黄土旱塬农田土壤有机碳、氮的演变与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机质是影响土地生产力的重要因素。有机质在改善土壤结构、保持水分、防止土壤侵蚀和退化、提供植物养分特别是氮素等方面具有重要作用。黄土高原是我国主要生态脆弱区,了解这一地区管理措施对有机质周转影响,分析该地区土地生产潜力是调控土壤有机质含量的基础。本文以中国科学院长武试验站的长期试验(始于1985年)为依托,通过对典型处理8-15年的土壤养分、作物产量以及同期降水量等的系统分析,揭示了黄土旱塬区不同种植体系中土壤有机碳、氮的演变规律:阐明了长期施肥条件下土壤硝态氮的迁移积累机理;提出了目前水肥条件下黄土旱塬区冬小麦生产潜力及其提高途径。在获得上述实验资料的基础上,建立了黄土旱塬区土壤有机碳周转的模拟模型。其主要新进展如下:
     (1)在黄土旱塬区,禾本科连作能够保持土壤有机碳、氮的含量(6.50gkg~(-1)、0.82gkg~(-1);禾本科与豆科作物轮作土壤有机碳、氮积累略有提高;小麦与红豆草轮作或苜蓿连作对提高土壤有机碳、氮积累具有显著的促进作用;长期休闲土壤有机碳、氮呈缓慢降低趋势。
     (2)不同作物系统中,增施化肥显著提高了土壤有机碳、氮的积累,有机碳、氮增幅分别为19-33%、22-35%。
     (3)本区降水量的不足与多变限制了豌豆-小麦轮作对土壤有机碳、氮积累的促进作用,但在红豆草-小麦轮作中,红豆草对有限土壤水分的消耗促进了土壤有机碳、氮的积累。
     (4)本区土壤C/N比一般稳定在8.3左右,作物和施肥措施对此影响不大。
     (5)不同土地利用方式显著影响土壤微生物碳、氮含量。本区不同种植系统中土壤微生物碳含量占土壤有机碳含量的1-4%;微生物氮含量占有机氮含量的2-6%,微生物碳(氮)含量与有机碳(氮)含量具有显著的相关关系。相同管理条件下,微生物碳含量、微生物碳与有机碳比率变化方向与有机碳一致。但与土壤有机碳相比,微生物碳含量、微生物碳与有机碳比率变化幅度更大。因此可以利用土壤微生物碳含量、微生物碳与有机碳比率变化指示土壤质量变化。
     (6)土壤水分含量依赖于年际、季节间降水量的变化。作物、施肥不改变土壤水分的变化模式,但影响土壤水分变化强度。休闲处理土壤水分含量季节性变化相对稳定。不同作物对土壤水分含量的影响强度顺序为:苜蓿>小麦>休闲地。不同施肥条件下,小麦地收获期土壤水分含量和播种前降水入渗深度大小为:不施肥处理、M、PM、N处理>NP、NM、NPM处理。常年生长苜蓿的土壤,其水分含量显著低于休闲处理,降水入渗深度显著降低。苜蓿连作土壤中,施肥措施对土壤水分影响不大。
     作物影响土壤NO_3-N的含量、迁移和积累。小麦连作中,施氮肥处理土壤NO_3-N含量显著升高,N处理的NO_3-N向下迁移深度显著大于NPM、MN处理。不同处理NO_3-N迁移深度与相应处理降水入渗深度基本一致。NO_3-N在土壤剖面(0-300cm)积累量可占到氮肥施用总量的12-55%。其NO_3-N积累量的大小顺序为:N处理>NPM,MN>NP,与相应
    
    11 黄土旱源农田土壤有机碳、氮的演变与模拟
    处理氮肥的利用率大小颀序相反。首捂连作中,NO3N迁移深度与降水的入渗深度一样显著
    变浅,即使在NPM施肥条件下也没有发生NO3N在剖面中的显著积累。
     (7)不同作物与施肥条件下,建立的土壤有机碳周转模拟模型(SCNC)与测定值相对
    误差在t 10%范围内的模拟值可达到80%以上,而RohC--26.3模型的模拟值与测定值相对误差
    均在30%以上。
     (8)目前水肥条件下,本区小麦产量远未达到水肥资源生产潜力。分析表明,休闲期门一9
    月)降水量是影响产量的重要因素,但小麦产量只与7月降水量关系密切,因而提高8月、9
    月降水的入渗、保持和利用是本区冬小麦产量进一步提高的重要途径。增施化肥是提高黄土
    旱源区作物产量的主要措施。在目前氮肥投入水平(12 kgNha’)基础上,进一步增施氮肥,
    小麦产量还具有一定的增产空间。
     上述研究结果为黄士旱源区土壤生产力提高、土壤有机碳、氮的调控管理提供了新的理
    论依据。
Soil productivity is strongly linked to soil organic matter (SOM) because SOM plays important roles in improving soil structure, soil water holding, infiltrating and capacities, and the nutrients supply to crops. It is significant that effect of land-use and management on soil organic matter turnover and land productivity is investigated for the sustainable agriculture and environment protection in gully area of the Loess Plateau. On the basis of long-term experiment, changes in soil organic C, N and dynamics of soil NOs-N of cropping systems were investigated in gully area of the Loess Plateau by means of analysis of the 15-year soil samples, crop yield hi following crop systems: 1) continuous winter wheat with unmanured (CK), nitrogen, organic manure (M), phosphorus and organic manure (PM), nitrogen and phosphorus (NP), nitrogen, phosphorus and organic manure (NPM), 2) continuous alfalfa, 3) pea-winter wheat rotation, winter wheat-sainfoin (Onobrychis viciifolid) rotation, and 4) bare fallow. A model was developed according to the organic C dynamics, and was tested by the long-term experiment. The potential yield of winter wheat and the approach were studied under the condition of local precipitation and fertilization. Some results were summarized as follows:
    (1) Land-use and management affected soil organic C and N. Soil organic C and N content in the continuous cereal was constant at the level of 6.50 g kg"1 and 0.82 g kg"1, respectively. Cereal-pea rotation could contribute a little to the accumulation of soil organic C and N. Winter wheat-sainfoin (Onobrychis viciifolid) rotation or continuous alfalfa (Medicago sativd) could significantly increase the soil organic C, N. Soil organic C and N slowly decreased in fallow.
    (2) Fertilization could evidently increase soil organic C, N. The increase of organic C varied from 9% to 13%, the increase of organic N varied from 22% to 35% among the different cropping systems.
    (3) Limited rainfall affected the accumulation of soil organic C, N in the pea-winter wheat rotation. However, low soil moisture due to crop strong evapotranspiration contributed more to the accumulation of soil organic C, N in the winter wheat-sainfoin (Onobrychis viciifolid) rotation.
    
    
    
    (4) Soil C/N ratio was constant at 8.3 in gully area of Loess Plateau, cropping and fertilization had little effect on the C/N ratio.
    (5) Land-use and management could result in significant changes in soil microbial biomass C, N. Soil microbial biomass C accounts for 1-4% of soil organic C, soil microbial biomass N accounts for 2-6% of soil organic N among cropping systems. There was a significant correlation between soil microbial C (N) and organic C (N). The changes in microbial C, microbial C/organic C ratio, in response to changes in soil management, occurred in the same direction as did in the changes in soil organic C, but microbial C and microbial C/organic C ratio were sensitive to similar soil management. So the microbial C and microbial C/organic C ratio could serve as a sensitive indicator of changes in SOM.
    (6) Soil moisture content depends on highly variable inter-year and inter-month rainfall. Cropping and fertilization could not change pattern of soil moisture change, and significantly affect intensity of soil moisture change. Effect of crops on soil moisture was in the order: continuous alfalfa > continuous winter wheat > bare fallow. Soil moisture on harvesting date and rainfall infiltration depth before winter wheat planting in continuous winter wheat was hi the order : unmanured, M, PM, N > NP, NM, NPM. Soil moisture content in continuous alfalfa was considerably lower than bare fallow, the rainfall infiltration depth in continuous alfalfa was reduced to 120 cm. Fertilization could not influence soil moisture in continuous alfalfa.
    Soil managements (cropping, fertilization, etc.) had a little effect on NH4-N change. Cropping and fertilization had a significant effect on soil NOa-N transport and accumulation. NOa-N level was low and constant in fallow treatment.
引文
1. 陈福兴,秦道珠,谢良商,1991.长期施用有机肥对土壤养分平衡及增产作用—肥料效应监测试验结果,土壤肥料,(1):13-16
    2. 陈培元,李英,蒋永罗,陈建军,1991.黄土旱塬冬小麦反应型丰产模式的研究,李玉山,苏陕民主编,长武王东沟高效生态经济系统综合研究,北京:科学技术文献出版社,p88-109
    3. 程励励,文启孝,1992.有机肥料氮的转化以及有机—化学氮肥的综合管理,朱兆良编著,中国土壤氮素,p254.
    4. 戴万宏,1999.黄土肥力与肥料效益定位研究,西北农业学报,8(6):93-97
    
    
    5. 党廷辉,1998.黄土旱塬区轮作培肥试验研究,土壤侵蚀与水土保持学报,第4卷(3):44-47
    6. 党廷辉,郝明德,2000.黄土塬区不同水分条件下冬小麦氮肥效应与土壤氮素调节,中国农业科学,33(4):62-67
    7. 董大学,李玉山,1989.干旱年型渭北原地冬小麦产量潜势及水肥效应研究,中科院水利部西北水土保持研究所集刊,第10集,124-129
    8. 樊军,郝明德,党廷辉,2000.长期施肥条件下土壤剖面中硝态氮的分布,土壤与环境,9(1):23-26
    9. 郭胜利,党廷辉,郝明德,2000.黄土高原沟壑区不同施肥条件下土壤剖面中矿质氮的分布特征,干旱地区农业研究,18(1):22-27
    10.黄东迈,1986.有机肥无机肥对提高土壤氮素肥力的作用及其配合使用.见:中国土壤学会土壤农化专业委员会,土壤生物和生物化学专业委员编,我国土壤氮素研究工作的现状与展望,北京:科学出版社,p104-115
    11.黄明斌,康绍忠,李玉山,2000.黄土塬区旱作冬小麦增产潜力研究,自然资源学报,第15卷,第2期,143-48
    12.金绍龄,马用春,1996.长期施用不同肥料对作物产量和土壤肥力的影响,林葆等主编,长期施肥的作物产量和土壤肥力变化,中国农业科技出版社,p153-160
    13.赖庆旺等,1996.红壤性水稻土连续施肥的生物效应与肥力特性,林葆等主编,长期施肥的作物产量和土壤肥力变化,中国农业科技出版社,p60-69
    14.李开元,李玉山,1997.黄土高原南部旱作水分产量潜势计算模型及其参数修正,应用生态学报,8(1):43-48
    15.李玉山,张孝中,郭明航,1990.黄土高原南部作物水肥产量效应的田间研究,土壤学报,27(1):1-7
    16.李玉山,郑吉文,1991.黄土高原沟壑区旱作粮食短期内大幅度增产的理论和技术,李玉山,苏陕民 主编,长武王东沟高效生态经济系统综合研究,北京:科学技术文献出版社,p69-87
    17.李玉山,郭明航,董大学,李开元,1991.渭北旱塬旱作水分产量潜势与水—肥—产量关系,李玉山,苏陕民 主编,长武王东沟高效生态经济系统综合研究,北京:科学技术文献出版社,p115-125
    18.李玉山.1997.黄土高原治理开发与黄河断流的关系,水土保持通报,17(6):124-127
    19.林葆,1998.我国肥料结构和肥效演变、存在问题及对策,李庆逵,朱兆良,于天仁编,中国农业发展中的肥料问题,江西科学技术出版社,p12-27
    20.林葆,林继兄,李家康,1994.长期施肥的作物产量和土壤肥力变化,植物营养与肥料学报,试刊(1):6-18
    
    
    21.林葆等 主编,1996.长期施肥的作物产量和土壤肥力变化,中国农业科技出版社,p1-13
    22.吕家珑,张一平,王旭东,赵高侠,张春惠,1998.长期单施化肥对土壤性状及作物产量的影响,长期土壤培肥定位实验课题组(编),二十一年土壤培肥试验的启示(资料),p4-8
    23.吕家珑,汤代良,王旭东,赵高侠,张春惠,1998.农田生态对土壤肥力的保护效应,长期土壤培肥定位实验课题组(编),二十一年土壤培肥试验的启示(资料),p9-13
    24.罗贤安,1961.黄土区主要土壤腐殖质及其特性的初步研究,土壤学报,(6):1-6
    25.乔玉楼,1985.黄土~(14)C年龄测定的若干结果,刘东生等著,黄土与环境,科学出版社,p85
    26.上海农业科学院土壤肥料研究所施肥方案组,1996.稻麦轮作条件下农田化肥效应和土壤肥力长期定位监测,林葆等主编,长期施肥的作物产量和土壤肥力变化,中国农业科技出版社,p78-90
    27.沈宏,曹志洪,1998.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响,热带亚热带土壤科学,7(1):1-5
    28.沈善敏,1998.农业系统中碳与主要营养元素循环及中国农田土壤养分收支,沈善敏主编,中国土壤肥力,北京:中国农业出版社,p59
    29.沈善敏,1986.无机氮对土壤氮素矿化固定的影响——兼论土壤氮素的“激发效应”,土壤学报,23:10-16
    30.孙克刚,李锦辉,姚建等,1999.不同施肥处理对作物产量及土体NO_3-N累积的长期定位试验,土壤肥料,(6):18-20
    31.孙小凤等,1996.农田施肥效应和土壤肥力演变定位监测研究,林葆等主编,长期施肥的作物产量和土壤肥力变化,中国农业科技出版社,p50-60
    32.吴金水,1994.土壤有机质及其周转动力学,何电源主编,中国南方土壤肥力与栽培植物施肥,北京:科学出版社,p28-62.
    33.吴金水,苏以荣,肖和艾,1998.长江流域土壤有机质和养分循环优化管理—过程研究及计算机模拟和长期预测.《区域农业生态系统发展近期调控技术研究》论文集,中国科学院长沙农业现代化研究所,p21-25.
    34.吴金水,肖和艾,1999.土壤有机质循环及含量变化预测.迈向21世纪的土壤科学—提高土壤质量促进农业持续发展(湖南省卷,湖南省土壤肥料学会编),湖南科学技术出版社,p69-74.
    35.周修冲等,1996.水稻肥料效应长期定位研究,林葆等主编,长期施肥的作物产量和土壤肥力变化,中国农业科技出版社,p26-34
    36.杨文治,余存祖,1992.黄土高原区域治理与评价,北京:科学出版社,p159
    
    
    37.杨学云等,2000.黄土施肥效应与肥力演变的长期定位监测初报,(报告)
    38.杨学云,孙本华,王彩绒,戴万宏,2000.黄土施肥效应与肥力演变的长期定位监测初报(报告),
    39.杨学云,同延安,张树兰等,2000.长期定位施肥对娄土硝态氮分布于积累的影响(报告),
    40.袁新民,同延安,杨学云等,2000.有机肥对土壤NO_3-N累积的影响,土壤与环境,9(3):197-200
    41.余存祖,1991.黄土高原地区土壤养分资源与分区,中国科学院黄土高原综合科学考察队编,黄土高原地区土壤资源及其合理利用,中国科学技术出版社,p155-204
    42.郑剑英,赵更生,1996.连续施用有机肥与化肥对黄绵土的培肥效应,水土保持研究,第6期
    43.张一平,张福锁,樊小林,王旭东,吕家珑,1998.21年长期土壤培肥定位试验的启示,长期土壤培肥定位实验课题组(编),二十一年土壤培肥试验的启示(资料),p1-3
    44.钟良平,景为,1991.限制作物产量进一步提高的首要因子分析,郝明德,梁银丽主编,长武农业生态系统结构、功能及调控原理与技术,北京:气象出版社,p64-69
    45.周广业,丁宁平,1991.旱塬黑垆土肥料长期定位研究,土壤肥料.(1):10-13
    46.朱洪勋等,1996.黄潮土肥料长期定位研究,林葆等主编,长期施肥的作物产量和土壤肥力变化,中国农业科技出版社,p123-133
    47.朱兆良,1979.土壤中氮素转化和移动的研究近况,土壤学进展,(2):1-16
    48.朱兆良,1998.中国土壤的氮素肥力与农业中的氮素管理,沈善敏主编,中国土壤肥力,北京:中国农业出版社,p256
    49.朱兆良,文启孝(主编),1992.中国土壤氮素,南京:江苏科技出版社,p252
    50.朱兆良,文启孝(主编),1992.中国土壤氮素,南京:江苏科技出版社,p256
    51. Adu J.K., and J.M. Oades, 1978. Utilization of organic materials in soil aggregates by bacteria and fungi, Soil Biol. Biochem. 10:117-122;
    52. Agren, G.I. and Bosatta, E., 1987. Theoretical analysis of the long-term dynamics of carbon and nitrogen in soils. Ecology. 68:1181-1189
    53. Albrecht, W.A., 1938. Loss of soil organic matter and its restoration pp.347-360. Soils and Men, 1938Year Book of Agric., USDA, Washington, DC.
    54. Allison, F.E., 1973. Soil organic matter and its role in crop production: soil organic matter formation.97-119.
    55. Allmaras,R.R. Pikul,J.L. Kraft, J.M. and Wilkins,D.E., 1988. A method for measuring incorporated crop residue and associated soil properties. Soil Sci. Soc. Am. J.52:1128-1133.
    56. Amato, M. and J.N. Ladd., 1992. Decomposition of 14C-labelled glucose and legume material in
    
    soils: properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol. Biochem.24:455-464
    57. Anderson, J.P.E. and Domsch, K.H., 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. & Biochem. 10,215-221.
    58. Anderson, T.H. and Domsch, K.H., 1989. Ratios of microbial biomass to total organic carbon in arable soils. Soil Biol. & Biochem. 21, 471-479.
    59. Andren, O., et al., 1987, Intecol. Bulletin, 15:41-47
    60. Ardell D. Halvorson and Curtis A. Reule, 1994. Nitrogen fertilizer requirements in an annual dryland cropping system, Agron. J. 86: 315-318
    61. Aulakh, M.S., Doran J.W., Walters D.T. Mosier A.R. and Francis D.D., 1991. Crop residue type and placement effects on denitrification and mineralization, Soil Sci. Soc. Am. J. 55,1020-1025
    62. Barber, S.A. 1979. Corn residue management and soil organic matter. Agron. J. Vol.71,625-627
    63. Bartholomew, W.V. and Kirham, D. 1960. , Mathematical descriptions and interpretations of culture-induced soil nitrogen changes. Transactions of the 7th international congress of soil science Vol.2,471-477
    64. Bartlett, J.R. and H.E. Doner, 1988. Decomposition of lysine and leucine in soil aggregates: adsorption and compartmentalization, Soil Biol. Biochem. Vol.20 (5) : 755-759
    65. Belvins,R.L., G.W.Thomas, M.S.Smith, W.W.Frye, and P.L.Cornelius, 1983. Changes in soil properties after 10 years of continuous non-tilled and conventionally tilled com. Soil Tillage Res.3: 135-136
    66. Biederbeck,V.O., C.A.Campbell, and R.P.Zentner., 1984. Effect of crop rotation and fertilization on some biological properties of a loam in southwestern Saskatchewaan. Can. J. Soil Sci.64:355-367;
    67. Birch, H.F. 1958. The effects of soil drying on humus decomposition and nitrogen availability. Plant and Soil. X, No.1, 9-13.
    68. Black, A.L. 1973. Soil property changes associated with crop residues management in a wheat-fallow rotation. Soil Sci. Soc. Am. Proc., 37: 943-946
    69. Black, A. L., 1982. Long-term N-P fertilizer and climate influences on morphology and yield components of spring wheat, Agron. J., 74:651-657
    70. Black, A.S. and S.A. Waring, 1979. Adsorption of nitrate, chloride and sulfate by some highly weathered soils from southeast Queens-land. Aust. J. Soil Res. 17: 271-272
    71. Breland, T.A. 1994. Enhanced mineralization and denitrification as a result of heterogeneous distribution of clover residues in soil, Plant and Soil. 166,1-12
    
    
    72. Braodbent, F.E. 1947. Nitrogen release and carbon loss from soil organic matter during decomposition of added plant residues. Soil Sci. Soc. Am. Proc. 12:246-249
    73. Braodbent, F.E. 1956. Tracer investigations of plant residue decomposition in soil. Conference of radioactive isotopes in agriculture. In: Proceedings of the conference on radioactive isotopes in agriculture, 12-14 January 1956. US Atomic Energy Commission, Washington, pp.371-380
    74. Braodbent, F.E. and Bartholomew, W.V., 1948. The effect of quantity of plant material added to soil on its rate of decomposition. Soil Sci. Soc. Am. Proc. 13:271-274
    75. Bums, R.C and R.W.F. Hardy, 1975. Nitrogen fixation in Bacteria and higher plants. Springer-Verlagm, Berlin-Heidelbergg-New York.p57
    76. Cahn, M.D., D.R. Boudin, and M.S. Cravo, 1992. Nitrate sorption in the profile of an acid soil. Plant Soil 143:179-183
    77. Campbell, C.A. 1978. Soil organic carbon, nitrogen and fertility. In Soil Organic Matter (Developments in Soil Science 8) (M. Schnitzer and S.U. Kham, eds), Elsevier, Amsterdam, 1978. pp 173-265.
    78. Campbell, C.A., Paul, E.A., Rennie, D.A. and McCallum, K.J., 1967. Factors affecting the accuracy of the carbon-dating method in soil humus studies. Soil Science. 104, 81-85.
    79. Chertov, O.G. & Komarov, A.S., 1990. SOMM-a model of soil organic matter dynamics. Ecological Modelling. 50:107-132
    80. Christensen, B.T. 1987. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biol. Biochem. 19, 429-435;
    81. Cochran, V.L., Horton, K.A. and Cole, C.V., 1988. An estimation of microbial death rate and limitations of N or C during wheat straw decomposition. Soil Biol. Biochem. 20, 293-298.
    82. Coleman, K. and Jenkinson, D.S., 1999. ROTHC-26. 3, a model for the turnover of carbon in soil (Model description and windows users guide),IACR-Rothamsted, Harpenden, Herts, AL5 2JQ, p7
    83. Collins, H. P. Elliot, L.F., Rickman, R.W., Bezdicek, D.F., Papenddick, R.I.1990. Decomposition and interactions among wheat residue components. Soil Sci. Soc. Am. J. Vol.54: 780-785
    84. Cooby, P.N. et al., 1986. Soil Biol. Biochem. 18:283-289
    85. Cook, F.J., Orchard, V.A. and Corderoy, D.M., 1985. Effects of lime and water content on soil respiration. New Zealand J. Agric. Res. 28, 517-523.
    86. Coxson, D.S. and Parkinson, D., 1987. Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biol. Biochem. Vol.19, No.1, 49-59.
    
    
    87. Dalenberg, J.W. and Jager, G., 1989, Dalenberg, J.W., Jager, G., 1989. Priming effect of some organic additions to 14C-labelled soil. Soil Biol. Biochem. 21(3) : 443-448
    88. Davenport, J.R. R.L. Thomas and S.C. Mott, 1988. Carbon mineralization of corn and bromegrass components with an emphasis on the below-ground carbon, Soil Biol. Biochem. Vol.20, (4) : 471-476
    89. Dixon, R.O.D. and C.T. Wheeler, 1986. Nitrogen fixation in plants. Chapman and Hall. New York. p4
    90. Doran, J.W., 1987. Microbial biomass and mineralisable nitrogen distributions in no-tillage and plowed soils. Biology and Fertility of Soils. 5, 68-75.
    91. Drury, C.F. and C.S. Tan, 1995. Long-term (35 years) effects of fertilization, rotation and weather on corn yields, Can. J. Plant Sci. 75:355-362
    92. Elliot, E. T, C.V. Cole, B.C. Fairbanks, L.E. Woods, R.J. Bryant, and D.C. Coleman, 1983. Short-term bacterial growth, nutrient uptake, and ATP turnover in sterilized, inoculated and C-amended soil: the influence of N availability, Soil Biol. Biochem. 15: 85-91
    93. Eswaren, H., Van Den Berg, E. and Reich, P., 1993. Organic carbon in soils of the world. Soil Sci. Soc. Am. J., 57, 192-194
    94. Follett, R.F. and Schimel, D.S., 1989. Effect of tillage practices on microbial biomass dynamic! Soil Sci. Soc. Am. J. 53, 1091-1096.
    95. Food and Agriculture Organization 2000 FAOSTAT, Food and Agriculture Organization of the United Nations, Rome
    96. Franko, U., Oelschlagel, B. & Schenk, S., 1995. Simulation of temperature-, water-, and nitrogen dynamics using the Model CANDY. Ecol. Model. 81: 213-222
    97. Gijsman, A.J., Oberson, A., Tiessen, H. and Friesen, D.K., 1996. Limited applicability of the CENTURY model to highly weathered tropical soils. Agron. J. Vol.88, 894-903.
    98. Grace, P.R., Oades, J.M., Keith, H, Hancock, T.W., 1995. Trends in wheat yields and soil organic carbon in the permanent rotation trial at the Waite Agricultural Research Institute, South Australia. Australian Journal of Experimental Agriculture. 35: (7) 857-864
    99. Gregory, P.J. and B. J. Atwell, 1991 .The fate of carbon in pulse labeled crops of barley and wheat, Plant and Soil. 136,205-213
    100. Hart, P.B.S. 1984. Effects of soil type and past cropping on the nitrogen supplying ability of arable soils. Ph.D thesis, Soil Scince Department, The University of Reading
    101. Havlin, J.L., D.E. Kissel, L.D. Maddux, M.M.Claassen, and J.H. Long., 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. J. 54:448-452.
    
    
    102. Halvorson, A.D. and C.A. Reule., 1994. Nitrogen fertilizer requirements in an annual dryland cropping system. Agron.J. 86:315-318.
    103. Halvorson, A.D. C.A. Reule, and R.F. Folllet, 1999. Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system. Soil Sci. Soc. Am. J. 63:912-917.
    104. Hansen, S., Jensen, H.E., Nielsen, N.E. and Svendsen, H., 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model Daisy. Fert. Res. 27:245-259
    105. Herman, W.A., McGill, W.B. and Dormaar, J.F., 1977. Effects of initial chemical composition on decomposition of roots of three grass species. Can. J. Soil Sci. Vol.57, 205-215.
    106. Henin, S. and Dupuis, M., 1945. essai de bilan dela matiere organique du sol. Annales Agronomiques. 15:17-29
    107. Holland and Coleman, 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology. 68(2) : 425-433
    108. Insam, H., Mitchell, C. C. and Dormaar, J. F., 1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols. Soil Biol. & Biochem. 23,No.5,459-464.
    109. Insam, H., Parkinson, D. and Domsch, K.H., 1989. Influence of macroclimate on soil microbial biomass. Soil Biol. & Biochem. Vol.21, No.2, 211-221.
    110. Inubushi, K., Brookes, P.C. and Jenkinson, D.S., 1991. Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biol. & Biochem. Vol.23, No.8, 737-741.
    111. Jager, G. and Briuns, E.H., 1975. Effect of repeated drying at different temperature on soil organic matter decomposition and characteristics, and on the soil microflora. Soil Biol. & Biochem. 7, 153-159.
    112. Janzen, H.H. 1987. Soil organic matter characteristics after long-term cropping to various spring wheat rotations. Can. J. Soil Sci. Vol.67, 845-856.
    113. Jenkinson, D.S. 1966. The turnover of organic matter in soil. In The Use of Isotopes in Soil Organic Matter Studies. Report FAO/IAEA Technical Meeting, Brunsuick, Volkenrode, 1963, Pergamon. pp 187-197.
    114. Jenkinson, D.S. 1971. Studies on the decomposition of 14C-labelled organic matter in soil. Soil Science. 111,64-70.
    115. Jenkinson, D.S., Powlson, D.S. and Wedderburn, R.W.M., 1976. The effects of biocidal treatments on metabolism in soil. Ⅲ. The relationship between soil biovolume, measured by
    
    optical microscopy, and the flush of decomposition caused by fumigation. Soil Biol. & Biochem. 8,189-202.
    116. Jenkinson, D.S. 1977. Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. J. Soil Sci. 28,424-434.
    117. Jenkinson, D.S. and Ayanaba, A., 1977. Decomposition of carbon-14 labelled plant material under tropical conditions. Soil Sci. Soc. Am. J. 41,912-915.
    118. Jenkinson, D.S. and Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science. 123,298-305.
    119. Jenkinson, D.S. and Ladd, J.N., 1981. Microbial biomass in soil, measurement and Turnover. In Soil Biochemistry, Vol. 5 (E.A. Paul and J.N. Ladd, eds), Marcel, New York, pp 415-471.
    120. Jenkinson, D.S., Fox, R.H. and Rayner, J.H., 1985. Interactions between fertilizer nitrogen and soil nitrogen-the so-called "priming effect". J. Soil Sci. 36,425-444.
    121. Jenkinson, D.S., Hart, P.B.S., Rayner, J.H. and Parry, L.C., 1987. Modelling the turnover of organic matter in long-term experiments at Rothamsted. In Soil Organic Matter Dynamics and Soil Productivity (J.H. Cooley, ed), INTECOL Bulletin 15,1-8
    122. Jenkinson, D.S. and Parry, L.N., 1989. The nitrogen cycle in the Broadbalk wheat experiment, a model for the turnover of nitrogen through the soil microbial biomass. Soil Biol. & Biochem. 21, 535-541.
    123. Jenkinson, D.S. 1990. The turnover of organic carbon and nitrogen in soil. In Phil. Trans. R. Soc. Lond. B 329,361-368.
    124. Jenkinson, D.S., Adams, D.E. and Wild, A., 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature. Vol.351, No.23,304-306
    125. Jenny, H., 1930. Mo. Agric. Exp. Sta. Res. Bull., 152:1-66
    126. Jenny, H., 1941. Factors of soil formation. McGraw-Hill. New York
    127. Jensen, E.S.1994. Mineralization-immoblization of nitrogen in soil amended with low C:N ratio plant residues with different particle sizes, Soil Biol. & Biochem. 26,519-521
    128. Jolley, V. D., Pierre, W.H., 1977. Profile accumulation of fertilizer-derived nitrate and total nitrogen recovery in two long-term nitrogen rate experiments with corn, Soil Sci. Soc. Am. J., 41:373-378
    129. Keeney, D.R., 1982. Nitrogen management for maximum efficiency and minimum pollution. In F.J. Stevenson (ed), Nitrogen in Agricultural Soils, p605-650, Am. Soc. Agron. Madison. Wis.
    130. Keith et al., 1986, Input of carbon to soil from wheat roots. Soil Biol. Biochem. 9:1-7
    
    
    131. Kuzyakov Y. and Grzegorz Domanski, 2000a. Carbon input by plants into the soil. Review, J. Plant Nutr. Soil Sci. 163:421-431
    132. Kuzyakov,Y. A.Kretzschmar and K. Stahr, 1999. Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil, Plant and Soil. 213:127-136
    133. Kuzyakov Y., J.K. Friedel, K. Stahr, 2000b. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32:1485-1498
    134. Ladd, J.N. and Amato, M., 1988. Relationships between biomass 14C and soluble organic 14C of a range of fumigated soil. Soil Biol. Biochem. Vol.20, No.1, 115-116.
    135. Ladd, J.N. and Martin, J.K., 1984. Soil organic matter studies. In Isotopes and Radiation in Agricultural Sciences (M.F. L'annunziata and J.O. Legg, eds), Academic Press, 1984. pp 67-139.
    136. Ladd, J.N., Oades, J.M. and Amato, M., 1981. Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biol. & Biochem. 13, 119-126
    137. Larson, W. E., C.E. Clapp. W.H. Pierre, and Y.B. Morachan., 1972. Effects of increasing amounts of organic residues on continuous com. II Organic carbon, nitrogen, phosphates, and sulfur. Agron. J. 64:204-208.
    138. Liljeroth, E. Van Veen, J.A. and Miller, H.J., 1990. Assimilate translation to the rhizosphere of two wheat lines and subsequent utilisation by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biol. Biochem. Vol.22, No.8, 1015-1021.
    139. Li, C., Frolking, S. & Harriss, R., 1994. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles. 8: 237-254
    140. Lohins, F., 1926. Nitrogen availability of green manures. Soil Sci. 162: 171-177
    141. Lynch, J.M. and Panting, L.M., 1980. Variations in the size of the soil biomass. Soil Biol. Biochem. 12, 547-550.
    142. Martens, R. 1985. Limitations in the application of the fumigation technique for biomass estimations in amended soils. Soil Biol. & Biochem. 17, 57-63.
    143. Martens, R. 1987. Estimation of microbial biomass in soil by the respiration method, importance of soil pH and flushing methods for the measurement of respired CO2. Soil Biol. Biochem. 19,77-81.
    144. Martens, R. 1995. Current methods for measuring microbial biomass C in soils: potentials and limitations. Bio. Fertile. Soils. 19, 87-99.
    145. Martin, J.P. and K. Haider, 1979. Soil Sci. Soc. Am. J. 43:917-920
    146. Martin, J.P., K.Haider, and G.Kassim, 1980. Biodegradation and stabilization after 2 years of
    
    specific crop, lignin, and polysaccharide carbon in soils, Soil Sci. Soc. Am. J. 44:1250-1255.
    147. Martin and Kemp, 1986. The measurement of C transfers within the rhizosphere of wheat grown in field plots. Soil Biol. Biochem. 18:103-107.
    148. McDaniel, P.A. and Munn, L.C., 1985. Effect of temperature on organic carbon-texture relationship in Mollisols and Aridisols. Soil Sci. Soc. Am. J. Vol.49, 1486-1489.
    149. Merbach, W. et al., 2000. The long-term fertilization experiments in Halle (Saale), Germany-Introduction and survey, Journal of Plant Nutrition and Soil Science, Vol.163 (6) : 629-638
    150. Merckx R. A. Den hartog and J.A. Van Veen, 1985. Turnover of root-derived material and related microbial biomass formation in soils of different texture, Soil Biol. Biochem. Vol.17 (4) : 565-569
    151. Michori, P., 1993. Nitrogen budget under coffee. Ph. D. diss. Univ. of reading, Reading, England (Br. Thesis Serv. DX 175716)
    152. Molina, J.A.E., Clapp, C.E., Shaffer, M.J., Chichester, F.W. and Larson, W.E., 1983. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration and behavior. Soil Sci. Soc. Am. J. 47:85-91
    153. National Soil Erosion-Soil Productivity Research Planning Committee, Science and Education Administration-Agricultural Research J.R. Williams, Chairman., 1981. Soil erosion effects on soil productivity: A research perspective. J. Soil Water Conserv. 36(2) , 82-90
    154. Nelson, P.N., Dictor, M.C. and Soulas, G., 1994. Availability of organic carbon in soluble and particle-size fractions from a soil profile. Soil Biol. Biochem. Vol.26, No.11, 1549-1555.
    155. Nye, P.H. and Greenland, D.J., 1960. The soil under shifting cultivation. Technical Communication, No.51, CAB, Harpenden
    156. Ocio, J.A. and Brookes, P.C., 1990. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol. & Biochem. 22,685-694.
    157. Ocio, J.A., Brookes, P.C. and Jenkinson, D.S., 1991. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol. Biochem. Vol.23, No.2, 171-176.
    158. Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J. 51,1173-1179.
    159. Parton, W.J., Stewart, J.W.B. and Cole, C.V., 1988. Dynamics of C, N, P, and S in grassland soils: a model. Biogeochem. 5,109-131
    160. Paul, E.A. and Van Veen, J.A., 1978. The use of tracers to determine the dynamic nature of organic matter. 11th Intern. Cong, of Soil Sci., Vol 3, pp 61-102.
    
    
    161. Powlson, D.S., Brookes, P.C. and Chirstensen, B.T., 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159-164.
    162. Powlson, D.S. and Jenkinson, D.S., 1976. The effects of biocidal treatments on metabolism in soil-Ⅱ. Gamma irradiation, autoclaving, air-drying and fumigation. Soil Biol. Biochem. 8, 179-188.
    163. Powlson, D.S. and Jenkinson, D.S., 1981. A comparison of the organic matter, biomass, adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. J. Agric. Sci. (Camb.) 97, 713-721.
    164. Rasmussen, P.E., R. R. Allmaras, C.R. Rohde, and N. C. Roage, Jr., 1980. Crop residue influences on soil carbon and nitrogen in a wheat-fallow system. Soil Sci. Soc. Am. J. 40:596-600.
    165. Rasmussen, P.E., K. W.T. Goulding, J. R. Brown, P.R. Grace, H.H. Janzen, Martin Korschens, 1998. Long-term agroecosystem experiments: Assessing agricultural sustainability and global change. Scinece. Vol.282:893-896
    166. Ridley, A.O. and Hedlin, R.A., 1968. Soil organic matter and crop yields as influenced by the frequency of summer fallowing. Can. J. Soil Sci. Vol.48,315-322
    167. Robertson, 1974. Can. J. Plant Sci.54: 625-650
    168. Rothamsted Experimental Station, 1968. Report for 1968: part 2. pp115.
    169. Rothamsted Experimental Station, 1970. Details of the classical and long-term experiments up to 1967. Harpenden. pp.11-24, 48-55, 78-87, 96-113.
    170. Rothamsted Experimental Station, 1978. Details of the classical and long-term experiments 1968-1973. Harpenden. pp 4-15, 36-39
    171. Russell, T. Odell. S.W. Melsted and William M. Walker, 1984. Changes in organic carbon and nitrogen of Morrow plots soils under different treatments 1904-1973, Soil Sci. Vol.137: 160-171
    172. Smith, P., J.U. Smith, D.S. Powlson, J.R.M. Arah, O.G. Chertov, K. Coleman, U. Franko, S. Frolking, H.K. Gunnewick, D.S. Jenkinson, L.S. Jensen, R.H. Kelly, A.S. Komarov, C. Li, J.A.E. Molina, T. Mueller, W.J. Parton, J.H.M. Thornley, and A.P. Whitmore, 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma. 81:153-225.
    173. Sorensen, L.H.1972. Stabilization of newly formed amino acid metabolites in soil by clay minerals. Soil Sci. 114, 5-11
    174. Sorensen, L.H. 1974. Rate of decomposition of organic matter in soil as influenced by repeated
    
    air drying-rewetting and repeated additions of organic material. Soil Biol. Biochem. Vol.6, 287-292.
    175. Sorensen, L.H. 1975. The influence of clay on the rate of decay of amino acid metabolites synthesized in soils during decomposition of cellulose. Soil Biol. Biochem. 7,171-177
    176. Sorensen, L.H. 1983. The influence of stress treatments on the microbial biomass and the rate of decomposition of humified matter in soils containing different amounts of clay. Plant and Soil. 75, 107-119.
    177. Sorensen, P., J.N. Ladd and M. Amato, 1996. Microbial assimilation of 14C of ground and unground plant materials decomposing in a loamy sand and a clay soil. Soil Biol. Biochem. Vol.28, No.10/11, pp1425-1434
    178. Sowden, F.J. and Atkinsun, H.J., 1989. Can. J. Soil Sci. 48:323-330
    179. Sparling, G.P., Cheshire, M.V. and Mundie, C.M., 1982. Effect of barley plants on the decomposition of 14C-labelled soil organic matter. J. Soil Sci. 33, 89-100
    180. Sparling, G.P., Wale, K.N. and Ramsay, A.J., 1985. Quantifying the contribution from the soil microbial biomass to the extractable P levels of fresh and air-dried soils. Aust. J. Soil Res. 23,
    181. Stauffer, R.S. 1975. Effects of long-time soil treatments on the organic carbon content of some Illinois soils. Agron. J. 49, 598-600
    182. Stanford, G., 1973. Soil Sci. 115:321-323
    183. Stanford, G. and Epstein, E., 1974. Soil Sci. Soc. Am. Proc., 38:103-107
    184. Stevenson, I. L. 1956. Some observations on the microbial activity in remoistened, air-dried soil. Plant and Soil. 48,170-182.
    185. Stevenson, F.J. 1982. Nitrogen-organic forms. Methods of soil analysis, Part
    186. Chemical and microbiological properties-Agronomy Monograph No.9 (2nd ed.). 625-698.
    187. Stott, D.E., L.F. Elliott, R.I. Papendick and G.S. Cambell, 1986. Low temperature or low water potential effects on the microbial decomposition of wheat residue. Soil Biol. Biochem. Vol.18, No.6, pp577-582
    188. Swinnen J. Van Veen J.A. and Merckx R., 1995. Carbon fluxes in the rhizosphere of winter wheat and spring barley with conventional vs integrated farming. Soil Biol. Biochem.27, 811-820
    189. Thomley, J.H.M. and Verberne, E.L.J., 1989. A model of nitrogen flows in grassland. Plant. Cell and Environment. 12, 863-886
    190. Van Veen, J.A., Ladd, J.N. and Amato, M., 1985. Turnover of carbon and nitrogen through the microbial biomass in a sandy loan and a clay soil incubated with [14C(U)] glucose and [15N]
    
    (NH4) 2SO4 under different moisture regimes. Soil Biol. Biochem. 17, 747-756.
    191. Vance, E.D., Brookes, P.C. and Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19,703-707.
    192. Varvel G.E., 1994. Rotation and fertilization effects on changes in soil carbon and Nitrogen, Agron.J.86:319-325
    193. Verhoef H.A. and Brussaard, L., 1990. Decomposition in natural and agro-ecosystems: the contribution of soil animals. Biogeochemistry. 11,175-211
    194. Verberne, E.L.J., Hassink, J., de Willigan, P., Groot, J.J.R. & van Veen, J.A., 1990. Modelling soil organic matter dynamics in different soils. Netherlands J. Agric. Sci. 38: 221-238
    195. Wallace, A. 1994. Soil organic matter must be restored to near original levels. Commun. Soil Sci. Plant Anal. 25(1&2) , 29-35
    196. Wardle, D.A. and Parkinson, D., 1990. Interactions between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 9:273-280.
    197. Westerman, RL; Boman, RK; Raun, WR; Johnson, GV, 1994. Ammonium and nitrate nitrogen in soil profiles of long-term winter wheat fertilization experiments. Agron. J. 86(1) : 94-99
    198. Wood, C.W., Westfall, D.G. and Peterson, G.A., 1991. Soil carbon and nitrogen changes on initiation of no-till cropping systems. Soil Sci. Soc. Am. J. Vol.55,470-476.
    199. Wu Jinshui, 1990. The turnover of organic C in soil, Ph.D thesis, Soil Scince Department, The University of Reading
    200. Wu, J., Brookes, P.C. and Jenkinson D.S., 1993. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biol. Biochem. Vol.25, No.10, 1435-1441
    201. Wu, J., O'Donnnell, A. G., Syers, J.K., Adey, A. and Vityakon, P., 1998. Modellling soil organic matter changes in ley-arable rotations in sandy soils of Northeast Thailand. European J. of Soil Science.49,463-470.
    202. Yadav R.L. B.S. Dwiveedi, P.S. Pandey, 2000. Rice-wheat cropping system: assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crops Research. 65:15-30
    203. Zagal E. Bjarmason S. and Olsson, U., 1993. Carbon and nitrogen in the root zone of barley supplied with nitrogen fertilizer at two rates. Plant and Soil. 157,51-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700