陕北黄土丘陵区撂荒地恢复演替的生态学过程及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以陕北黄土丘陵区撂荒地为研究对象,通过野外调查和室内分析相结合,研究撂荒地恢复演替过程中群落的结构特征、物种多样性及生态位演变,结合土壤物理、化学、生物学性质动态的变化,分析撂荒地恢复演替的规律及土壤质量对植被恢复的响应,探索群落结构与环境因子的关系,进而分析植被恢复的机理。主要结论如下:
     ①撂荒演替过程中群落的动态特征
     在整个演替阶段,植物群落以双子叶植物(Dicotyledons)为主,其次为单子叶植物(Monocotyledons),再次为裸子植物(Gymnosperm)和蕨类植物(Pteridophyte)。研究区大类群结构相对简单,植物类群相对少。菊科(Compositae)、禾本科(Gramineae)、豆科(Leguminosae)的物种在研究区植被恢复过程中所起的作用最大。达乌里胡枝子(Lespedeza dahurica)、长芒草(Stipa bungeana)、铁杆蒿(Artemisia sacrorum)和白羊草(Bothriochloa ischaemum)贯穿演替的始终,它们在群落演替中占据着重要的地位,对群落的稳定性有重要的价值。撂荒演替优势种更替出现反复,群落的演替有趋同效应。物种的生活型是以多年生草本为主,半灌木和小灌木占据一定的比例,灌木和乔木占比例很少。生活型的改变主要体现在繁殖对策上,1-2年生的草本植物,其生活史对策以r-对策为主,多年生草本、半灌木和灌木,生活史对策上倾向于k-对策。
     群落的数量特征随着演替时间的延长呈现增加的趋势,生物量随着撂荒时间的延长呈现减少的趋势。地下生物量主要集中在0-60cm土层,100cm以下为零。随着土层深度的加深,根系生物量逐渐减少。
     群落丰富度随撂荒时间的延长变化幅度较小;群落的Simpson多样性指数变化趋势表明撂荒演替使物种相对集中,撂荒演替不利于物种多样性的增加;撂荒初期群落的优势度较大,随着植被恢复演替时间的延长,呈下降趋势;在撂荒演替过程中,群落中物种分布均匀,优势种的地位不突出;群落的Shannon-Wiener指数呈现增加的趋势,随着撂荒时间的延长,群落的稳定性呈现增加的趋势;群落的Peilou均匀度指数表明前期随着撂荒年限的增加群落的多样性逐渐增大,并稳定在一个较高的水平,后期多样性有降低的趋势。在演替过程中,虽然前期和后期的时间相隔较长,群落的微生境被隔离了,但是群落中物种被隔离的程度却不很明显。
     ②撂荒地土壤性质对植被恢复的响应
     在垂直剖面上,随着土层深度的加深,土壤含水量呈现逐渐增加的趋势。立地间土壤含水量从大到小的趋势是:阴坡>半阴坡>半阳坡>阳坡。土壤含水量的月变化受诸多因素的限制,没有统一的规律。土壤含水量的年际动态趋势表明,撂荒演替没有使土壤含水量恢复。
     本研究中土壤含水量的年际间、月变化、立地间以及土层间的变化规律不尽一致,但是总的趋势是撂荒演替过程中,土壤水分的恢复效果不甚明显。撂荒演替使得土壤的容重变小。
     土壤养分的变化主要集中在表层,深层变化微弱,上层养分含量大于下层。土壤有机质、全氮、速效氮、速效钾、速效磷和有机碳含量在撂荒初期的群落里比较高,随着弃耕时间的延长其含量呈现增加的趋势,但各样地土壤养分的绝对增加量比较少。
     随着撂荒地演替时间的延长,土壤微生物碳、微生物氮含量增加,土壤微生物氮与全氮之比、土壤基础呼吸强度、土壤代谢熵随着撂荒时间的延长呈现增大的趋势。在撂荒演替过程中,土壤尿酶、碱性磷酸酶的活性呈现跳跃式的变化。土壤微生物碳与有机碳之比的动态变化趋势表明:晚期土壤质量和前期相比有所退化,但并不是无限制的退化下去,而是稳定在一定的范围;同时随着演替时间的延长,土壤微生物总数有趋于稳定的趋势。
     ③撂荒演替的方向
     群落的数量特征、群落结构的动态分析表明:随着撂荒时间的延长,群落逐渐得到恢复。土壤的物理性质、化学性质和大部分微生物学指标随着演替的进行,呈现增加的趋势。结合群落结构动态趋势、土壤性质等方面,初步总结出黄土丘陵区弃耕演替为进展演替。
     ④撂荒演替植被恢复的机理
     大部分样地中生态位最宽的物种是优势种或者亚优势种,这些优势种在控制群落性质和环境方面起着主导作用,他们对资源环境利用较为充分,对环境的适应能力强,在竞争中处于优势地位。各主要种群之间的生态位重叠程度较高,尤其是优势种和亚优势种间重叠较多,这种重叠使得物种之间相互竞争,在竞争中为取得更多资源,群落必然朝着有利于资源利用的方向发展,导致了物种生态位的分化,这是弃耕地植被恢复过程中物种相互替代的主要驱动力,也是植被演替的生态学机理所在。
     植物群落演替过程,是植物群落与土壤相互影响和相互作用的过程,土壤性质影响优势种的拓殖和更替,植被的恢复又促进土壤的发展。在这个协同进展演替过程中,土壤性质的各指标所起的作用不同,土壤全氮、有机质、土壤呼吸量和碱性磷酸酶是影响撂荒地演替的关键因子,土壤微生物量氮和土壤呼吸熵对植被恢复的作用也较强,这些指标是衡量土壤性质的主要指标。
     植物群落的演替是对其初始状态的异化过程,不但体现在种类组成和结构的改变上,也体现在环境的改变上,植物演替过程,是物种对土壤肥力不断适应和改造及不同物种在不同肥力梯度下相互竞争和替代的过程,土壤肥力是植物演替的重要驱动力之一。
Taking the abandoned farmland in the hilly and gully Region of North Shaanxi as its subject, the study investigated the variations in the structural characteristics, species diversities and niches of communities on abandoned farmland during its recovering successions by the substitution method of time sequence for space sequence and the field survey and lab combined analysis, and examined the responses of recovering succession patterns and soil qualities of abandoned farmland to vegetation recoveries in combination with the dynamic variation in its soil physical chemical and biological properties so as to probe into the relations between community structure and environmental factors and then the mechanisms of vegetation recoveries. Its main conclusions are as follows:
     1.Dynamic characteristics of the communities on abandoned farmland during its recovering succession
     During the whole succession, the plant communities were dominated mainly by dicotyledons, secondarily by monocotyledons, and thirdly by gymnosperms pteridophytes. In the region under study, the large plant classes and groups had relatively simple structures and relatively small numbers of plant species. Composite, Gramineae and Leguminosae species played the most important role in the vegetation recoveries. L.davurica, Stipa bungeana, Artemisia gmelinii and Bothriochloa ischaemum existed through the whole succession, occupying an important position in the community successions and being of great value in maintaining the communities stable. During the succession of abandoned farmland, the dominant species alternatively and repeatedly appeared and the community successions tended to conform. The life types of the species were perennial herbs in most cases, the sub-shrubs and under-shrubs occupied certain proportions, and the shrubs and arbors occupied very small proportions. The life types of the species were perennial herb dominated and contained certain proportions of sub-shrubs and under-shrubs.The life types mainly embodies their variations in their reproduction strategies, 1-2 year old herbs taking R-strategy during their life history and perennial herbs, sub-shrubs and under-shrubs basically taking K-strategy during their life history.
     The numbers of the communities tended to increase as their successions prolonged, but their biomasses tend to decline with the farmland-abandoning time. The underground biomasses mainly distributed in 0-60cm soil and no longer distribute below 100cm deep. As the soil depth increased, the root biomasses gradually decreased.
     During the vegetation recoveries, the species diversities presented different patterns. Some communities hadα-species diversity indexes tending to increase with the farmland-abandoning time, some hadα-species diversity indexes tending to stabilize within certain limits and others hadα-species diversity indexes tending to rise. The analysis of theβ-species diversity indexes showed that although the quadrats under study were far away from one another in time sequence and thus their communities were isolated in microhabitat and lie differently in space sequence, their species isolations appeared not remarkable. Therefore, the species diversity variations were dynamic during the recovering succession of abandoned farmland and their mechanisms of the variations need to be further studied.
     2. Responses of soil properties of abandoned farmland to its vegetation recoveries
     In the vertical soil profile, as the soil depth increased, the soil water contents tended to gradually increase. The soil water contents of the different sites ranked in the decreasing order of north-facing slopeland > semi-north facing slopeland > south-facing slopeland >semi-south-facing slopeland. The monthly soil water contents were limited by many factors and thus did not presented a consistent pattern. The year to year variations of the soil water contents showed that farmland abandoning did not recover soil water content.
     According to the study, the variations of the soil water contents between the different years, months and the sites did not present very consistent patterns, but their general tendencies were that during the succession of abandoned farmland, the soil water content did not evidently recover. The succession of abandoned farmland rendered its soil bulk weight to decrease.
     The soil nutrients mainly distributed in topsoil, thus varying only slightly in deeper soil and having higher contents in upper soil than in lower soil. in the early farmland abandoning period the soil organic matter contents, nitrogen totals, available nitrogen, potassium and phosphorous contents, and organic carbon contents of the communities were higher and with the farmland-abandoning time they tended to increase but their absolute contents increased slightly .
     The soil biological properties presented following several tendencies: with the succession time, some of the soil microbial parameters tended to increase, some of them tended to stabilize, and several of them tended to decline, and some of them tended to fluctuate.
     Because soil biological properties sensitively indicated soil quality variations, they performed better than soil chemical and physical properties in indicating soil quality responses to dynamic succession of abandoned farmland. Thus it was proposed that soil chemical, physical and biological properties be employed as the indicators for assessing soil quality responses in research.
     3. Succession direction of abandoned farmland
     The dynamic analysis of the numbers and structures of the communities showed that with the time, the structures of the communities became complicated and their natural resource-exploiting capacities gradually increased. With the succession, the soil physical and chemical indicators and some microbial indicators tended to increase. Ecological recovery involves two respects, vegetation recovery and soil recovery, and taking into account a full range of all its relevant respects, the succession of abandoned farmland in the hilly and gully loess region was concluded as a progressive succession.
     4. Vegetation-recovering mechanism of the succession of abandoned farmland
     In most of the quadrats, the species with the widest niches were dominant or subdominant species, which played a dominant role in determining the natures and environments of the communities to which they belonged, so that they could more fully exploit their environmental resources, better adapt themselves to their environments and take advantageous positions in competition. The different major populations had highly overlapped niches and the dominant and subdominant species in particular had highly overlapped niches; and these overlaps made the different species compete with one another for more resources and as a result the communities inevitably succeeded towards the directions in favor of their resource exploitations, thus resulting in their niches differentiating. This was the driving force of the species replacement in the vegetation-recoveries of abandoned farmland as well as the ecological mechanism of its vegetation successions.
     The successions of the plant communities were the processes whereby the plant communities and soils mutually interacted with and acted on each other, the soil fertilities affecting the colonization and replacement of the dominant species and the vegetation recovery promoting the soil development. In this co-succession, the different soil property indicators took different effects and among them, the farmland-abandoning times, slope aspects and gradients, nitrogen totals, organic matter contents, soil respirations and phosphatase activities were the key factors that affected the vegetation successions, and the microbial-biomass nitrogen contents and soil respiration quotients had stronger effects on the vegetation recoveries.
     The successions of the plant communities were the dissimilating processes of their original forms whereby they embodied their variations not only in their species compositions but also in their environments, and the plant successions were the processes whereby the species continuously adapted themselves to and improved the soil fertilities, and the different species competed and replaced one another at different fertility gradients, so that the soil fertilities were the driving force of the plant succession.
引文
艾训儒2006.百户湾森林群落优势种群空间生态位研究.西北林学院学报21 (01): 12-17.
    安韶山,黄懿梅,李壁成2006.黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系. 土壤通报07(01): 46-50.
    安韶山,黄懿梅2006.黄土丘陵区柠条林改良土壤作用的研究.林业科学42 (01): 70-73.
    巴音,王立群,陈世镄2008.不同退化程度克氏针茅群落的地下结构与产量.内蒙古草业20 (01): 22-28.
    白岚,杜继煜2002.蔬菜中硝态氮含量的测定.农业与技术22 (06): 107-110.
    白文娟,焦菊英,马祥华2005.黄土丘陵沟壑区退耕地自然恢复植物群落的分类与排序西北植物学报25 (07): 1317-1322.
    白文娟,焦菊英2006.黄土丘陵沟壑区退耕地主要自然恢复植物群落的多样性分析.水土保持研究13 (03): 140-142,145.
    白永飞,许志信,李德新2000.内蒙古高原针茅草原群落α多样性研究.生物多样性(04).
    毕军,夏光利,张昌爱2005.有机生物活性肥料对冬小麦生长及土壤活性质量影响的试验验研究.土壤通报36 (02): 230-233.
    毕银丽,王百群1997.黄土丘陵区坝地系统土壤养分特征及其与侵蚀环境的关系.水土保持学报4: 37-43.
    蔡胜,辜彬,杨晓亮,周顺涛2009.浙江省废弃采石矿区植被重建后物种多样性研究.水土保持通报29 (05).
    曹成有,蒋德明,朱丽辉2006.科尔沁沙地草甸草场退化原因与植物多样性变化.草业学报15 (03): 18-26.
    曹光球,曹子林,林思祖2008.不同立地闽粤栲群落药用植物种群数量特征.福建林学院学报20 (08): 106-109.
    曹慧,杨洁,孙波2002.太湖流域丘陵地区土壤养分的空间变异.土壤34 (04): 201-205.
    查轩,黄少燕2001.植被破坏对黄土高原加速侵蚀及土壤退化过程的影响.山地学报19 (02): 109-114.
    常生华,候扶江,于应文,南志标2004.黄土丘陵沟壑区三种豆科人工草地的植被与土壤特征. 生态学报24 (05): 932-937.
    陈恩凤1998.土壤酶的生物学意义.全国土壤酶研究文集].沈阳:辽宁科技出版社: 1-4.
    陈国潮,何振立1998.红壤不同利用方式下的微生物量的研究.土壤通报26 (09): 276-278.
    陈利顶,傅伯杰2000.干扰的类型、特征及其生态学意义.生态学报20 (04): 581-586.
    陈灵芝1993.中国的生物多样性现状及其保护对策.北京:科学出版社.
    陈全胜,李凌浩2003.土壤呼吸的温度敏感性.植物科学进展5: 215-221.
    陈文年,吴宁,罗鹏,晏兆莉2003.岷江上游林草交错带祁连山圆柏群落的物种多样性及乔木种群的分布格局.应用与环境生物学报9 (03): 221-225.
    陈佐忠,黄德华,张鸿芳1988.内蒙古锡林河流域羊草草原与大针茅草原地下生物量与降雨量关系模型探讨.草原生态系统研究(第2集)北京:科学出版社: 20-25.
    陈佐忠,汪诗平. 2000.中国典型草原生态系统.北京:科学出版社: 125-156.
    程红梅,汤庚国2009.大蜀山短毛椴落叶阔叶林的物种组成和群落结构.南京林业大学学报(自然科学版) 33 (03): 35-40.
    程积民1999.黄土区植被的演替.土壤侵蚀与水土保持学报5 (05): 58-60.
    程积民,万惠娥2002.中国黄土高原植被建设与水土保持中国黄土高原植被建设与水土保持. 北京,中国林业出版社
    陈小燕,2003陕北黄土丘陵区植被恢复过程及其干预途径研究博士论文
    单贵莲,徐柱,宁发2010.典型草原不同演替阶段群落结构与物种多样性变化.干旱区资源与环境24 (02): 163-169.
    邓自发,王文颖,王启基1999.高寒草甸垂穗披碱草(Elymusnutans)种群繁殖对策的研究.高原生物学集刊14: 69-76.
    邓自发,谢晓玲,周兴民2001.高寒草甸矮嵩草种群繁殖对策的研究.生态学杂志20 (06): 68-70.
    董莉丽,郑粉莉2008.黄土丘陵区不同土地利用类型下土壤酶活性和养分特征.生态环境17 (05): 2050-2058.
    都耀庭,张东杰2007.禁牧封育措施改良高寒地区退化草地的效果.草业科学24 (07): 22~24.
    杜峰,山仑,陈小燕,梁宗锁2005.陕北黄土丘陵区撂荒演替研究-撂荒演替序列.草地学报13 (04): 328-333.
    杜峰,山仑,梁宗锁,谭勇2005.陕北黄土丘陵区撂荒演替过程中的土壤水分效应.自然资源学报20 (05): 669-678.
    杜峰,山仑,梁宗锁,徐学选2006.陕北黄土丘陵区撂荒演替生态位研究.草业学报15 (03): 27-35.
    杜峰,山仑,陈小燕2005.陕北黄土丘陵区撂荒演替研究-撂荒演替序列.草地学报13 (04): 328-333.
    杜峰,山仑,梁宗锁2005.陕北黄土丘陵区撂荒演替研究-群落组成与结构分析.草地学报13 (02): 140-143,158.
    杜峰,徐学选,张兴昌,邵明安,梁宗锁,山仑2008.陕北黄土丘陵区撂荒群落排序及演替.生态学报28 (11): 5418-5427.
    杜峰. 2004.陕北黄土丘陵区撂荒演替及主要植物种内、种间竞争研究. [博士].陕西,杨凌:西北农林科技大学
    杜国,祯王刚1991.亚高山草甸弃耕地演替群落的种多样性及种间相关分析.草业科学8 (04): 53-57.
    樊正球,陈鹭真2001.人为干扰对生物多样性的影响.中国生态农业学报9 (02): 31-34.
    范玮熠,王孝,安郭华2006.黄土高原子午岭植物群落演替系列分析.生态学报26 (03): 706-714.
    范竹华,法永乐,李梅,解瑞清,郑泽玉2005.生态演替理论探析.农业与技术25 (01): 99-101.
    高安社内蒙古农业大学.羊草草原放牧地生态系统健康评价
    高青山,胡自治1990.红豆草地下部植物量和光能利用率的研究.草业科学07 (05): 25-28.
    高贤明,黄建辉,万师强,陈灵芝1997.秦岭太白山弃耕地植物群落演替的生态学研究.生态学报17 (06): 619-625.
    公延明,胡玉昆,阿德力·麦地,李凯辉,高国刚,尹伟2010.巴音布鲁克高寒草地退化演替阶段植物群落特性研究.干旱区资源与环境(06): 149-152.
    巩杰,陈利顶,傅伯杰,虎陈霞,卫伟2005.黄土丘陵区小流域植被恢复的土壤养分效应研究.水土保持学报19 (01): 93-96.
    关松荫1987.土壤酶及其研究法.北京:农业出版社.
    郭朝晖,马来换,杜峰,梁宗锁2007.陕北黄土丘陵区撂荒演替前期群落异质性研究.水土保持通报27 (03): 6-12.
    郝仕龙,安韶山,李壁成2005.黄土丘陵区退耕还林(草)土壤环境效应.水土保持研究. 29-30 12(03).
    郝文芳,梁宗锁2002.黄土高原不同植被类型土壤特性与植被生产力关系研究进展西北植物学报22 (06): 1545-1550.
    郝文芳,陈存根,梁宗锁,马丽2008.植被生物量研究进展.西北农林科技大学学报(自然版)36 (02): 175-182.
    郝文芳,韩蕊莲,单长卷,梁宗锁2003.黄土高原不同立地条件下人工刺槐林土壤水分变化规律研究.西北植物学报23 (06): 964-968.
    郝文芳,梁宗锁,陈存根,唐龙2005.黄土丘陵沟壑区弃耕地群落演替与土壤性质演变研究. 中国农学通报21 (08): 226-231.
    郝文芳,梁宗锁,陈存根,唐龙2005.黄土丘陵区弃耕地群落演替过程中的物种多样性研究. 草业科学22 (09): 1-9.
    何腾兵,刘元生,李天智2000.贵州喀斯特峡谷水保经济植物花椒土壤特性研究.水土保持学报6 (02): 55-59.
    何跃军,叶小齐2004.恢复生态学理论对退化生态系统恢复的重要性.贵州林业科技32 (02): 8-12.
    何振立1994.土镶微生物量的测定方法:现状和展望.土壤学进展22 (04): 36-44.
    贺明蔡,冷寿慈1994.桃粮间作对土壤养分状况及土壤生物活性的影响.土壤通报25 (04): 188-189.
    胡斌,张世彪2002.植被恢复措施对退化生态系统土壤酶活性及肥力的影响.土壤学报39 (04): 604-608.
    胡泓,刘世全2007.川西亚高山针叶林人工恢复过程的土壤性性质变化.
    胡金明,刘兴土1999.三江平原土壤质量变化评价与分析.地理科学19 (05): 417-421.
    胡良军,邵明安2002.黄土高原植被恢复的水分生态环境研究.应用生态学报13 (08): 1045-1048.
    胡梦郡,刘文兆,赵姚阳2003.黄土高原农、林、草地水量平衡异同比较分析.干旱地区农业研究21 (04): 113-116.
    胡中民,樊江文,钟华,韩彬2005.中国草地地下生物量研究进展.生态学杂志24 (09): 1095-1101.
    黄昌勇,李保国,潘根兴2000.土壤学.北京:中国农业出版社: 50-64.
    黄懿梅,安韶山,曲东2007.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变.水土保持学报21 (1): 152-155.
    黄宇,汪思龙,冯宗炜2004.不同人工林生态系统林地土壤质量评价.应用生态学报15 (12): 2199 - 2205.
    贾国梅2006.黄土高原弃耕地自然恢复过程中微生物碳的大小和活性的动态中国沙漠26 (04): 580-585.
    贾国梅,王刚,陈芳清2007.子午岭地区植被演替过程中土壤生物学特性的动态.生态环境15(06): 1466-1469.
    贾松伟,贺秀斌,陈云明2004.黄土丘陵区退耕撂荒对土壤有机碳的积累及其活性的影响.水土保持学报18 (03): 78-80.
    贾晓红2007.干旱沙区植被恢复中土壤碳氮变化规律植物生态学报(01): 66-74.
    贾晓红,李新荣,李元寿2007.干旱沙区植被恢复中土壤碳氮变化规律.植物生态学报31 (01): 66-74.
    江小蕾,张卫国,杨振宇,王刚2003.不同干扰类型对高寒草甸群落结构和植物多样性的影响. 西北植物学报23 (09): 1479-1485.
    姜海楼,董瑞音,贾长友1997.麻黄生物学特性及生物量研究.草业学报06 (01): 18-22.
    姜培坤,蒋秋怡1995.杉木檫树根际土壤特性比较分析.浙江林学院学报12 (01): 1-5.
    姜培坤,周国模2003.侵蚀型红壤植被恢复后土壤微生物量碳、氮的演变.水土保持学报17 (01): 112-127.
    焦峰,温仲明,焦菊英,赫晓慧2006.黄丘区退耕地植被与土壤水分养分的互动效应.草业学报15 (02): 79-84.
    焦峰,温仲明,焦菊英2005.黄土丘陵区退耕地土壤养分变异特征.植物营养与肥料学报11 (06): 724-730.
    李斌,李素清,张金屯2010.云顶山亚高山草甸优势种群生态位研究.草业学报19 (1): 6-13.
    李博2000.生态学.北京:高等教育出版社: 150-158.
    李登武,张文辉,任争争2005.黄土沟壑区狼牙刺群落优势种群生态位研究.应用生态学报16 (12): 2231-2235.
    李锋瑞,赵丽娅,王树芳2003.封育对退化沙质草地土壤种子库与地上群落结构的影响.草业学报12 (04): 90-99.
    李禾,吴波,杨文斌,张武文,崔力强,刘静2010.毛乌素沙地飞播区植被动态变化研究.干旱区资源与环境24 (03): 190-194.
    李军玲,张金屯,郭逍宇2003.关帝山亚高山灌丛草甸群落优势种群的生态位研究.西北植物学报23 (12): 2081-2088.
    李良谟,范晓晖1993.根际酶的研究概况土壤25 (06): 299-303.
    李凌浩1998.土地利用变化对草原生态系统土壤碳贮量的影响.植物生态学报22 (04): 300-302.
    李凌浩,刘先华,陈佐忠1998.内蒙古锡林河流域羊草草原生态系统碳素循环研究.植物学报40 (10): 955-960.
    李那何芽,余伟莅,胡小龙,蓝登明,李花拉,曹轶凡,刘纪祥2009.围栏禁牧对浑善达克沙地退化草场植物群落特征的影响.干旱区资源与环境23 (12): 157-160.
    李永宏1995.内蒙古典型草原地带退化草原的恢复动态.生物多样性3 (03): 125-130.
    李永强,许志信2002.典型草原区撂荒地植物群落演替过程中物种多样性变化.内蒙古农业大学学报:自然科学版23 (04): 26-31.
    李勇1999.试论土壤酶活性与土壤肥力.土壤通报20 (04): 190-193.
    李裕元,邵明安2004.子午岭植被自然恢复过程中植物多样性的变化.生态学报24 (02): 252-260.
    李振高1999.土壤呼吸作用的测定.土壤农业化学分析方法.北京:中国农业科技出版社: 238-240.
    李振基,刘初钿,杨志伟2000.武夷山自然保护区郁闭稳定甜槠林与人为干扰甜槠林物种多样性比较.植物生态学报24 (01): 64-68.
    李政海,田桂泉1997.生态学中的干扰理论及其相关概念.内蒙古大学学报(自然科学版) 28 (01): 130-134.
    梁宗锁,左长清,焦巨仁2003.生态修复在黄土高原水土保持中的作用.西北林学院学报18 (01): 20-24.
    廖善刚,叶志君,汪严明2008.桉树人工林与杉木林、毛竹林土壤理化性质对比研究.亚热带资源与环境学报3 (03): 54-55.
    林勇,汪心国2001.恢复生态学原理与退化生态系统生态工程.中国生态农业学报9 (02): 35-37.
    刘德辉,梁珍海,胡海波1998.泥质海岸防护林对滩涂土壤的改良效果研究.土壤通报29 (06): 245-247.
    刘发央,徐长林,龙瑞军2008.牦牛放牧强度对金露梅灌丛草地群落物种多样性的影响.草地学报16 (06): 613-618.
    刘建军,韩黎明2002.陕北黄土丘陵沟壑区植被恢复与重建技术对策.西北林学院学报17 (03): 12-15.
    刘建新2004.不同农田土壤酶活性与土壤养分相关关系研究土壤通报35 (04): 525-523.
    刘军,陈益泰,罗阳富,姜景民,邵文豪,岳华峰2010.毛红椿天然林群落结构特征研究.林业科学研究23 (01): 93-97.
    刘美珍,蒋高明,于顺利,李永庚,高雷明,牛书丽,姜闯道,彭羽2004.浑善达克退化沙地恢复演替18年中植物群落动态变化.生态学报24 (08): 1731-1737.
    刘美珍,于顺利,蒋高明2004.浑善达克退化沙地恢复演替18年中植物群落动态变化.生态学报24 (08): 1731-1737.
    刘梦云,寇宝平,常庆瑞2002.安塞小流域土壤养分分布特征.西北农林科技大学学报(自然科学版) 149 (06): 21-22.
    刘清泉,杨文斌,珊丹2005.草甸草原土壤含水量对地上生物量的影响.干旱区资源与环境19(07): 44-49.
    刘庆,周立华(2001). "青海湖北岸植物群落与环境因子关系的初步研究."武汉植物学研究31 (01): 129-136.
    刘勇,王凯博,上官周平2006.黄土高原子午岭地区退耕地土壤物理性质与群落特征.资源与环境学报15 (02): 42-46.
    刘忠宽,汪诗平,韩建国,王艳芬,陈佐忠2004.内蒙古草原放牧恢复过程地衣生物量分布及其影响因素的研究.应用生态学报15 (07): 1294-1297.
    刘钟龄,王炜,郝敦元,梁存柱2002.内蒙古草原退化与恢复演替机理的探讨.干旱区资源与环境01: 84-91.
    龙健,黄昌勇,滕应,姚槐应2003.矿区重金属污染对土壤环境质量微生物学指标的影响.农业环境科学学报22 (01): 60-63.
    梁宗锁黄土高原树木水分生理生态学特征北京:中国林业出版社,2008年9月
    鲁如坤2000.土壤农业化学分析方法北京北京:中国农业科技出版社: 100-105.
    罗燕江,周九菊,王海洋,陈小燕2004.高寒草甸植物多样性与营养的关系.兰州大学学报(自然科学版) 40 (02): 84-91.
    骆东玲,张金屯,陈林美2003.白羊草群落优势种群生态位研究.山西大学学报(自然科学版) (01): 76-80.
    马长明,袁玉欣2004.国内外退耕地植被恢复研究现状.世界林业研究17 (04): 24-27.
    马克平1994.生物群落多样性的测度方法Ⅰa多样性的测度方法(下).生物多样性2 (04): 231-239.
    马克平,黄建辉,于顺利1995.北京东灵山地区植物群落多样性的研究Ⅱ.丰富度、均匀度和物种多样性指数.生态学报15 (03): 268-277.
    马世震,彭敏,陈桂琛2004.黄河源头高寒草原植被退化特征分析.草业科学21 (10): 19-23.
    马祥华,焦菊英,白文娟2005.黄土丘陵沟壑区退耕地土壤养分因子对植被恢复的贡献.西北植物学报25 (02): 328-335.
    马祥华,焦菊英2004.黄土高原植被恢复与土壤环境相互作用研究进展.水土保持研究(1): 157-161.
    马祥华,焦菊英2005.黄土丘陵沟壑区退耕地自然恢复植被特征及其与土壤环境的关系.中国水土保持科学3 (02): 15-22.
    马友平2000.应用生态位进行森林资源评价.林业科技25 (03): 17-19.
    马玉寿,李青云,朗百宁1997.柴达木盆地次生盐渍化撂荒地的改良与利用.草业科学14 (03): 17-20.
    马玉玺,杨文治,杨新民1999.陕北黄土丘陵沟壑区刺槐林水分生态条件及生产力研究.水土保持通报10 (06): 74-75.
    内蒙古大学生物系1986.植物生态学实验植物生态学实验.北京,高等教育出版社
    南京大学主编1986.土壤农化分析.北京:农业出版社.
    潘开文,刘照光1998.暗针叶林采伐迹地几种人工混交群落乔木层结构及动态.应用与环境生物学报4 (04): 327-334.
    庞敏,侯庆春,薛智德,韩蕊莲2005.延安研究区主要自然植被类型土壤水分特征初探.水土保持学报19 (02): 138-141.
    庞学勇,刘庆,刘世全,吴彦,林波,何海,张宗锦2004.川西亚高山云杉人工林土壤质量性状演变.生态学报24 (02): 261-267.
    庞学勇,胡泓2002.川西亚高山云杉人工林与天然林养分分布和生物循环比较.应用与环境生物学报8 (01): 1-7.
    彭少麟1995.中国南亚热带退化生态系统的恢复及其生态效应.应用与环境生物学报1 (04): 403-414.
    彭少麟1997.恢复生态学与热带雨林的恢复.世界科技研究与发展19 (03): 58-61.
    彭少麟2003.热带亚热带恢复生态学研究与实践热带亚热带恢复生态学研究与实践.北京, 科学出版社
    彭文英,张科利,杨勤科2006.黄土坡面土壤性质随退耕时间的动态变化研究.干旱区资源与环境20 (05): 153-158.
    彭镇华,董林水,张旭东2005.黄土高原水土流失严重地区植被恢复策略分析.林业科学研究18 (04): 471-478.
    钱迎倩,马克平1994.生物多样性研究的原理与方法.北京中国科学技术出版社.
    邱莉萍,刘军,王益权2004.土壤酶活性与土壤肥力的关系研究.植物营养与肥料学报10 (03): 277-280.
    曲国辉,郭继勋(2003).松嫩平原不同演替阶段植物群落和土壤特性的关系.草业学报12 (01): 18-22.
    任安芝,高玉葆,王金龙200.农牧交错区弃耕地生境中白草无性系的形态可塑性研究.中国沙漠20(增刊): 33-37.
    任海,蔡锡安,饶兴权2001.植物群落的演替理论.生态科学20 (04): 59-67.
    任天志2000.持续农业中的土壤生物指标研究中国农业科学33 (01): 68-75.
    山仑2000.怎样实现退耕还林还草.林业科学36 (05): 2-4.
    陕西省土壤普查办公室1992.陕西土壤.北京,科学出版社.
    尚文艳,吴钢,付晓,刘阳2005.陆地植物群落物种多样性维持机制.应用生态学报16 (03): 573-578.
    沈慧,姜风岐,杜晓军2000.水土保持林土壤肥力及其评价指标.水土保持学报14 (02): 60-65.
    沈彦,张克斌,杜林峰,刘刚2007.人工封育区植物群落恢复演替系列种群生态位动态特征――以宁夏盐池为例.生态环境16 (04): 1229-1234.
    沈彦,张克斌,杜林峰,刘刚2007.人工封育区植物群落恢复演替系列种群生态位动态特征—以宁夏盐池为例.生态环境16 (04): 1229-1234.
    史惠兰,王启基,景增春2005.江河源区人工草地及黑土滩退化草地群落演替与物种多样性动态.西北植物学报25 (04): 655-661.
    史衍玺,唐,克丽1998.人为加速侵蚀下土壤质量的生物学特性变化.土壤侵蚀与水土保持学报4 (01): 28-33,40.
    宋永昌2001.植被生态学.华东师范大学出版社
    孙波,赵其国,张桃林1995.我国东南丘陵山区土壤肥力的综合评价.土壤学报32 (04): 362-369.
    孙波,赵其国1999.红壤退化中的土壤质量评价指标及评价方法.地理科学进展18 (02): 118-112.
    孙长忠,黄宝龙,陈海滨1998.黄土高原人工植被与其水分环境相互作用关系研究北京林业大学学报20(03): 7-4.
    孙建,刘苗,李立军,刘景辉K. D. Sayre 2009.不同耕作方式对内蒙古旱作农田土壤微生物量和作物指标的影响. 28 (11): 2279-2285.
    孙儒泳,李博,诸葛阳1993.普通生态学北京,高等教育出版社
    孙儒泳,李庆芬,牛翠娟,娄安如2002.基础生态学(第二版).北京:高等教育出版社
    唐龙,梁宗锁,杜峰,郝文芳2006.陕北黄土高原丘陵区撂荒演替及其过程中主要乡土牧草的确定与评价.生态学报26 (04): 1165-1175.
    田玉强,李新,胡理乐,黄汉东,江明喜2002.后河自然保护区珍稀濒危植物群落乔木层结构特征.武汉植物学研究20 (06): 443-448.
    万忠梅,吴景贵2005.土壤酶活性影响因子研究进展.西北农林科技大学学报33 (06): 87-92.
    汪文霞2006.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系水土保持学报(06): 103-107.
    王百群,刘国彬1999.黄土丘陵区地形对坡地土壤养分流失的影响.土壤侵蚀与水土保持学报5 (02): 18-22.
    王长科1997.秦岭南坡旬河流域中上游地区植被演替的初步研究.烟台师范学院学报(自然科学版) 13 (02): 129-134.
    王代军,黄文惠,苏加楷1995.多年生黑麦草和白三叶人工草地生物量动态研究.草地学报03 (02): 135-143.
    王刚1984.关于生态位定义的探讨及生态位重叠计测公式改进的研究.生态学报4 (02): 119-127.
    王国宏,任继周,张自和2002.河西沙地绿洲荒漠植物群落多样性研究.草业学报11 (01): 31-37.
    王国梁,刘国彬,刘芳,侯喜禄,周生路2003.黄土沟壑区植被恢复过程中植物群落组成及结构变化.生态学报3 (12): 2550-2557.
    王国梁,刘国彬,侯喜禄2002.黄土高原丘陵沟壑区植被恢复重建后的物种多样性研究.山地学报20 (02): 182-187.
    王国梁,刘国彬,周生路2003黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响.自然资源学报18 (05): 530-535.
    王国梁,常欣2002.黄土丘陵区小流域植被建设的土壤水文效应.自然资源学报17 (03): 339-344.
    王国梁,刘国彬2002.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应.水土保持通报22 (01): 1-5.
    王海英,宫渊波,陈林武2005.不同植被恢复模式下土壤微生物及酶活性的比较.长江流域资源与环境12 (02): 201-206.
    王继红,刘景双,于君宝2004.氮磷肥对黑土玉米农田生态系统土壤微生物量碳氮的影响.水土保持学报.18 (01): 35-38.
    王军,傅伯杰,邱扬,陈利顶2003.黄土高原小流域土壤养分的空间分布格局-Kriging插值分析. 地理研究22 (03): 373-379.
    王堃,吕进英2000.退耕地的自然演替与人工恢复.中国农业资源与区划21(04): 51-55.
    王启基,周兴民,张堰清1995.高寒小嵩草草原化草甸植物群落结构特征及其生物量.植物生态学报19 (03): 225-235.
    王琼,辜再元,史春华,常智慧,韩烈保2009.废弃采石场植被自然恢复过程中物种多样性变化特征.环境科学研究22 (11).
    王顺庆,王万雄,徐海根2004.数学生态学稳定性理论与方法.北京:科学出版社: 15-16,394-395.
    王炜,梁存柱,刘钟龄,郝敦元2000.草原群落退化与恢复演替中的植物个体行为分析.植物生态学报24 (03): 268-274.
    王炜,刘钟龄,郝敦元,梁存柱1996内蒙古典型草原退化群落恢复演替的研究Ⅰ.退化草原的基本特征与恢复演替规律.植物生态学报20 (05): 449-459.
    王炜,刘钟龄,郭敦元1996.内蒙古草原退化群落恢复演替的研究Ⅱ恢复演替时间进程的分析. 植物生态学报20 (05): 460-471.
    王祥荣1993.浙江天童国家森林公园常绿阔叶林生态特征的分析.湖北大学学报(自然科学版) 15 (04): 430-435.
    王秀丽,徐建民,谢正苗,姚槐应,石伟勇2002.重金属铜和锌污染对土壤环境质量生物学指标的影响.浙江大学学报(农业与生命科学版) 28 (02): 190-194.
    王艳超,李玉灵,王辉2008.不同植被恢复模式对铁尾矿微生物和酶活性的影响.生态学杂志27 (10): 1826-1829.
    王英顺,田安民2005.黄土高原地区淤地坝试点建设成就与经验.中国水土保持(12): 44-46.
    王正银,曾仁兴1999.串叶松香草生物量和营养成分动态及其对土壤理化性质的影响.应用与环境生物学报5 (01): 16-21.
    温仲明,焦峰,耀军,焦菊英2005黄土沟壑区植被自我修复与物种多样性变化—以吴旗县为例.水土保持研究12 (01): 1-5.
    温仲明,杨勤科,焦峰2005b.水土保持对区域植被演替的影响.中国水土保持科学3 (01): 32-37.
    吴明作,刘玉萃,杨玉珍1999.河南省栓皮栎林主要种群的生态位研究.西北植物学报19 (03): 511-518.
    吴钦孝,杨文治1998.黄土高原植被建设与可持续发展北京:科学出版社: 50-52.
    吴彦,刘庆,乔永康,潘开文,赵常明,陈庆恒2001.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响.植物生态学报6: 648-655.
    武建双,沈振西,张宪洲,付刚2009.藏北高原人工垂穗披碱草种群生物量分配对施氮处理的响应.草业学报18 (06): 113-121.
    夏北成, J. Z. ZhouJ. M. Tiedje 1998.植被对土壤微生物群落结构的影响.应用生态学报09 (03): 296-300.
    谢国文,彦亨梅,张文辉2001.生物多样性保护与利用.湖南科学技术出版社: 133-168.
    谢锦升,杨玉盛,杨智杰2008.退化红壤植被恢复后土壤轻组有机质的季节动态.应用生态学报19 (03): 557-563.
    谢晋阳,陈灵芝1997.中国暖温带若干灌丛群落多样性问题的研究.植物生态学报21 (03): 197-207.
    熊毅,李庆逵(1987).中国土壤.北京,科学出版社.
    徐学选,张北赢,白晓华2007.黄土丘陵区土壤水资源与土地利用的耦合研究.水土保持学报21 (03): 166-169.
    许光辉,郑洪元1986.土壤微生物分析方法手册.北京:农业出版社.
    许再富,朱华,王应祥2004.澜沧江下游/湄公河上游片断热带雨林物种多样性动态.植物生态学报28 (05): 585-593.
    薛菁芳2007.土壤微生物量碳氮作为土壤肥力指标的探讨.土壤通报.2: 247-250.
    薛立,邝立刚,陈红跃2003.不同林分土壤养分、微生物与酶活性的研究.土壤学报40 (02): 280-285.
    薛萐,刘国彬,戴全厚,党小虎,周萍2007.不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响.自然资源学报22 (01): 20-27.
    薛萐,刘国彬,戴全厚,张超,余娜2009.黄土丘陵区退耕撂荒地土壤微生物量演变过程.中国农业科学42 (03): 943-950.
    杨金艳,王传宽2006.土壤水热条件对东北森林土壤表面CO2通量的影响.植物生态学报30 (02): 286-294.
    杨俊,何东进,洪伟,何小娟,苏炳霖,王彦涛2008.武夷山风景名胜区天然林优势种群高度生态位分析.华侨大学学报:自然科学版29 (01): 133-137.
    杨涛,徐慧,李慧,方德华,朱教君2005.樟子松人工林土壤养分,微生物及酶活性的研究.水土保持学报19 (03): 50-53.
    杨万勤,宋光煜2001.土壤生态位及其应用.世界科技研究与发展23 (02): 21-23.
    杨文治1981.黄土高原土壤水分状况分区(试拟)与造林问题.水土保持通报(02): 14-15.
    杨小波1997.植物群落演替的生理生态机理研究的现状和展望.海南大学学报自然科学版15 (02): 147-152.
    杨玉盛,何宗明,林光耀1998.不同治理措施对闽东南沿海侵蚀性红壤肥力影响研究.植物生态学报22 (03): 281-288.
    杨招弟,蔡立群,张仁陟,李爱宗2008.不同耕作方式对旱地土壤酶活性的影响土壤通报39 (03): 514-517.
    易志刚,蚁伟民,周丽霞2005.鼎湖山主要植被类型土壤微生物生物量研究.生态环境14 (05): 727-729.
    余存祖,彭琳,刘耀宏,戴鸣钧,彭祥林1991.黄土区土壤微量元素含量分布与微肥效应.土壤学报(03): 317-326.
    余作岳,彭少麟1996.热带亚热带退化生态系统的植被恢复生态学研究.广州:广东科技出版社: 1-6.
    袁素芬,陈亚宁,李卫红2006.新疆塔里木河下游灌丛地上生物量及其空间分布.生态学报26 (06): 1818-1824.
    袁霞,何斌2004.八角林地土壤酶活性和养分的分布特点及其相关分析.经济林研究22 (02): 10-13.
    岳明1998.陕北南部侧柏生长与生态因子的关系.武汉植物学研究16 (01): 47-53.
    占布拉,张昊2000.短花针茅荒漠草原撂荒恢复规律的研究.中国草地(06): 68-69.
    张娜,梁一民黄土丘陵区天然草地地下、地上生物量的研究.草业科学报,.2002,11(2 ):72- 78
    张成娥,陈小利1997.黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征. 草地学报5 (03): 195-200.
    张德魁,王继和,马全林,刘虎俊2007.古浪县北部荒漠植被主要植物种的生态位特征.生态学杂志26 (04): 471-475.
    张峰,张金屯2000.我国植被数量分类和排序研究进展.山西大学学报:自然科学版23 (03): 278-282.
    张甘霖,朱永官,傅伯杰2003.城市土壤质量演变及其生态环境效应.生态学报23 (03): 539-546.
    张光富,郭传友2000.恢复生态学研究历史.安徽师范大学学报(自然科学版) 23 (04): 395-398.
    张广才,黄利江,于卫平,马晖,王涵2004.毛乌素沙地南缘植被类型及其演替规律初步研究. 林业科学研究17 (12): 131-136.
    张宏1999.毛乌素沙地禾草杂类草草地根系生物量动态及能量效率研究.中国沙漠19 (02): 151-155.
    张继义,赵哈林,张铜会,赵学勇2004.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态.植物生态学报28 (01): 86-92.
    张继义,赵哈林2003.植被(植物群落)稳定性研究评述.生态学杂志22 (04): 42-48.
    张健,刘国彬2010.黄土丘陵区不同植被恢复模式对沟谷地植物群落生物量和物种多样性的影响.自然资源学报25 (02): 207-217.
    张金发,郑重1990.植物群落演替与土壤发展之间的关系.武汉植物学研究8 (04): 325-334.
    张金屯1997.群落中物种多度格局的研究综述.农村生态环境13 (04): 48-54.
    张金屯2002.数量生态学.北京:科学出版社.
    张金屯,柴宝峰邱扬2000.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化. 生物多样性08 (04): 378-384.
    张晋爱,张兴昌,邱丽萍2007.黄土丘陵去不同年限柠条林地土壤质量变化.环境科学学报26(05): 136-140.
    张静,张生荣2009.不同退化程度下紫花针茅草地群落结构特征与地下生物量的变化.黑龙江畜牧兽医(09): 60-62.
    张俊华,常庆瑞,贾科利,陈涛,岳庆玲,李云驹2003.黄土高原植被恢复对土壤肥力质量的影响研究.水土保持学报17 (04): 38-41.
    张娜,梁一民2002.黄土丘陵区天然草地地下/地上生物量的研究.草业学报11(02): 72-78.
    张庆费,宋永昌,由文辉1999.浙江天童植物群落次生演替与土壤肥力的关系.生态学报19 (02): 174-178.
    张全发,郑重,金义兴1990.植物群落演替与土壤发展之间的关系.武汉植物学研究08 (04): 325-334.
    张小磊,何宽,安春华,马建华2006.不同土地利用方式对城市土壤活性有机碳的影响——以开封市为例.生态环境15 (06): 1220-1223.
    张星杰,刘景辉,李立军,王智功,王林,苏顺和2008.保护性耕作对旱作玉米土壤微生物和酶活性的影响玉米科学16 (01): 91-95,100.
    赵哈林,苏永中,周瑞莲2006.我国北方沙区退化植被的恢复机理.中国沙漠26 (03): 323~328.
    赵护兵,刘国彬,吴瑞俊2006.黄土丘陵区不同类型农地的养分循环平衡特征.农业工程学报22 (01): 58-64.
    赵平2003.退化生态系统植被恢复的生理生态学研究进展.应用生态学报14 (11): 2031-2036.
    赵其国,孙波,张桃林1997.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标. 29 (05): 225-234.
    郑华,欧阳志云,王效科2004.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响.生态学报24 (09): 1994-2002.
    郑华,欧阳志云,易自力2004.红壤侵蚀区恢复森林群落物种多样性对土壤生物学特性的影响. 水土保持学报(04): 137-141.
    郑师章,吴千红,陶芸等1994.普通生态学方法与原理.北京,复旦大学出版社
    郑文教,王良睦,林鹏1995.福建和溪亚热带雨林土壤活性的研究.生态学杂志14 (06): 16-20.
    中国科学院南京土壤研究所1978.土壤理化分析.上海,上海科学技术出版社
    中国科学院南京土壤研究所微生物室编1985.土壤微生物研究法.科学出版社: 263-275.
    周厚诚,任海,向言词2001.南澳岛植被恢复过程中不同阶段土壤的便化.热带地理01 (02): 104-107.
    周家骏1976.次生杂木林抚育改造效果十年阶段总结.浙江林业科技(03): 1-5.
    周礼恺1983.土壤酶活性的总体在评价土壤肥力水平中的作用.土壤学报20 (04): 413-417.
    周志宇,付华,陈亚明2003.阿拉善荒漠草地恢复演替过程中物种多样性与生产力的变化.草业学报12 (01): 34~40.
    朱春全1997.生态位态势理论与扩充假说.生态学报17 (03): 324-332.
    朱桂林,山仑,刘国彬2004.弃耕演替与恢复生态学.生态学杂志23 (06): 94-96.
    朱海平,姚槐应,张勇勇2003.不同肥培管理措施对土壤微生物生态特征的影响.土壤通报32 (02): 140-142.
    朱锦懋,姜志林,蒋伟1997.人为干扰对闽北森林群落物种多样性的影响.生物多样性05 (04): 263-270.
    朱俊凤1985.三北防护林地区自然资源与综合农业区划.北京:中国林业出版社
    朱志诚,郭爱莲,岳明1996.陕北黄土高原臭柏群落进展演替和逆行演替.西北大学学报(自然科学版)26 (4): 325-330.
    朱志诚,贾东林1998.黄土高原中部草地群落初级生产.西北大学学报(自然科学版)28 (06): 536-539.
    朱志红,王刚,赵松岭1994.不同放牧强度下矮嵩草无性系分株种群的动态与调节.生态学报, 14 (01): 40-45.
    朱桂林黄土丘陵区弃耕地植被恢复的生态学过程及其机理2004博士论文
    邹厚远,程积民,周麟1998.黄土高原草原植被的自然恢复演替及调节.水土保持研究5 (01): 126-138.
    邹厚远,刘国彬,王晗生2002.子午岭林区北部近50年植被的变化发展.西北植物学报22 (01): 1-8.
    左小安,赵学勇,赵哈林,郭轶瑞,李玉强,赵玉萍2006.科尔沁沙地草地退化过程中的物种组成及功能多样性变化特征.水土保持学报20 (01): 181-185.
    Adler, P., B, D. Raff , AW. Lauenroth 2001. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128: 465-479.
    Afzal, M.W. Adams 1992. Heterogeneity of soil mineral nitrogen in pasture grazed by cattle. Soil Sci. Soc. Am. J., 56: 1160-1165.
    Agustin.RAdrian.E 2000. Small-scale spatial soil-plant relationship in semi-arid gypsum environments. Plant and Soil 220: 139-150.
    Anderson, T. H.K. H. Domsch 1985. Maintenance carbon requirements of actively-metabolizing microbial population under in situ conditions. Soil Biology & Biochemistry (17): 197-203.
    Andy, P., A. d. Dobson, A. J. M. BradshawBaker 1997. Hopes for the future:Restoration ecology and conservation biology Science(277): 515-522.
    Balota EL, Colozzi-Filho A, Andrade DSDick RP 2003. Microbial biomass in soils under different tillage and crop rotation systems. Biology and Fertility of Soils 38: 15-20.
    Barbara L.B, R. Mark A. Allison 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 07: 2151-2169.
    Bart F, D. Hans B. Frank 2001. Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology 82: 2534-2546.
    Baskin, Y. 1994. Ecosystem Function of Biodiversity. BioScience 44 (10): 657-660.
    Bassirirad,H 2000. Kinetics of nutrient uptake by roots:Re-sponses to global change. New Phytol 147: 155-169.
    Bebon , M., L. Harper J C. Townsend, R. 1986. Individuals, populations and communities. Blackwell Scientific, Oxford. Ecology.
    Belsky, A. J. 1986. Population and community processes in a mosaic grassland in the serengeti, Tanzania. Journal of Ecology 74: 841~856.
    Bossio, D. A.K. Scow 1996. Impact of carbon and flooding on themetabolic diversity ofmicrobial communities in soils. . App.l Environ. Microbio.l 51: 4043-4050.
    Bradshaw , A. D. 1990.西欧废弃地的管理和恢复.生态学报10 (1): 28-35.
    Bradshaw , A. D.M. J. Chadwich 1980. The restoration of land. Oxford: Blackweel Scientific Publications: 1-220.
    Brookes, P. C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol.Fert.Soils 19: 269-279.
    Brookes, P. C., L. Andera D. Jenkinson 1985 Chloroformfumigation and the release of soil nitrogen:Arapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17 (06): 837-842.
    Brouwer, R. 1962. Nutritive influences on the distribution of dry matter in the plant. Neth.J.Agric.Sci 10: 399-408.
    Buell.J.H 1952. Are natural areas essential. Jouranl of Forestry (50): 237-239.
    Carolyn, H.U. Daniel 1983. Plant-soil relationships on bentonite mine spoils and sagebrush grassland in the NorthernHigh Plains. Journal of Range Management 38 (3): 289-293.
    Cass,A 1996. Physical indicators of soil health, in: Indicators of catchment health. CSIRO, Australia: 87-107.
    Clay, k. 1999. Tungal endophyte symbiosis and plant diversity in successional field. Science 285 (5434): 1742-1744.
    David, J. 1988. The relationship of sheep grazing and soil heterogeneity to plant spatial patterns in dune grassland. Journal of Ecology 76: 233-252.
    Dilly .OM. J. C 1998. Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils(27): 374-379.
    Doran, J. W. 1987. Microbial biomass and mine realizable nitrogen distributions in no-tillage and plowed soils. Biology and Fertility of Soils 5: 68-75.
    Duncan, R. S.C. A. Chapman 1999. Seed Dispersal and Potential Forest Succession in Abandoned Agriculture in Tropical Africa. Ecological Applications 9 (3): 998-1008.
    Ellison, L. 1965. The influence of grazing on plant succession. Botanical Review 26: 1-78.
    Fenner, M. 1995. Seed Ecology. London: Chapman and Hall: 1-6.
    Gause, D.D. Wedin 1957. Plant strategies and the dynamics and structure of plant communities . Princeton: Princeton University Press.
    Gunapala, N.K. Scow 1998. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biology and Biochemistry 6: 805-816.
    Harper, J. L. 1997. Population Biology of Plants. London: A-cademia Press.
    Harris, J. 2003. Measurements of the soilmicrobial community for estimating the success of restoration. Eur. J. Soil Sci 54: 801-808.
    Harris, J. A.P. Birch 1989. Soil microbial activity in opencast coalmine restoration. Soil Use and Management 05: 155-160.
    Hernández-Hernández, R. M.D. Lopez-Hernández 2002. Microbial biomass,mineral nitrogen and carbon content in savanna soil aggregates underconventional and no-tillage. Soil Biology and Biochemistry(34): 1563-1570.
    Herrick, J.M. Wander 1997. Relationship between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity.In: Lal R ed. Soil Processes and the Carbon Cycle.CRC Press,Boca Raton: 405-425.
    Hoop, D. U.P. Vitouser 1997. The effects of plant composition and diversity on ecosystem process. Science 277: 1302-1130.
    Hooper.DUV. PM 1998. Effects of plant composition and diversity on nutrient cycling. Ecological Monographs 68: 121-149.
    HorwathP. Paul 1994. Soil Biomass Methods of Soil Analysis,Part2.Chemical and Microbiological Methods. American Society of Agronomy, Madison 09 (2): 753-761.
    Imhoff, S., A. PiresC. Tormena 2000. Spatial heterogeneity of soil properties in areas under elephant-grass short-duration grazing system. Plant and Soil 219: 161-168.
    Insam, H., T. C. HutchinsonH. H. Reber 1996. Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil BiolBiochem(28): 691-694.
    Jackson.PBCaldwell.MM. 1993. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74: 612-614.
    Jackson.RBCaldwell.MM 1993. Geostatistical patterns of soil heterogeneity around individual perennial plants. Journal of Ecology 81: 683-692.
    Jeffrery , S., P. DavidR. Dodson 1997. Spatial patterns in soil organic carbon pool size in the Northwestern United States. In:Lal R ed. SoilProcesses and the Carbon Cycle.CRC Press, Boca Raton, : 29-44.
    Jenkinson, D., D. AdamsA. Wild 1991. Model estimates of CO2 emissions from soil in response to globe warming . Nature 35(1): 304-306.
    Jenkinson, D.L. L.N. 1999. Microbial biomass in soil: measurement and turn over. Soil Biochemistry 05: 415-471.
    Jenkison, D. S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19: 703-707.
    Jonh, C.Jonh.RH 1996. The state of an emerging field.Annual Review Energy Environment. Restoroation ecology(21): 412-417.
    Karlen, D., M. RosekJ. Doran 1999. Conservation reserve program effects on soil quality indicators. Journal of Soil and Water Conservation 54 (1): 439-444.
    KaspariM. 2001. Taxonomic leve,l trophic biology and the regulation of local abundance. GlobalEcology& Biogeography(10): 229-244.
    Kennedy, A. C.R. I. Papendick 1995. Microbial characteristics of soil quality. Journal of Soil Water Conservation(50): 243-247.
    Kitazawa, T.M. Ohsawa 2002. Patterns of species diversity in rural herbaceous communities under different management regimes, Chiba, central Japan. Biological Conservation 104 (2): 239-249.
    Knapp, r.宋永昌译1984. Vegetation Dynamics北京:科学出版社: 26-80.
    Lehman, C. L.D. Tilman 2000. Biodiversity, Stability, and Productivity in Competitive Communities. The American Naturalist 156(5): 534-552.
    Macarty, G.W., J. J. MeisingerF. M. M. Jenniskens 1995. Relationships betweentotal-N,biomass-N and active-N in soil under different tillage and Nfertilizer treatments. Soil Biology and Biochemistry 27 (10):1245-1250.
    McGrady-Steed, J.J. MorinP 2000. Biodiversity density compensation, and the dynamics of populations and functional groups. Ecology 81 (02): 361-373.
    Milchunas.DGReynolds.JF 1993. Quantitative effects of grazing on vegstation and soils over a global range of environments. Ecol Monogr 63: 327-366.
    Miller. F PW. M. K 1994. Land use issues and sustainability of agriculture. Trans. Of 15th ICSS, Mexico(07): 1-6.
    Miyawaki, A. 1993. Restoration of native forests from Japan to Malaysia. In: Leith H & Lohmann M(eds.) Restoration of Tropical Forest Ecosystems. Dordrecht: Kluwer Academic Publishers 5-24.
    Odum, E. 1985. Trends expected in stressed ecosystems. Bioscience 35: 419-422.
    Panikov, N. S. 1999. Understanding and prediction of soil microbial community dynamics under global change. Applied Soil Ecology (11): 161-176.
    Park, D. J. W. a. 1994. Defining soil quality for a sustainable environment. Soil Science Society of American 1: 3-22.
    Peilou, E. C.卢泽愚译(1969) 1978.数学生态学引论.北京:科学出版社.
    Philip.R, Michael.AH., Francis.CEJames.MT 1988. Spatial variability in a successional plant community: patterns of nitrogen availability. Ecology 05: 517-1524.
    Pickett, S. T. A., S. L. CollinsJ. J. Armesto 1987. Models, mechanisms and pathways of succession. Botanical Review 53 (3): 335-371.
    Puget, P., C. Chenu J. Balesdent 2002. Dynamics of soilorganic matter associated with particle-size fractions ofwater-stable aggregates. European Journal of Soil Science (51): 595-605.
    RAUNKIAER , C. 1934. The life forms of plants and statistical plant geography . Oxford:Clarendon Press: 632.
    Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press: 632.
    Richard, B. P. 1996.祁承经译.保护生物学概论.长沙:湖南科学技术出版社.
    Rogers, B. F.R. L. Tate 2001. Temporal analysis of the soil microbial community along a topo sequence in pineland soils . Soil Biology & Biochemistry 33: 1389-1401.
    SalaO,E, Oesterheld,ML.,JC 1996. Grazing effects upon plant community structure in subhumid grasslands of Argentina. Vegetati (67): 27-32.
    Schinel, D. S. 1995. Terrestrial ecosystems and the carbon cycle . Global Change Biol (1): 77-91.
    Shirato, Y., T. ZhangT. Ohkuro 2006. Changes in topo-graphical features and soil properties after enclosure combined with sand-fixing measures in Horqin Sandy Land, northern china. Soil Science and Plant Nutrition (51): 61-68.
    Shiyomi.M 1998. Spatial pattern changes in aboveground plant biomass in a grazing pasture. Ecol. Res 13: 313-322.
    Smith, L. J.E. A. Paul 1990. The significance of soil microbial biomass estimations. Soil Bio chemistry 6: 357-359.
    Svoboda,JG. H. R. Henry 1987. Succession inmarginal artic environments. Artic and Alpine Research (19): 373-384.
    Templer, P., S. Findlay G. Lovett 2003a. Soil microbial biomass and nitrogen transformations amongfive tree species of the Catskill Mountains. Soil Biology and Biochemistry 35: 607-613.
    Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75 (01): 2-16.
    Tilman, D.J. A. Downing 1994. Biodiversity and stability in grasslands. Nature 367 (6461): 363-365.
    Tilman.DWedin.D 1988. Plant strategies and the dynamics and structure of plant communities.Princeton: Princeton University Press.
    TokeshiM. 1993. Species abundance patterns and community structure. Advances in Ecological Research 229-244 (24).
    Trujillo, W., E. AmezquitaM. Fisher 1997. Soil organic carbon dynamics and land use in the Colobian Savannas. I. Aggregate size distribution. In: Lal R ed. Soil Processes and the Carbon Cycle CRC Press, Boca Raton: 267-280.
    Valone, T., M. MeyerJ. Brown 2002. Timescale of perennial grass recovery in desertified arid grasslands fol-lowing livestock remova.l. Conservation Biology (16): 995-1002.
    Vinton.MABurke.IC 1995. Interactions between individual plant species and soil nutrient status in short grass steppe. Ecology 76: 1116-1133.
    Visser, S.D. Parkinson 1992. Soil biological criteria as indicators of soil quality: soilmicroorganisms. American Journal of Alternative Agriculture (7): 33-37.
    Waldhardt, R.A. Otte 2003. Indicators of plant species and community diversity in grass lands . Agriculture, Ecosystems & Environment 98 (1): 339-351.
    Wardle, D. A. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Rev 67: 321-358.
    Whittaker, R. H., Communities Ecosystem 1970. The MacMillam Company. New York.
    Zelles,L 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization ofmicrobial communities in so:i a review. Biology and Fertility of Soils (29): 111-129.
    Zhong , Z. K.F. Makeschin 2003. Soluble organic nitrogen in temperate forest soils. Soil Biology and Biochemistry 35: 333-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700