L,et al. Influence of no-tillage on soil moisture[J]. Agron J,1971(41):796-807
    [9] Blevins R L.Thomas G W,Smith M S Frye,Comelius P L.Changes in soil properties after10 years continuous non-tilled and conventionally tilled com[J].Soil and Tillage Research,1983,(3):135-146
    [10] Braim M A,Chaney K,Hodson D R.Effects of simplified cultivation on the growth and yield of spring barley growth;root;shoot relationships,inflow rates of nitrogen;water use[J].Soil and Tillage Research,1992,(22):173-187
    [11] Cassel D K,Raczkowski C W and ,Denton H P.Tillage effects on corn production and soil physical properties[J].Soil Sciences Society of America Journa1,1995,(59):1436-1443
    [12] Cavalieri K M V,Silva A P D,Tormena C A,et al.Long-term effects of no-tillage on dynamic soil physical properties in a Rhodic Ferrasol in ParanA,Brazil[J].Soil and Tillage Research,2009,103(1):158-164
    [13] Dam R F,Mehdi B B,Burgess M S. E,et al.Soil bulk density and crop yield under eleven consecutive years of corn different tillage and residue practices in a sandy loam in central Canada[J].soil&tillage research,2005,(84):40-53
    [14] Dao T H. Tillage and winter wheat residue management effects of water infiltration and storage[J]. Soil Sci. Soc A.m.J,1993,(57):1586~1595
    [15] Dao T H.Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a paleustoll[J].Soil Sciences Society of America Journal,1998,(62):250-256
    [16] Dick W A.Coninuous application of no tillage to soils. Agron J,1991,(83):65-73
    [17] Dick W T.Relationships between enzyme activities and microbial growth and activity indices in soil frankenberger[J].Soil. Soc. Am. J.,1983,(47):945-951
    [18] Ebukanson G J.Retardation of chloroplast ATPase activity in maize seedlings by drought stress[J]. J Plant Physiol, 1987,(129):187-189
    [19] Farquhar G D, ,Sharkey T D.Stomatal conductance and photosynthesis [J]. Ann. Res. Plant Physiol, 1982,(33):317-345
    [20] Ferreras L A.Effect of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern“Pampa”of Argentina[J].Soil and Tillage Research,2000,(54):31-39
    [21] Griffith D R.Long-term tillage and rotation effects on cron growth and yield on high and low organic matter and poorly drained soil[J]. Agron J.,1988,(80):599-605
    [22] Hammel J E.Long-term tillage and rotation effects on bulk density and soil impedance in Northern Idaho[J].Soil Sciences Society of America Journal,1989,(53):1515-1519
    [23] Hill R L.Long-term conventional and no tillage effects on selected soil physical properties[J].Soil Sciences Society of America Journa1,1990,(54):161-166
    [24] Jones H. Stomatal control of photosynthesis and transpiration[J].J. Exp. Bot., 1998,(49):387-398
    [25] Jones O R, Hanser VL. No-tillage effects on infiltration, runoff and water conservation on dryland[J]. American Society of Agriculture Engineers, 1994, 37(2):473-479
    [26] Kushwaha, C P,Singh K P.Tripathi,S.K..Soil organic matter and water-stable aggregates under different tillage and resconditions in a tropical dryland agroecosystem.[J].appl,soil ecol,2001(16):229-241
    [27] Lal R.No-tillage effects on soil properties under different crops in western Nigenia[J].Soil Sci,Soc Am Proc,1976,(40):762-768
    [28] Lindwall C W, Andson D T. Effects of different seeding machines on spring wheat production under varius conditions of stable residue and soil compaction in no-tillage rotation[J].Can. J. Soil Sci,1977,(57):81-92
    [29] Lipiec J,Ku J,Owińska-Jurkiewicz A S,et al.Soil porosity and water infiltration as influenced by tillage methods[J].Soil and Tillage Research,2006,(89):210-220
    [30] Logsdon S D,Allmaras R R,Wu L,et al.,Swan J B and Randall G W.Macroporosity and its relationship to saturated hydraulic conductivity under different tillage practices[J].Soil Sciences Society of America Journa1,1990,(54):1096-1101
    [31] Lupwayi N Z,Rice W A,Clayton G W.Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation[J].Soil Biology and Biochemistry,1998,(30):1733-1741
    [32] Mckee I F,Woodwards F I.CO2 enrichment responses of wheat: interactions with temperature, nitrate and phosphate[J]. New Phytol,1994,(127): 447-453
    [33] Mckyes E.Tillage effects on root development water uptake and growth of oats[J].Soil and Tillage Research,1983,(1):19-34
    [34] Micucci Federico G,Taboada Miguel A.Soil physical properties and soybean(Glycine max, Merrill)root abundance in conventionally and zero-tilled soils in the humid Pampas of Argentina[J].Soil and Tillage Research,2006,(86):152-162
    [35] Mitchell R A C,Michell V J,Driscoll S P, et al. Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at 2 levers of nitrogen application[J]. Plant Cell Environ,1993, (16):521-529
    [36] Reddy A R,Chaitanya K V,Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology,2004,(161):1189-1202
    [37] Shiomi Y,Nishiyama M,Onizuka T.Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt[J].Applied and Environmental Microbiology,1999,65(9):3996-4001
    [38] Steiner J C. Standing stem persistence in no-tillage farming to reduce costs and improve yields, butitalso can reduce erosion to acceptable level. Southeastern soil erosion control and water qulityworkshop, 1994: 68-70
    [39] Steiner J L.Tillage and surface residue effects on evaporation from soils[J].Soil Sci. Soc.Am,J,1989,(49):728-733
    [40] Subrahmanyam D,Subash N,Haris A,Sikka A Ket al.Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought[J].Photosynthetica,2006,44(1):125-129.
    [41] Thanh H Dao. Tillage and wimter wheat residue management effects on water inflitration and storage[J]. Soil Sci. Soc. Am. J, 1993, (57):1586-1595
    [42] Tuba Z,Szente K,Koch J. Response of photosynthesis stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat[J].Journal of Plant Physiology,1994,(144): 661-668
    [43] Visser S,Parkinson D.Soil biological criteria as indicators of soil quality: soil microorganisms[J]. American Journal of Alternative Agriculture, 1992,(7):33-37
    [44] Walters R G.Towards an understanding of photosynthetic acclimation[J].J. Exp. Bot., 2005,(56):435-447
    [45] Waston KW,Luxmoore R J.Estimation macroporosity in a forest watershed by use of a tension infiltrometer[J].Soil Sci. Soc. Am. J.,1986,(50):578-582
    [46] Wittmus H,Yazar A. Moisture Storage. Water use and corn yield for seven tillage systems under water stress. Proceeding of Crop Production with Conservation Tillage in the 80s. St Joseph MI, 1980, ASAE
    [47] Xu D Q.Ecology, physiology and biochemistry of midday depression of photosynthesis[J].Plant Physiology Communications, 1990,26(6):5-10
    [48] Zelles L.Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soi: A review[J].Biology and Fertility of Soils, 1999,(29):111-129
    [49]蔡典雄.半湿润偏干旱区旱地麦田保护性耕作技术研究[J].干旱地区农业研究,1995,13(4):63-7
    [50]蔡立群,齐鹏,张仁陟.保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响[J].水土保持学报,2008,22(2):141-145
    [51]蔡立群.不同保护性耕作措施对黄土高原旱地农田SPAC系统中水分运移特性的影响研究[D].甘肃农业大学,2009
    [52]曹卫星.作物学通论[M].北京:高教出版社,2001
    [53]曹仪植,宋占午.植物生理学[M].兰州:兰州大学出版社,1998
    [54]曹志洪.解译土壤质量演变规律,确保土壤资源持续利用[J].世界科技研究与发展,2001,23(3):28-32.
    [55]柴强,黄高宝,黄鹏,等.间甲酚及施磷对豌豆间作蚕豆土壤微生物和酶活性的影响[J].生态学报,2006,26(2):383-389.
    [56]陈蓓,张仁陟.免耕与覆盖对土壤微生物数量及组成的影响[J].甘肃农业大学学报,2004, 39(6): 634-638.
    [57]陈甲瑞,梁银丽,周茂娟,等.免耕和施肥对玉米光合速率的影响[J].水土保持研究,2006,13(6):72-74.
    [58]陈乐梅.免耕秸秆对春小麦生理和产量及品质的影响研究[D].新疆农业大学,2006
    [59]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90
    [60]陈素英,张喜英,刘孟雨.玉米秸秆覆盖麦田下的土壤温度和土壤水分动态规律[J].中国农业气象,2002,23(4):34-37
    [61]陈锡时,郭树凡,汪景宽,等.地膜覆盖栽培对土壤微生物种群和生物活性的影响[J].应用生态学报,1998,9(4):435-439
    [62]陈贤田,何世省.茶树光合“午休”原因分析[J].浙江林业科技,2002,(3):80-82
    [63]陈雄,吴冬秀,王根轩,等.CO2浓度升高对干旱胁迫下小麦光合作用和抗氧化酶活性的影响[J].应用生态学报,2000,11(6):81-84
    [64]单长卷,梁宗锁.土壤干旱对冬小麦幼苗根系生长及生理特性的影响[J].中国生态农业学报,2007,15(5):38-41
    [65]邸颖.浅谈国内外保护性耕作发展概况[J].农业经济,2008, (3):35-36
    [66]丁昆仑.深松对土壤水分物理特性及夏玉米生长的影响[J].中国农村水利水电,1997,(7):13-16
    [67]丁昆仑,Hann M J.秸秆覆盖对土壤水分及夏玉米产量的影响[J].中国农村水利水电,1999,(6): 46
    [68]杜守宇,田恩平,温敏,等.秸秆覆盖还田的整体功能效应与系列化技术研究[J].干旱地区农业研究, 1994, 12(2):88-94
    [69]杜伟文,欧阳中万.土壤酶研究进展[J].湖南林业科技, 2005, 32(5): 76-82.
    [70]樊军,郝明德.长期轮作与施肥对土壤主要微生物类群的影响[J].水土保持研究,2003,10(1):88-89
    [71]樊虎玲,郝明德,李志西.黄土高原旱地小麦—苜蓿轮作对小麦品质和子粒氨基酸含量的影响[J].植物营养与肥料学报,2007,13(2): 262-266
    [72]樊丽琴,南志标,沈禹颖,等.保护性耕作对黄土高原豌豆田土壤微生物量碳的影响[J].草原与草坪, 2005, (4):51-54.
    [73]樊修武.盐碱地秸秆覆盖改土增产措施的研究[J].干旱地区农业研究,1993(4):13-15
    [74]范丙全,刘巧玲.保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J].生态农业学报,2005,13(3):130-132.
    [75]付国占,李潮海,王俊忠,等.残茬覆盖与耕作方式对夏玉米叶片衰老代谢和籽粒产量的影响[J].西北植物学报,2005,25(1):0155-0160
    [76]付秋实,李红岭,崔健,等.水分胁迫对辣椒光合作用及相关生理特性的影响[J].中国农业科学,2009, 42(5): 1859-1866
    [77]高国录,张福武,蔡立群.保护性耕作措施对土壤水分含量及春小麦产量的影响[J].甘肃农业科技,2009, (2):27-31
    [78]高焕文,李洪文,李问盈.保护性耕作的发展[J]. ].农业机械学报,2008,39(9):43-48
    [79]高焕文,李洪文,王晓燕,等.10年保护性耕作研究初步总结[M].兰州,机械化保护性耕作培训教材, 2003: 8-17
    [80]高焕文.保护性耕作的发展[J].农业技术与装备.2008,(11):13-16
    [81]高焕文.北方不同类型区机械化旱作模式研究,见:卢良恕等,机械化旱作农业与节水灌溉技术研究会论文集,中国农业工程学会,1998
    [82]高俊凤.植物生理学试验技术[M].西安:世界图书出版社,2000
    [83]高明,周保同,魏朝富.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报, 2004,15(7):1177-1181
    [84]高秀君,张仁陟,杨招弟.不同耕作方式对旱地土壤酶活性动态的影响[J].土壤通报,2008,39(5): 1012-1016
    [85]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物量与养分转化的研究[J].中国农业科学,1994, 27(6): 41-49
    [86]巩杰,黄高宝,陈顺顶,等.旱作麦田秸秆覆盖的生态综合效应研究[J].干旱地区农业研究,2003,21 (3): 69-73
    [87]关松荫.土壤酶及其研究法[M].北京:北京农业出版社, 1986
    [88]关跃辉.保护性耕作研究现状与发展趋势[J].内蒙古农业科技,2008,(1):78-80
    [89]郭清毅,黄高宝.保护性耕作对旱地麦-豆双序列轮作农田土壤水分及利用效率的影响[J].水土保持学报,2005,19(3):165-169
    [90]郭清毅.保护性耕作对冬小麦光合特性及光合产物生产与分配的影响研究[D].甘肃农业大学,2007
    [91]韩秋成,张月辰,李存东,等.耕作方式对棉花不同部位果枝叶衰老生理特性的影响[J].棉花学报, 2008,20(1):29-33
    [92]韩泽华.保护性耕作的发展与变革[J].内蒙古农业科技.2008,(4):97-98
    [93]贺康宁.水土保持林地土壤水分物理性质的研究[J].北京林业大学学报,1995,17(3):44-50
    [94]胡斌.玉米田秸杆覆盖效果的试验研究[J ].灌溉排水,1998,17(3):46-48
    [95]黄高宝,郭清毅,张仁陟等.保护性耕作条件下旱地农田麦-豆双序列轮作体系的水分动态及产量效应[J].生态学报,2006,26(4):1176-1185
    [96]黄高宝,李玲玲,张仁陟,等.免耕秸秆覆盖对旱作麦田土壤温度的影响[J].干旱地区农业研究,2006, 24(5):1-4.
    [97]黄高宝,罗珠珠,辛平,等.耕作方式对黄土高原旱地土壤渗透性能的影响[J].水土保持通报,2007, (6):34-37
    [98]贾树龙,孟春香,任图生,等.耕作及残茬管理对作物产量及土壤性状的影响[J].河北农业科学,2004,8(4):37-42
    [99]姜桂英,黄绍敏,郭斗斗.不同耕作和轮作方式下作物生育期内土壤酶活性的动态变化特征[J].河南农业大学学报,2009,43(3):335-342
    [100]蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J].植物生理学报, 1997,23(4):347-352.
    [101]金海洋,姚政等,徐四新,等.秸秆还田对土壤生物特性的影响研究[J].上海农业学报,2006,22(1):9-41.
    [102]晋凡生,张宝林.免耕覆盖玉米秸秆对旱塬地土壤环境的影响[J].生态农业研究,2000,8(3):47-50
    [103]康红,朱保安,洪利辉.免耕覆盖对旱地土壤肥力和小麦产量的影响[J].陕西农业科学,2001,(9):1-3
    [104]邝伟生,梁启新,谭小莉,等.不同耕作方式对冬种马铃薯生理特性的影响[J].广西农业科学,2008,39(3):299-302
    [105]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂脂过氧化作用的影响[J].生态学报, 2002,22(4):503-507
    [106]李安宁,范学民,吴传云.保护性耕作现状及发展趋势[J].农业机械学报,2006,37(10):177-180
    [107]李春勃,范丙全,孟春香,等麦秸覆盖旱地棉田少耕培肥效果[[J].生态农业研究,1995,3(3):52-55
    [108]李春霞,陈阜,王俊忠.秸秆还田与耕作方式对土壤酶活性动态变化的影响[J].河南农业科学,2006,(11):68-70
    [109]李德全,郭清福.冬小麦抗旱生理特性的研究[J].作物学报,1993,19(2):125-132.
    [110]李东坡,武志杰,陈利军.有机农业施肥方式对土壤微生物活性的影响研究[J].中国农业生态研究,2005,13(12):178-181.
    [111]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003
    [112]李洪文,高焕文.旱地玉米保护性耕作经济效益分析[J].干旱地区农业研究,2000,18(3):44-49
    [113]李洪文,赵卫东.旱地玉米机械化保护性耕作技术及机具研究[J].中国农业大学学报,2000,5(4):68-72
    [114]李立科.小麦留茬少耕秸秆全程覆盖新技术[J].陕西农业科学, 1999, (4):40-41
    [115]李玲玲,黄高宝,张仁陟,等.不同保护性耕作措施对旱作农田土壤水分的影响[J].生态学报,2005,25(9):2326-2332
    [116]李生福.陇中半干旱地区少免耕对土壤含水量的影响初报[J].土壤通报,1994,25(3):133-134
    [117]李新举,张志国.免耕的土壤适应性[J].土壤通报,2001,32(1):41-44
    [118]李秧秧,刘文兆.灌水对小麦旗叶光合功能衰退的影响[J].西北植物学报,2001,21(1):75-80
    [119]李友军,吴金芝,黄明,等.不同耕作方式对小麦旗叶光合特性和水分利用效率的影响[J].农业工程学报, 2006, 22(12):44-48
    [120]李玉山,韩仕峰,史竹叶.渭北源区农田水分供需特征和低定额灌溉研究[J].中国农业科学,1985,(4): 42-48
    [121]李玉霞,马保罗,尼尔·麦克劳克林,等.轮作在保护性耕作中的作用[J].中国农技推广,2006,22(5): 20-21
    [122]李昱,李问盈.冷凉风沙区机械化保护性耕作技术体系试验研究[J].中国农业大学学报,2004,9(3): 16-20
    [123]练宏斌,黄高宝,谢军红,等.不同耕作措施对旱地春小麦旗叶光合特性的影响[J].甘肃农业大学学报, 2009, 44(1):64-68.
    [124]林琪,侯立白,韩伟,等.干旱胁迫对小麦旗叶活性氧代谢及灌浆速率的影响[J].西北植物学报,2003, 23(12):2152-2156
    [125]刘殊,廖镜思,陈清西,等.龙眼光合作用对环境温度的响应[J].福建农业大学学报,1997, 26(4): 407-410
    [126]刘阳,李吾强,温晓霞,等.玉米秸秆还田对接茬冬小麦旗叶光合特性的影响[J].西北农业学报, 2008,17(2):80-85
    [127]刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008, 32(1):176~-182
    [128]刘庚山,郭安红,任三学,等.不同覆盖对夏玉米叶片光合和水分利用效率日变化的影响[J].水土保持学报,2004,18(2):152-156.
    [129]刘武仁,陈砚,郑金玉.不同耕作方式对玉米产量及叶片某些生理机制的影响[J].玉米科学2009,17(2):112-115
    [130]刘贤,康绍忠.降雨入渗和产流问题研究的若干进展及评述[J].水土保持通报,1999,19(2):57-65
    [131]刘义国,林琪,王月福,等.秸秆还田与氮肥耦合对冬小麦光合特性及产量形成的影响[J].中国生态农业学报,2007,15(1):42-44.
    [132]龙健,黄昌勇,滕应,等.矿区废弃地土壤微生物及其生化活性[J].生态学报,2003,23(3):496-503.
    [133]罗守番.免耕秸秆覆盖对玉米根系的影响[J].山西农业科学,1993,(1):1-7
    [134]罗珠珠,黄高宝,张国盛.保护性耕作对黄土高原旱地表土容重和水分入渗的影响[J].干旱地区农业研究,2005,23(4):7-11
    [135]孟庆伟,赵世杰,许长成,等.田间小麦叶片光合作用的光抑制和光呼吸的防御作用[J].作物学报,1996,22(4):470-475
    [136]慕松,司马兰兰,辛少仙.玉米覆膜沟穴播综合栽培技术对产量和水分利用效率效应的试验研究[J].干旱地区农究,2000,18(4):13-18
    [137]逄蕾,黄高宝.不同耕作措施对旱地土壤有机碳转化的影响[J].水土保持学报,2006,20(3):110-113
    [138]沈秀瑛,徐卉昌,戴俊英.干旱对玉米叶SOD、CAT及酸性磷酸脂酶活性的影响[J].干旱地区农业研究,2005,23(1):56-60.
    [139]沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45-50
    [140]沈允钢著.地球上最重要的化学反应:光合作用[M].暨南大学出版社,2000
    [141]宋日,吴春胜,牟金明,等.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响[J].应用生态学报,2002,13(3):303-306
    [142]宋银丽.黄土区地面覆盖的主要类型及其保水效应[J].水土保持通报,1997,17(1):133-134
    [143]孙海国.植物残体对土壤结构性状的影响[J].生态农业研究,1998,6(3):39-41
    [144]孙利军,张仁陟,黄高宝.保护性耕作对黄土高原旱地地表土壤理化性状的影响[J].干旱地区农业研究,2007,25(6):207-211
    [145]孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报, 2001, 27(5): 617-621.
    [146]汤树德.作物秸秆直接还田的土壤生物学效应[J].土壤学报,1980,17(2):172-181
    [147]田秀平,陶永香,王立军,等.不同耕作处理对白浆土养分状况及农作物产量的影响[J].黑龙江八一农垦大学学报, 2002, 14(3):9-11
    [148]汪娟,蔡立群,毕冬梅,等.保护性耕作对麦-豆轮作土壤有机碳全氮及微生物量碳氮的影响[J].农业环境科学学报,2009,28(7):1516-1521
    [149]王敏,张锋伟,郑炫,等.甘肃省保护性耕作的发展现状及效益分析[J].湖北农业科学,2009,48(1): 243-246
    [150]王长生,王遵义,苏成贵.保护性耕作技术的发展现状[J].农业机械学报,2004,35(1):167-169
    [151]王聪翔,闻杰,孙文涛,等.不同保护性耕作方式土壤酶动态变化的研究初报[J].辽宁农业科学,2005, 45(6) :16-18
    [152]王笳.免耕覆盖对土壤结构和微生物的影响[J].山西农业科学,1994,22(3):17-19
    [153]王小彬,蔡典雄,华珞.土壤保持耕作—全球农业可持续发展优先领域[J].中国农业科学,2006,39(4):741-749
    [154]王学,施国新,马广岳,等.外源亚精氨对荇菜抗Hg2+胁迫能力的影响[J].植物生理与分子生物学报,2004,30(1):69-74
    [155]王延好,张肇鲲.保护性耕作在加拿大的研究及现状[J].安徽农学通报,2004,10(2):5-6
    [156]王芸,韩宾,史忠强,等.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报,2006,20(4):120-122,142
    [157]王忠.植物生理学[M].北京:中国农业出版社,2000
    [158]卫秀英,欧行奇,李新华,等.黄淮地区冬春季低温胁迫对小麦生理特性的影响[J].湖北农业科学,2009, 48,(1):47-50
    [159]巫新民.农田覆盖的土壤水分状况及其增产作用的探讨[J],干旱地区农业研究,1990(4):92-97
    [160]吴崇海,顾士领.高留麦茬的整体效应与配套技术研究[J].干旱地区农业研究,1996,14(1):43-48
    [161]吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J].中国农业科学,2007,40(10):2274-2280
    [162]吴敬民,许文元.秸秆还田效果及其在土壤培肥中的地位[J].土壤学报,1991,25(5):211-215
    [163]肖剑英,张磊,谢德体,等.长期免耕稻田的土壤微生物与肥力关系研究[J].西南农业大学学报,2002,24(1):82-85.
    [164]谢德体,陈绍兰,魏朝富,等.水田不同耕作方式下土壤酶活性及生化特性的研究[J].土壤通报,1994, 25(5):196-198
    [165]谢亚军,王兵,梁新华,等.干旱胁迫对甘草幼苗活性氧代谢及保护酶活性的影响[J].农业科学研究,2008,29(4):19-22.
    [166]熊明彪,雷孝章,田应兵,等.长期施肥对紫色土酶活的影响[J].四川大学学报(工程科学版), 2003, 35(4):60-63,99.
    [167]许迪,R.SchmidA.Mermoud.耕作方式对土壤水动态变化及夏玉米产量的影响[J].农业工程学报,1999,15(3):101-106
    [168]许长成,周琦.大豆叶片旱促衰老及其与膜质过氧化的关系[J].作物学报,1993,19(4):359-364
    [169]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244
    [170]许景伟,王卫东,李成,等.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J].北京林业大学学报,2000, 22(1): 51-55.
    [171]许明祥,刘国彬,卜崇峰,等.圆盘入渗仪法测定不同利用方式土壤渗透性试验研究[J].农业工程学报,2002,18(4):54-58
    [172]许振柱,于振文,董庆裕,等.水分胁迫对冬小麦旗叶细胞质膜及叶肉细胞超微结构的影响[J].作物学报,1997,23(3):370-375
    [173]薛菘,汪沛洪,许大全,等.水分胁迫对冬小麦CO2同化作用的影响[J].植物生理学报,1992,(18): 1-7
    [174]闫海丽,张淑香,严凯兵.冷凉地区不同耕作措施对土壤环境和作物生长发育的影响[J].中国土壤与肥料,2006,(4):16-19
    [175]严洁,邓良基,黄剑.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化,2005,(2):31-34
    [176]杨青华,韩锦峰.棉田不同覆盖方式对土壤微生物和酶活性的影响[J].土壤学报,2005,42(2):348-351.
    [177]杨招弟,蔡立群,张仁陟,等.不同耕作方式对旱地土壤酶活性的影响[J].土壤通报,2008,39(3): 514-517
    [178]姚宇卿,吕军杰.保持耕作对豫西旱地冬小麦产量及效益的影响[J].干旱地区农业研究,2002,20(4): 42-44
    [179]于佰双,段玉玺,王家军,等.轮作植物对大豆胞囊线虫抑制作用的研究[J].大豆科学,2009,28(2): 256-259
    [180]于舜章,陈雨海,周勋波,等.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报, 2004, l8 (6) :175-178
    [181]余泳昌,刘晓文,李明枝,等.玉米免耕秸秆覆盖机械化栽培技术的研究[J].河南农业大学学报,2002, 36(4):309-312
    [182]袁东海,陈明亮.鄂东南红壤水分运动参数与红壤性质的相关性[J].华中农业大学学报,1995, 14(1):53-57
    [183]袁家福.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61-65
    [184]远红伟,陆引罡,刘均霞.不同耕作方式对玉米生理特征及产量的影响[J].华北农学报报,2007,22(增刊):140-143
    [185]张崇邦,金则新,柯世省,等.天台山不同林型土壤酶活性与土壤微生物、呼吸速率以及土壤理化特性关系研究[J].植物营养与肥料学报, 2004, 10(1): 51-56.
    [186]张凤云,成雪峰,张恩和.河西绿洲区保护性耕作对土壤微生物量C和有机质的影响[J].干旱地区农业研究,2007,25(4):172-175
    [187]张凤云,张恩和,景锐,等.河西绿洲灌区留茬覆盖免耕保护性耕作的增产节水效应[J].草业学报, 2007, 16(2):945-98.
    [188]张福武,蔡立群,陈英.免耕对土壤容重总孔隙度和水稳性团聚体的影响[J].甘肃农业科技, 2008,(8):9-11
    [189]张国盛,张仁陟,黄高宝.水分胁迫条件下春小麦根系对施肥的响应[J].草业学报,2003,(03).55-60
    [190]张海林,陈阜,秦耀东,等.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):36-40
    [191]张海林,高旺盛,陈阜.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报,2005,10(1):16-20
    [192]张海林,秦耀东,朱文珊.覆盖免耕土壤棵间蒸发的研究[J].土壤通报, 2003, 34 (4) : 259-261
    [193]张秋平,杨晓光,杨婕,等.不同灌溉处理下旱稻光合生理特征及水分利用效率[J].干旱地区农业研究, 2005,23(6):67-728
    [194]张文颖,张恩和,景锐,等.河西绿洲灌区春小麦留茬免耕的防风蚀效应研究[J].中国生态农业学报,2009,17(2):244-249
    [195]张雯,侯立白,张斌.辽西易旱区不同耕作方式对土壤物理性能的影响[J].干旱区资源与环境,2006,20(3):149-153
    [196]张晓艳,王立,黄高宝,等.道地药材保护性耕作对坡耕地土壤侵蚀的影响[J].水土保持学报,2008, 22(2):58-61
    [197]张晓艳,王立,黄高宝,等.保护性耕作防治坡耕地水土流失效应的研究[J].安徽农业科学, 2008,36(6):2520-2521,2538
    [198]张星杰,刘景辉,李立军,等.保护性耕作对旱作玉米土壤微生物和酶活性的影响[J].玉米科学,2008,16(1):91-95,100
    [199]张志国,徐琪,Blevins R L.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,2001,35(3):384-39
    [200]张志田.旱地农田的保墒效应研究[D].北京:中国农业科学院研究生院,1992
    [201]赵二龙,李立科,徐福利.旱地小麦高留茬少耕全程覆盖高产技术体系研究[J].西北农业学报,1998,7(4):86-90
    [202]赵火华.保护性耕作制度的生态与经济效益评价[J].经济视角(下),2008,(6):67-70
    [203]赵有翼,蔡立群,王静,等.不同保护性耕作措施对三种土壤微生物氮素类群数量及其分布的影响[J].草业学报,2009,18(4):125-130.
    [204]郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报,2004,18(3):53-56
    [205]中国科学院南京土壤研究所.土壤微生物研究法[M].北京:科学出版社,1985
    [206]中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版社,1978
    [207]中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法[M].北京:科学出版社.1978
    [208]周礼恺.土壤酶的活性[J].土壤学进展,1980,8(4):9-15
    [209]周礼恺.土壤酶学[M].北京:科学出版社,1987
    [210]周凌云.农田秸秆覆盖节水效应研究[J].生态农业研究,1996,4(3):49-52
    [211]周兴祥,高焕文.华北平原一年两熟保护性耕作体系试验研究[J].农业工程学报,2001,17(6):81-84
    [212]周兴祥.一年两熟地区机械化保护性耕作体系试验与分析[D].北京:中国农业大学,2001
    [213]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1): 102-105
    [214]朱文珊,曹明奎.秸秆覆盖免耕法的节水培肥增产效益及应用前景[J].干旱地区农业研究,1988, (4):12-17
    [215]朱文珊,高云超.北方一年两熟地区秸秆覆盖免耕技术原理及应用效果研究.中国耕作制度研究会,中国少耕免耕与覆盖技术研究.北京:北京科学技术出版社,1991.12:11-21
    [216]朱自玺,方文松,赵国强.麦秸和残茬覆盖对夏玉米农田小气候的影响[J].干旱地区农业研究,2000, 18(2): 19-24
    [217]庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44.
    [218]邹琦.作物抗旱生理生态研究[M].济南:山东科学技术出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700