“麦/玉/豆”套作体系的氮素吸收利用特性及根际微生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2005~2008年,应用根系分隔技术和同位素示踪技术等,采用大田小区试验和~(15)N同位素标记盆栽试验,以“小麦/玉米/甘薯”三熟套作体系为对照,研究了“小麦/玉米/大豆”这一新的三熟套作体系中氮素利用的种间竞争促进作用、氮素的吸收利用特性及根际微生态效应。主要研究结果如下:
     1.采用双佳值法研究了“麦/玉/豆”套作体系的氮肥周年平衡施用技术,结果表明,“麦/玉/豆”套作体系在中产田的周年氮肥最佳施用总量为342.8kg/hm~2,小麦、玉米和大豆适宜分配比例为33.76:35.71:30.54,各作物最佳施氮量为小麦115.73kg/hm~2、玉米122.41kg/hm~2、大豆104.69kg/hm~2。
     2.采用~(15)N土壤稀释标记法,通过2006年至2008年两年根系分隔盆栽试验,研究了“麦/玉/豆”套作体系对氮素的种间竞争作用及吸收利用特性,结果表明,“麦/玉/豆”体系中作物间对氮素的竞争与促进作用并存,小麦、玉米为套作优势作物,大豆为套作劣势作物(A_(WC)>0、NCR_(WC)>1;A_(CS)>0、NCR_(CS)>1),“麦/玉/薯”体系则表现出较强的种间竞争作用,种间促进作用相对较弱,小麦为套作优势作物(A_(WC)>0,NCR_(WC)>1),玉米和甘薯为套作劣势作物(A_(CS)=0.191>0;NCR_(CS)=1.01>1)。
     不分隔与完全分隔相比,“麦/玉/豆”与“麦/玉/薯”体系中的小麦籽粒产量、地上部总生物量、籽粒吸氮量、地上部总吸氮量、籽粒~(15)N吸收量、~(15)N总吸收量和~(15)N植株总回收率均得到提高,土壤残留~(15)N%丰度及总N含量降低,其中籽粒产量分别提高25.594%和24.811%,籽粒~(15)N吸收量分别提高67.194%和53.859%,~(15)N植株总回收率分别提高38.069%和38.727%;提高了“麦/玉/豆”中玉米的籽粒产量、地上部总生物量、籽粒吸氮量、地上部总吸氮量、~(15)N籽粒吸收量、~(15)N植株总回收率、土壤残留~(15)N%丰度及土壤总N含量,“麦/玉/薯”则降低;降低了大豆的籽粒产量、籽粒吸氮量、~(15)N总吸收量和~(15)N植株回收率降低,但土壤总N含量提高7.284;降低了甘薯的块根产量、块根吸氮量和土壤总N含量,但~(15)N植株总吸收量和~(15)N植株回收率提高47.958%和47.957%。“麦/玉/豆”体系的小麦、玉米土壤NO_3-N含量及无机氮(NO_3-N、NH_4-N)总量降低,“麦/玉/薯”体系则升高,且高于“麦/玉/豆”体系;两种体系的大豆、甘薯土壤NO_3-N含量均升高,且大豆高于甘薯;两种体系均吸收利用了前茬小麦、玉米及大豆(甘薯)作物的残留~(15)N,并发生了~(15)N的转移,但“麦/玉/豆”体系的~(15)N吸收量、~(15)N回收率和~(15)N转移强度高于“麦/玉/薯”。
     3.采用叶片~(15)N富集标记法,在不同氮素水平下,研究了“麦/玉/豆”套作体系的氮素转移,结果表明,“麦/玉/豆”体系在相同施氮水平下的产量、吸氮量与土壤总N含量均高于“麦/玉/薯”,“麦/玉/豆”体系较“麦/玉/薯”更具有产量优势和氮素营养优势。两种体系的小麦和大豆(甘薯)的籽粒(块根)产量与吸氮量随施氮量的增加呈先增加后降低趋势,以A3(300Nkg/hm~2)处理最高,玉米籽粒产量和吸氮量随施氮量的增加而增加,以A4(450Nkg/hm~2)处理最高;两种体系中小麦、玉米和甘薯土壤总N含量以A3处理最高,大豆土壤总N含量随施氮量的增加而降低,以A1(0Nkg/hm~2)处理最高。两种体系中各作物的土壤NO_3-N含量随施氮量的增加而增加,但“麦/玉/豆”体系低于“麦/玉/薯”。
     两种体系均存在氮素的双向转移,转移量随土壤肥力及施氮量的提高而降低,“麦/玉/豆”体系的~(15)N净转移量和转移强度高于“麦/玉/薯”。以小麦为~(15)N供体植物时,两种体系向玉米的氮素转移量和转移率差异不大。以玉米为~(15)N供体植物时,玉米向小麦和大豆(甘薯)转移了氮素,以300kgN/hm~2供氮水平下的转移量和转移率最高,且以向小麦的转移为主,两种体系中向小麦的转移量分别是大豆和甘薯的2.902倍~9.402倍、1.338倍~2.187倍;两种体系中玉米向甘薯的转移率是玉米向大豆转移率的1.001倍~2.203倍。以大豆(甘薯)为~(15)N供体植物时,大豆、甘薯向玉米转移了氮素,大豆向玉米的转移率比甘薯向玉米的转移率高21.266%~52.003%。两种体系中小麦的~(15)N净转移量>0,玉米和大豆(甘薯)的~(15)N净转移量<0;“麦/玉/豆”体系中小麦、玉米和大豆的~(15)N净转移量分别比“麦/玉/薯”中的小麦、玉米、甘薯高3.256%~12.083%、26.993%~166.209%和26.242%~78.694%。
     4.在大田试验条件下,通过两年试验研究了不同种植方式的根际微生态效应及根际土壤环境与作物对氮素吸收的关系,结果表明,与净作和“麦/玉/薯”相比,“麦/玉/豆”体系表现出明显的套作优势(LER>1、A_(WC)<0、A_(CS)>0、NCR_(WC)<0、NCR_(CS)>1);降低了玉米、大豆土壤的PH和小麦土壤的湿度、PH,提高了玉米和大豆的土壤湿度;提高了开花期(吐丝期)和成熟期小麦、玉米和大豆的生物量、吸氮量、根系活力和根干重;提高了各作物土壤中细菌、真菌、放线菌三种微生物的数量,以及各作物土壤总N含量和脲酶、蛋白酶的酶活性,降低了各作物土壤NO_3-N含量及硝酸还原酶活性。DGGE分析表明,“麦/玉/豆”套作系统中各作物的多样性指数(H′)高于净作与“麦/玉/薯”体系,相似性指数(Cs)方面,套作与套作之间的Cs高于套作与净作间的Cs,套作边行与净作之间的Cs相对较小,套作中行与净作的Cs相对较高。相关分析表明,小麦、玉米和大豆(甘薯)的吸氮量与土壤中脲酶、蛋白酶、细菌数量、真菌数量、放线菌数量和根系活力呈显著或极显著正相关,与硝酸还原酶、NO_3-N、NH_4-N呈极显著负相关。
From 2005 to 2008 year,through ~(15)N isotopic tracer method and root barriers technique,field experiment and ~(15)N labeling pot experiment were carried out to investigate nitrogen source uptake and utilization mechanics,interspecific competition and facilitation for nutrients,and rhizosphere micro ecology effect in the relay-planting system of wheat/maize/soybean,contrasting by the relay-planting system of "wheat/maize/sweet potato".The results showed as fellows.
     1.Applying the double optimal value method,the annual optimal amount of nitrogen fertilizer and the ratio of nitrogen fertilizer distributed among crops in the relay-planting system of "wheat/maize/soybean" were studied.The results showed that the annual optimal total amount of nitrogen fertilizer applied in this system was 342.8kg.hm~(-2) in the medium-yield cropland.The suitable distributive proportion of nitrogen fertilizer was 33.76:35.71:30.54 among the three crops,and the applying amounts for wheat,maize and soybean were 115.73kg.hm~(-2),122.41kg.hm~(-2),and 104.69kg.hm~(-2) respectively.
     2.From 2006 to 2008 year,the methods of root barrier and ~(15)N-isotope dilution were used to investigate the interspecific nitrogen competition and facilitation,nitrogen uptake and utilization in the relay-planting system of "wheat/maize/soybean".The results showed that there were coexisted the nitrogen competition and facilitation in the relay-planting system of "wheat/maize/soybean",wheat and maize had competing advantage,and soybean had competing disadvantage(Awc>0,NCRwc>1;Acs>0, NCRcs>1).There were strong interspecific nitrogen competition and infirm facilitation in the system of wheat/maize/sweet potato.Wheat had competing advantage(Awc>0, NCRwc>1),and maize and sweet potato had competing disadvantage(Acs=0.191>0; NCRcs=1.01>1).
     In the relay-planting systems of "wheat/maize/soybean" and "wheat/maize/sweet potato",comparing the no barrier with solid barrier,the grain yield,total biomass above ground,grain nitrogen uptake,the total nitrogen uptake above ground,~(15)N grain uptake, ~(15)N total uptake and ~(15)N crop recovery rate of wheat increased remarkably,and ~(15)N% abundance and N%content of soil reduced obviously.The grain yield increased by 25.594%and 24.811%respectively,~(15)N grain uptake increased by 67.194%and 53.859% respectively,~(15)N crop recovery rate increased by 38.069%and 38.727%respectively.In the relay-planting system of "wheat/maize/soybean",the grain yield,the total biomass above ground,grain nitrogen uptake,the total nitrogen uptake above ground,~(15)N grain uptake,~(15)N crop recovery rate of maize,and the ~(15)N%abundance of soil and total N content increased by 14.402%,9.763%,44.926%,31.129%,37.8492%,25.157%,13.896 and 10.145 respectively.But in the "wheat/maize/sweet potato" system with no barrier, the value of above index reduced by 20.007%,10.094%,6.786%,2.978%,25.366%, 15.988%,17.366%and 5.195%respectively.For soybean,grain yield,the ~(15)N crop uptake,~(15)N grain uptake,and ~(15)N crop recovery rate reduced,but the soil N%content increased by 7.28%.For sweet potato,earthnut yield,the ~(15)N total uptake,and total N content of soil reduced,but ~(15)N crop uptake and crop recovery rate increased by 47.958% and 47.957%.
     In the relay-planting system of "wheat/maize/soybean",the content of NO_3-N and the total amount of inorganic nitrogen(NO_3-N、NH_4-N) in soil reduced,but that of the wheat/maize/sweet potato system increased,and the values were higher than wheat/maize/soybean system.In the two relay-planting systems,the NO_3-N content of soil increased for soybean and sweet potato,and that of soybean was higher than sweet potato.Soybean or sweet potato utilized soil rudimental ~(15)N from wheat,maize and soybean(sweet potato) stubble.There existed ~(15)N transfer between crops in the two relay-planting systems,but the ~(15)N uptake and recovery rate,and the intensity of ~(15)N transfer in the relay-planting system of "wheat/maize/soybean" were higher than that of "wheat/maize/sweet potato".
     3.Pot experiment was carried out to study the nitrogen transfer occurring in the relay-planting system of "wheat/maize/soybean" at three different nitrogen fertilizer application rates(150kg/hm~2,300kg/hm~2,450kg/hm~2) using ~(15)N foliar labeling method. The results showed that,the grain yield,total nitrogen uptake above ground,and total N content of soil in the relay-planting system of wheat/maize/soybean,were higher than that of the relay-planting system of wheat/maize/sweet potato at the same nitrogen fertilizer application rate.The wheat/maize/soybean system had obvious advantage of yield and nitrogen nutrition,comparing for wheat/maize/sweet potato system.In the two systems,the grain(or earthnut) yield and nitrogen uptake of wheat and soybean(or sweet potato) increased first and then reduced with the nitrogen fertilizer application rate increasing,the indices values of the A3 treatment(300Nkg/hm~2) was highest.The grain yield and nitrogen uptake of maize were increasing with the nitrogen fertilizer application rate increasing,the values of the A4(450Nkg/hm~2) treatment was highest. The soil total nitrogen content of the wheat,maize and sweet potato was highest in A3 treatment.But the soil total nitrogen content of the soybean reduced with the nitrogen fertilizer application rate increasing,the value of Al(0Nkg/hm~2) treatment was highest. NO_3-N content of crops in the two relay-planting systems increased with the nitrogen fertilizer application rate increasing,and the value of NO_3-N content of wheat/maize/soybean system was higher than that of wheat/maize/sweet potato system.
     There existed bi-directional N transfer in the two relay-planting systems,and the amounts of N transferred reduced with the soil fertility and nitrogen fertilizer application rate increasing.The amount of net ~(15)N transferred and transfer intensity in the relay-planting system "wheat/maize/soybean" were higher than that of "wheat/maize/sweet potato".When wheat functioned as ~(15)N donor plant,the ~(15)N% abundance in maize shoot was consistently higher than the ~(15)N%nature abundance.It indicated that the ~(15)N transfered from wheat to associated maize,but the amounts of N transferred and the proportion of ~(15)N transferred were small difference between the two relay-planting systems.When maize functioned as ~(15)N donor plant,there existed the ~(15)N transfer from maize to associated wheat and soybean(sweet potato).The amount of transferring N of A2(300Nkg/hm~2) treatment was highest.In the two systems,the amounts of N transferred from maize to wheat was higher 290.2%~940.2%and 133.8%~218.7%than that of N transferred from maize to soybean(or sweet potato),but the amounts of N transferred from maize to sweet potato was higher 100.1%~220.3% than that of N transferred from maize to soybean.When soybean or sweet potato functioned as ~(15)N donor plant,there existed the ~(15)N transfer from soybean(sweet potato) to associated maize,and the proportion of ~(15)N transferred from soybean to maize was higher 21.266%~52.003%than that of the ~(15)N transferred from sweet potato to maize. The amount of net ~(15)N transferred>0 for wheat,but that of maize and soybean(sweet potato)<0.Amounts of net ~(15)N transferred of wheat,maize,and soybean in the wheat/maize/soybean system were higher 3.256%~12.083%,26.99%~166.209%,and 26.242%~78.694%than that of the wheat/maize/sweet potato system.
     4.Two-year field experiment was carried to study the effect of different planting systems on rhizosphere mic-ecology,and the relation between rhizosphere soil environment and nitrogen uptake and utilization.The results showed,comparing the single cropping condition and the relay-planting system of "wheat/maize/sweet potato"with the relay-planting system of "wheat/maize/soybean",wheat/maize/soybean system indicated obvious relay-planting advantage(LER>1,Awc<0,Acs>0,NCRwc<0, NCRcs>1),soil PH of maize and soybean,and soil humidity of wheat reduced,but the soil humidity of maize and soybean increased.On the florescence date and maturity date of crops,the biomass,nitrogen uptake,root activity and root dry matter weight of wheat, maize,and soybean increased,and also the amounts of bacterium,the fungus,and ray fungi of soil increased.Result of DGGE showed,shanon-wiener index(H') of the relay-planting system of wheat/maize/soybean were higher than single cropping condition and the relay-planting system of wheat/maize/sweet potato,the similarity coefficient(Cs) between the relay-planting systems were higher than that of relay-planting system and single-planting system,and CS between fringe rows and single-planting system were low comparatively,but CS between middle rows and single-planting system were high comparatively.At the same time,the total N content, the activity of urease and proteinase enzyme of soil increased,and the nitrate reductase activity and NO_3-N content of soil reduced.Correlation analysis showed that the nitrogen uptake of wheat,maize and soybean(sweet potato) were significant positively correlated with root activity,and activity of urease and proteinase enzyme,and amounts of bacterium,fungus and ray fungi,but were significant negatively correlated with nitrate reductase activity,NO_3-N and NH_4-N content of soil.
引文
[1]蔡崇法,王峰,丁树文.间作及农林复合系统中植物组分间养分竞争机理分析.水土保持研究,2000,7(3):219-221
    [2]杨文钰,雍太文,任万军,等.发展套作大豆,振兴大豆产业.大豆科学,2008,27(1):1-7
    [3]雍太文,任万军,杨文钰,等.旱地新三熟“麦/玉/豆”模式的内涵、特点及栽培技术.耕作与栽培,2006,(6):48-50
    [4]王刚,张大勇.生物竞争理论.陕西科学技术出版社,1996
    [5]Li Long,Yang S C,Li X L,et al.Interspecific complimentary and competitive interactions between intercropped maize and faba bean.Plant soil,1999,212:105-114
    [6]李隆,张福锁,李晓林.间作充分利用土壤资源的机制.李春俭主编,土壤与植物营养研究新动态(第四卷),中国农业大学出版社.北京,2001,181-194
    [7]Bulson H A J,Snaydon R W and Stopes C E.Effects of plant density on intercropped wheat and field beans in an organic farming system.Journal of Agricultural Science,1997,128:59-71
    [8]Mckibben G E.Double cropping.In Proceeding National Conference on No-tillage Crop Production[M].Lexington:Kenrucky Univ,1970
    [9]GaliaherR N.All out feed production by multiple cropping.Multiple Cropping proceeding feeds and feeding research.Bulletin Georgia Exp Sta,1975,129-136
    [10]Willey,R.W.Intercropping-its impotence and research needs.Part1.Competition and yield advantages.Field Crop Abstr.1979,32:1-10
    [11]Francis C.A.Mutiple cropping system.New York:Macmillan Publishing Company,1986
    [12]王秋杰,寇长林,王永岐,等.砂地小麦套作花生的产量优势及其与养分利用效率关系的研究.作物学报,1999,25(1):70-75
    [13]West T D,Grifith D R,Effect Of strip intercropping maize and soybean on yild and Profit.J.Prod.Agric,1992,5:107-110
    [14]Haugaard-Nielsen H,Ambus Pand Jensen E S.Interspecific competition,N use and interference with weeds in pe-barley intercropping.Field Crop Research,2001,70:101-109
    [15]Willey R W and Osiru D S O.Studies on mixtures of maize and bean(Phaseolus v ulgaris) with particular reference to plant population.Journal of Agriculture S cience,1972,79:517-529
    [16]Li L,Sun J H,Zhang F S,et al.wheat/maize or wheat/soybean strip intercropping Ⅰ.Yield advantage and interspecific interactions on nutrients.Field Crops Research,2001,71:123-137.
    [17]Subedi K D.Wheat intercropped with tore(Brassica campestris vat.toria) and pea(Pisum sativum) in the subsistence farming system of th Nepalese hills.Journal o f Agricultural Science,1997,128:283-289
    [18]Oljaca S,Cvetkovic R,Kovacevic D,Vasic G and Momirovic N.Effect of plant arrangement pattern and irrigation on efficiency of maize(Zea mays)and bean(Phaeolus vulgaris)intercropping system.Journal of Agricultural Science,2000,135:261-270
    [19]刘广才,杨祁峰,李隆,等.小麦/玉米间作优势及地上部与地下部因素的相对贡献.植物生态学报,2008,32(2):477-484
    [20]李隆.间作作物种间促进与竞争作用研究[D].中国农业大学博士学位论文,1999
    [21]Li L,Sun J H,Zhang F S,Li X L,Rengel Z and Yang S C.Wheat/maize or w heat/soybean strip intercropping Ⅱ.Recovery or Compensation of maize and soybean after wheat harvesting.Field Crops Research,2001,71:173-181
    [22]肖焱波,李隆,张福锁.小麦/蚕豆间作体系中的种间相互作用及氮转移研究.中国农业科学,2005,38(5):965-973
    [23]肖焱波.豆科/禾本科间作体系中养分竞争和氮素转移研究[D].中国农业大学博士学位论文,2003
    [24]肖焱波,李隆,张福锁.两种间作体系中养分竞争与营养促进作用研究.中国生态农业学报,2004,12(4):86-89
    [25]肖焱波,段宗颜,金航,等.小麦/蚕豆间作体系中的氮节约效应及产量优势.植物营养与肥料学报,2007,13(2):267-271
    [26]褚贵新,沈其荣,李奕林,张娟,王树起.用~(15)N叶片标记法研究旱作水稻/花生间作系统中氮素的双向转移.生态学报,2004,24(2):278-284
    [27]褚贵新.旱作水稻/花生间作系统的氮素供应特征及产量优势[D].中国农业大学博士学位论文,2003
    [28]West T.D and D.R.Griflith.Efect of strip-intercropping maize and soybean on yield and profit.Journal of Production Agricultuer,1992,5:107-110
    [29]Ghafarzadeh M,F.G Prechac and R.M.Cruse.Grain yield response of maize,soybean,and oat grown in a trip intercropping system.American journal of Alternative Agriculture,1994,9:171-177
    [30]Elmore R.W and J.A.Jackobs.Yield and nitrogen yield of sorghum intercropped wheat and clover.Tropical agriculture,1986,72(2):170-172
    [31]Chowdhury M.K.and Rosario E.L.Comparison of nitrogen,phosphorus and potassium utilization efficiency in maize/mungbean intercropping.Journal Agricultural Science.1994,122:193-199
    [32]Mandal B K,S Dagupta and P K Ray.Yield of wheat,mustard and chickpea grown as sole crop and intercrop with 4 moisture regimes.Indian Journal of Agricultural Sciences,1986,56(3):187-193
    [33]Moynihan J M,S R Simmons and C C Sheaffer.Intercropping annual medic with conventional height and semidarf barley grown for grain.Agronomy Journal,1996,88:823-828
    [34]叶优良.间作对氮素和水分利用的影响[D].中国农业大学博士学位论文,2003
    [35]Zhang F S and Li L.Using competitive and facilitative interacts in intercropping systems enhance crop productivity and nutrients-use efficiency.Plant and Soil,2003,24 8:305-312
    [36]Jolliffe P A and Wanjau F M.Competition and productivity in crop mixtures:some properties of productive intercrops.Journal of Agricultural Science,1999,132:425-435
    [37]刘玉华,张立峰.土地当量比的实质及应用分析.耕作与栽培,1999(4):64-65
    [38]Morris R A and Garrity D P.Resource capture and utilization in intercropping:water.Field Crops Resarch,1993,34:303-317
    [39]Morris R A and Garrity D P.Resource capture and utilization in intercropping:non-nitrogen nutrient.Field Crops Resarch,1993,34:319-334
    [40]李隆,杨思存,孙建好,李晓林,张福锁.小麦/大豆间作中作物种间的竞争作用和促进作用.应用生态学报,1999,10(2):197-200
    [41]Li W X,Li L,Sun J H,Zhang F S and Christie P.Effects and Nitrogen and Phosphorus Fertilizers and intercropping on uptake of Nitrogen and phosphorus by Wheat,Maize and Faba Bean.2003
    [42]叶优良,李隆,索东让.小麦/玉米和蚕豆/玉米间作对土壤硝态氮累积和氮素利用效率的影响.生态环境,2008,17(1):377-383
    [43]叶优良,孙建好,李隆,张福锁.小麦/玉米间作根系相互作用对氮素吸收和土壤硝态氮含量的影响.农业工程学报,2005,21(11):33-37
    [44]叶优良,包兴国,宋建兰,等.长期施用不同肥料对小麦/玉米间作产量、氮吸收利用和土壤硝态氮累积的影响.植物营养与肥料学报,2004,10(2):113-119
    [45]沈其荣,褚贵新,曹金留,等.从氮素营养的角度分析旱作水稻与花生间作系统的产量优势.中国农业科学,2004,37(8):1177-1182
    [46]褚贵新,沈其荣,王树起.不同供氮水平对水稻/花生间作系统中氮素行为的影响.土壤学报,2004,41(5):789-794
    [47]王树起,沈其荣,褚贵新,茆泽圣.种间竞争对旱作水稻与花生间作系统根系分布和氮素吸收积累的影响.土壤学报,2006,43(5):860-863
    [48]王树起.花生与旱作水稻间作系统的氮素营养研究.南京农业大学博士学位论文,2006
    [49]佘丽娜,郑毅,朱有勇.小麦蚕豆间作中作物对氮的吸收利用.云南农业大学学报,2003,18(3):256-258
    [50]佘丽娜.大豆-玉米轮间作系统中的根系相互作用和营养效应.华南农业大学博士学位论文,2006
    [51]李文学,孙建好,李隆,张福锁.不同施肥处理与间作形式对带田中玉米产量及氮营养状况的影响.中国农业科技导报,2001,3(3):36-39
    [52]李文学.小麦/玉米/蚕豆间作系统中氮、磷吸收利用特点及其环境效应.中国农业大学博士学位论文,2001
    [53]Eaglesham,Ayanaba A,Rao V R and Eskew D L.Short communication improving the nitrogen nutrition of maize by intercropping with cowpea,Soil Biology Biochem,1981,13:169-171
    [54]周苏玫,马淑琴,李文,张石头.玉米花生间作系统优势分析.河南农业大学学报,1998,32:17-22
    [55]Izaurralde R C,Mcgill W B and Juma N G.Nitrogen fixation efficiency,interspecies N transfer,and root growth in barley-field pea intercrop on a Black Chernozemic soil.Biology and Fertility of Soils,1992,13:11-16
    [56]Fujita K,Ogata S,Matsumoto K,Masuda T,Ofosu-Budu G K and Kuwata K.Nitrogen transfer and dry matter production in soybean and sorghum mixed cropping system at different population densities.Soil Science and Plant Nutrition,1990,36:233-241
    [57]Bulson H A J,Snaydon R W and Stopes C E.Effects of plant density on intercropped wheat and field beans in an organic farming system.Journal of Agricultural Science,1997,128:59-71
    [58]王瑛.麦棉套作复合根系群体对棉花根系生长、氮素吸收与分配及土壤微生态的影响.南京农业大学硕士学位论文,2005.
    [59]王瑛,周治国,陈兵林,等.麦棉套作复合根系群体对棉株氮素吸收与分配的影响.应用生态学报,2006,17(12):2341-2346
    [60]张训忠,李伯航.高肥力条件下夏玉米大豆间混作互补与竞争效应研究.中国农业科学,1987,20:34-42
    [61]宿庆瑞.东北玉米主产区玉米/草木樨间种轮作农牧结合综合效益的研究.中国草地,1998,4:17-20
    [62]Ranells N N and Wagger M G.Nitrogen-15 recovery and release by rye and crimson clover cover crop.Soil Science.Society of American Journal,1997,61:943-948
    [63]Ikerra S T,Maghembe J A,Smithson P C and Buresh R J.Soil nitrogen dynamics and relationships with maize yields in a gliricidia-maize intercrop in Malawi.Plant and Soil,1999,211:155-164
    [64]孟亚利,王立国,周治国,等.麦棉两熟复合根系群体对棉花根际非根际土壤酶活性和土壤养分的影响.中国农业科学,2005,38(5):904-910
    [65]孟亚利,王立国,周治国,等.套作棉根际与非根际土壤酶活性和养分的变化.应用生态学报,2005,16(11):2076-2080
    [66]王瑛,孟亚利,陈兵林,等.麦棉套作棉花根际非根际土壤微生物和土壤养分.生态学报,2006,26(10):3485-3490
    [67]郝艳茹.小麦、玉米间套复合群体的营养效应及超高产特性研究.山东农业大学硕士学位论文.2002
    [68]高爱霞.玉米/花生间作对作物生长及根区土壤微生态效应的影响.华南农业大学硕士学位论文.2005
    [69]Searle P G E,Comudom Y,Shedden D C and Nance R A.Effect of maize+legume intercropping system and fertilizer nitrogen on crop yields and residual nitrogen.Field Crop Research,1981,4:133-145
    [70]刘永秀,左元梅.玉米-花生混作改善铁营养及固定氮的影响.土壤通报,1999,30(2):55-56
    [71]房增国,左元梅,赵秀芬,等.玉米-花生混作系统中的氮铁营养效应.生态环境,2006,15(1):134-139
    [72]Arihara ACN,Okadak J,Yoshhara T,Jojansen C.Phosphorus uptake by pigeon pea and its role in cropping system of the India subcontinent.Science,1990,248:477-480
    [73]金绍龄,李隆,张丽慧,等.小麦玉米带田作物PK营养特点研究.甘肃农业科技,1997,(1):22-24
    [74]金绍龄,李隆,张丽慧,等.小麦/玉米带田作物氮营养特点.西北农业大学学报,1996,24(5):35-41
    [75]Prasad R and Blaise.Soil Nitrogen dynamics in cropping systems.Roots and nitrogen in cropping systems of the semi-arid tropics.Edited by Osamu Ito,Chris Johansen,Joseph J,Adu -Gyamfi,Katsuyuki Katayama,Jangala V.D.Kumar Rao and Thomas J.Rego.Published by Japan International Research Center for Agricultural Science,1-2,Ohwashi,Tsukuba,lbaraki 305,Japan,1996:429-440
    [76]Adu-Gyamfi J.J,K.Katayama,GDevi,TPRao and O.Ito.Improvement of s oil and fertilizer nitrogen use efficiency in sorghum/pigeonpea intercropping.Roots and nitrogen in cropping systems of the semi-arid tropics.Edited by Osamu Ito,Chris Johansen,Joseph J,Adu-Gyamfi,Katsuyuki Katayama,Jangala V.D.Kumar Rao and Thomas J.Rego.Published by Japan International Research Center for Agricultural Science,1-2,Ohwashi,Tsukuba,lbaraki 305,Japan,1996:493-506
    [77]Peoples M.B,D.F Herridge and J.K Ladha.Biological nitrogen fixation:an efficient source of nitrogen for sustainable agricultural production.Plant and Soil,1995,174:3-28
    [78]Vandeneer J.H.The economy of intercropping.Cambridge:Cabridge university Press.1989
    [79]Ofori F.and Stern W.R.,Cereal-legume intercropping systems,Adv.Agron.,1986,41:41-49
    [80]Agboola A.A.and Fayemei A.A.,Fixation and excretion of nitrogen by tropical legumes,Agronomy Journal,1973,64:409-412
    [81]Eaglesham A.R.J.,Ayanaba A.,Ranga R.V.and Eskew D.L.Improving the nitrogen nutrition of maize by intercropping with cowpea,Soil Biol.Biochem,1981,13:169-171
    [82]Ofosu-Budu G..K.,Sumiyoshi D.,Matsuura H.et al.Significance of soil N on dry matter production and N balance in soybean/sorghum mixed cropping system,Soil Science and Plant Nutrition,1993,39(1):33-42
    [83]Jordan V.,Rice C.W.,and Tiedie J.M.The effect of suppression treatments on the uptake of 15N by intercropped maize from labeled alfalfa.Biology and Fertility of Soils,1993,16(3):211-226
    [84]褚贵新,沈其荣,张娟,等.用~(15)N富积标记和稀释法研究旱作水稻/花生间作系统中氮素固定和转移.植物营养与肥料学报,2003,9(4):385-389.
    [85]艾为党,李晓林,左元梅,等.玉米、花生间菌丝桥对氮传递的研究.作物学报,2000,26:473-481
    [86]Ta T C,Faris M A,and Macdowall F D H.Evaluation of 15N methods to measure nitrogen transfer from alfalfa to companion timothy.Plant and soil,1989,114:243-247
    [87]Johanson A,Jenson E S.Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an Arbuscular Mycorrhizal fungus.Soil Biol.Biochem.,1996,28:73-81
    [88]Jensen E S.Rhizodeposition of N by pea and barley and its effect on soil N dynamics.Soil Biol.Biochem.,1996,28:65-71
    [89]Ai W D,Li X L,Zuo Y M,et al.Nitrogen transfers between maize and peanut by a common on mycorrhizal fungi.Acta Agronomica Sinica,2000,26:473-481
    [90]Trannin W S,Urquiaga S,Ibijbijen J,et al.Interspecies competition and N transfer in a tropical grass-legume mixture.Biol.Fertil.Soils,2000,32:441-448
    [91]Sawatsk N and Soper R J.A quantitative measurement of the nitrogen loss from the root system of field peas(pisum avense L)grown in the soil.Soil Biol.Biochem.,1991,23:255-259
    [92]Papastylianou and Danso S K A.Nitrogen fixation and transfer in vetgh and vetgh-oats mixtures.Soil Biol.Biochem.,1991,23:447-452
    [93]Tomn G O,van Kessel C,and Alfred S E.Bi-driectionnal transfer of nitrogen between alfalfa and brome grass:short and long term evidence.Plant and Soil,1994,164:77-86
    [94]Peoples M.B.and Herridge D.F.Nitrogen fixation by legumes in tropical and subtropical agriculture,Adv.Agron.,1990,44:155-223
    [95]Sisworo W.H.,Mitrosuhardjo M.M,Rasjid H.and Myers R.J.K.The relative roles of N fixation,fertilizer crop residue and soil in supplying N in multiple cropping systems in a humid,tropical upland cropping system.Plant and Soil,1990,121:73-82
    [96]Viera-vargas M S,Octavio C and.Oliveira D E.Use of different 15N labeling technique to quantify the contribution of biological N_2 fixation to legume.Soil Biol.Biochem.,1995,27:1185-1192
    [97]Giller K E,Ormesher J and Awah F M.Nitrogen transfer from Phaseolus bean to intercropped maize measured using ~(15)N-enrichment and ~(15)N-isotope dilution methods,Soil Biol.Biochem.,1991,23:339-346
    [98]朱兆良.中国土壤氮素肥力与农业中的氮素管理.见:沈善敏主编.中国土壤肥力.北京:科学出版社,1999
    [99]朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,1992
    [100]宋琦.中国土壤类型中有机态氮的组成及特性.土壤学报,1988,25(1):95-100
    [101]李生秀.我国土壤一植物营养研究的进展,现状及展望.见李生秀主偏.土壤—植物营养研究文集.西安:陕西科学技术出版社,1999,1-36
    [102]巨晓棠.冬小麦/夏玉米轮作体系中土壤-肥料氮的转化与去向:中国农业大学博士学位 论文.中国农业大学,2000
    [103]廖晓勇,张扬珠,刘学军,等.农田生态系统中土壤氮素行为的研究现状与展望.西南农业学报,2001,14(3):94-98
    [104]文启孝,张晓华,杜丽娟,等.太湖地区主要土壤中的固定态铵及其有效性.土壤学报,1988,25(1):22-30
    [105]宋建国,林杉,吴文良,毛达如.土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价.生态学报.2001,21(2):290-294
    [106]王艳芳.土壤氮素转化与运移理论的研究进展.宁夏农学院学报.2004,25(1):2806-2809
    [107]沈善敏.中国土壤肥料.北京:科学出版社,1999
    [108]杨林,薛栋森,HENRY C L,等.生物固氮对土壤氮循环和硝态氮淋洗的影响.农业环境保护,1995,16(4):182-186
    [109]王敬国,曹一平.氮素形态对土壤环境生态的影响.北京农业大学学报,1995,21(3):99-103
    [110]Guenzi W D,Hutchinson G L,Beard W E.Nitric and nitrous oxide emissions and soil nitrate distribution in a center pivot-irrigated comfield.Journal of Environmental Quality,1994,(23):483-487
    [111]巨晓举,张福锁.中国北方土壤硝态氮的累积及其对环境的影响.生态环境,2003.12(1):24-28
    [112]邹国元,张福锁,李新慧.下层土壤反硝化作用的研究.植物营养与肥料学报,2001,7(4):379-384
    [113]邹国元.冬小麦-夏玉米轮作体系中肥料氮的硝化-反稍化作用研究.中国农业大学博士学位论文.中国农业大学,2001
    [114]Freney JR,Trevitt ACF,De Datta SK,Obcemea WN,Real JG.The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in the Philippines.Biol.Fertil.Soils,1990,9:31-36
    [115]TISDALE S L,NELSON W L,BEATON J D.土壤肥力与肥料.金继运,刘荣乐,译.北京:中国农业科技出版社,1997
    [116]叶修祺,罗继春.马铃薯玉米立体种植的小气候效应.中国农业气象,1994,14(3):23-26
    [117]赵延魁,王玉凤,阎春风,等.玉米小麦间套作对光热资源利用效率的研究.辽宁农业科学,1994,(1):11-14
    [118]陈玉香,周道玮.玉米-苜蓿间作的生态效应.生态环境,2003,12(4):467-468.
    [119]宋同清,肖润林,彭晚霞,等.亚热带丘陵茶园间作白三叶的土壤环境调控效果.生态学杂志,2006,25(3):281-285.
    [120]高阳,段爱旺.冬小麦间作春玉米土壤温度变化特征试验研究.中国农村水利水电,2006,(1):1-3,8
    [121]Archna Suman,Menhi Lal,A.K.Singh,et al.Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems.Agronomy Journal,2006,98:698-704
    [122]P.K.Ghosh,M.C.Manna,K.K.Bandyopadhyay,et al.Interspecific interaction and nutrient use in soybean/sorghum intercropping system.Agronomy Journal,2006,98:1097-1108
    [123]Wani S.P,T.J.Rego,O.Ito and K.K Lee.Nitrogen budget in soil under different cropping systems.Roots and nitrogen in cropping systems of the semi-arid tropics,Edited by Osamu Ito,Chris Johansen,Joseph J,Adu-Gyamfi,Katsuyuki Katayama,Jangala V.D.Kumar Rao and Thomas J.Rego.Published by Japan International Research Center for Agricultural Science,1-2,Ohwashi,Tsukuba,lbaraki 305,Japan,1996:481-492
    [124]Karpenstein-Machan.M.and R Stuelpnagel.Biomass yield nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop.Plant and Soil,2000,218:215-232
    [125]Zhou XL,F.Angus,C Mackenzie,A Kaluli and J.W Smith.Management practices to conserve soil nitrate in maize production system.Journal of Environment Quality,1997,26:1369-1374
    [126]Stuelpnagel R.Intercropping of faba bean(vicia faba L) with oats or spring wheat.Proceedings of International Crop Science Congress,14-22 July 1992,lowa State University,Ames,lowa
    [127]李文学.小麦/玉米/蚕豆间作系统中氮、磷吸收利用及其环境效应.中国农业大学博士论文,2001
    [128]Zhou XL,C A.Madramootoo,A.F.Mackenzie,J.W.Kaluli and D L.Smith.Maize yield and fertilizer N recovery in water-table-controlled maize-rye-grass systems.European Journal of Agronomy,2000,12:83-92.
    [129]Searle P.G.E,Y Comudom,D.C.Shedden and R.A.Nance.Effect of maize+legume intercropping systems and fertilizer nitrogen on crop yields and residual nitrogen.Field Crops Research,1981,4:133-145
    [130]袁玲,杨邦俊,长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,1997,3(4):300-306
    [131]Monreal C M,Bergstrom D W.Soil enzymatic factors expressing the influence of land use,tillage system and texture on soil biochemical quality.Can.J.Soil Sci.,2000,80:419-428
    [132]Bergstrom D W,Monreal C M.Increased soil enzyme activities under two row crops.Soil Sci.Soc.Am.J.,1998,62:1295-1301
    [133]Lalande R,Gagnon B,Simard R R.Microbial biomass and alkaline phosphatase activity in two composted amended soils.Can.J.Soil Sci.,1998,78:581-587
    [134]邱凤琼,周礼恺,陈恩凤,等.东北黑土有机质和酶活性与土壤肥力的关系.土壤学报,1981,18(3):244-252
    [135]周礼恺,张志明,曹承绵.土壤酶活性的总体在评价土壤肥力水平中的作用.土壤学报,1983,20(5):413-418
    [136]陈恩凤,周礼恺,邱凤琼,等.土壤肥力实质的研究Ⅱ.棕壤.土壤学报,1985,22(2):113-119
    [137]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究Ⅱ.土壤酶活性与土壤肥力.植物营养与肥料学报,2003,9(2):146-150
    [138]张崇邦,张忠恒.东北黑钙土土壤有机质与酶活性动态关系的研究.土壤肥料,2000,(5):28-30
    [139]章铁,刘秀清,孙晓莉.栗茶间作模式对土壤酶活性和土壤养分的影响.中国农学通报,2008,24(4):265-268
    [140]柴强,黄鹏,黄高宝.间作对根际土壤微生物和酶活性的影响研究.草业学报,2005,14(5):105-110
    [141]刘均霞,陆引罡,远红伟,等.玉米/大豆间作条件下作物根系对氮素的吸收利用.华北农学报,2008,23(1):173-175
    [142]刘均霞,陆引罡,远红伟,等.玉米、大豆间作对根际土壤微生物数量和酶活性的影响.贵州农业科学,2007,35(2):60-61
    [143]章家恩,廖宗文.试论土壤的生态肥力及其培育.土壤与环境,2000,9(3):253-256
    [144]魏功峰.土壤中的微生物.生物学通报,1995,(2):35-38
    [145]刘巽浩.中国耕作制度.北京:农业出版社,1993,63-75
    [146]陈锡时,郭树凡,江景宽,等.地膜覆盖栽培对二种微生物种群生物活性的影响.应用生态学报,1998,9(4):435-439
    [147]苏涛,司美茹,马宗琪.不同土地利用方式对根际土壤微生物数量的影响.农业环境科学学报,2006,25(增刊):136-139
    [148]范君华,龚明福,刘明,等.棉花连作对土壤养分、微生物及酶活性的影响.塔里木大学学报,2008,20(3):72-76
    [149]谢英荷,洪坚平.枣麦间作对土壤肥力的影响.山西农业大学学报,2002,(3):203-205
    [150]宋亚娜,MARSCHNER Petra,张福锁,等.小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根系细菌群落结构的影响.生态学报,2006,26(7):2268-2274
    [151]成保三郎.轮连作土壤微生物区系.旧本土壤肥料学杂志,1982,53(1):11-14
    [152]董玉良.施肥对麦棉套作复合群体中土壤生物活性的研究.山东农业大学硕士学位论文,2004
    [153]BAX M И CTPOB Д.B.等.分别确定氮磷钾肥料的最佳总用量和最佳比例.国外农学—土壤肥料,1986,(4):41-46
    [154]BAX M И CTPOB Д.B.等.冬小麦N、P、K肥料最适施用量及其比例.国外农学—土壤肥料,1992,(3):30-32
    [155]寇长林,王永歧.小麦套作玉米花生种植模式氮肥周年平衡施用研究.中国生态农业学 报,2002,10(3):86-89
    [156]魏林根,周荣娇,陈先茂.芝麻氮、磷、钾肥最佳配比及其总用量与播种期对产量影响的研究.江西农业学报,1997,9(1):33-39.
    [157]Hamel C,Smith D L.Inerspecific N-transfer and plant development in a mycorrhizal field-grown mixture.Soil Biology & Biochemistry,1991,23:661-665
    [158]华珞,韦东普,白玲玉,姚允寅.氮锌硒肥配合施用对白三叶草的固氮作用与氮素转移的影响.生态学报,2001,21(4):588-592
    [159]Johanson A,Jenson E S.Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus.Soil Biology & Biochemistry.1996,28:73-81
    [160]Danso S K A,Palmason F,Hardarson G.Is nitrogen transfer between field crops? Examining the question through a sweet-blue lupin(Lupinus angustfolius L.) -oats(Avena sativa)intercrop.Soil Biology & Biochemistry,_1993,25:1135-1137
    [161]李少明,赵平,范茂攀,高世昌,郑毅.玉米大豆间作条件下氮素养分吸收利用研究.云南农业大学学报,2004,19(5):527-574
    [162]肖焱波,李隆,张福锁.豆科//禾本科间作系统中氮营养研究进展.中国农业科技导报.2003,5(6):44-49
    [163]章家恩.生态学常用实验研究方法与技术.化学工业出版社,北京,2007
    [164]张行峰.实用农化分析.化学工业出版社,北京,2005
    [165]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南.科学出版社,北京,1999
    [166]刘玉华,张立峰.不同种植方式土地利用效率的定量评价.中国农业科学,2006,39(1):57-60
    [167]Fukai S and Tlenbath B R.Processes determining intercrop productivity and yields of component crop.Field Crop Research,1993,34:247-271
    [168]李来祥,刘广才,李隆.小麦/玉米间作优势及地上部与地下部因素的相对贡献研究.干旱地区农业研究,2008,26(1):74-80
    [169]焦念元,宁堂原,赵春,等.施氮量和玉米-花生间作模式对氮磷吸收与利用的影响.作物学报,2008,34(4):706-712
    [170]宁堂原,苏琳,焦念元,等.不同施氮水平下春夏玉米套作对全株饲用营养价值的影响.中国农业科学,2006,39(10):2042-2047
    [171]高慧敏.小麦/蚕豆间作体系种间相互作用与根系分布的关系.中国农业大学硕士学位论文,2006
    [172]张恩和,李玲玲,黄高宝,等.供肥对小麦间作蚕豆群体产量及根系的调控.应用生态学报,2002,13(8):939-942
    [173]左元梅,李晓林,王永歧,等.玉米花生间作对花生铁营养的影响.植物营养与肥料学 报,1997,3(2):153-159
    [174]左元梅,张福锁.不同间作组合和间作方式对花生铁营养状况的影响.中国农业科学,2003,36(3):300-305
    [175]左元梅,李晓林,王秋杰,等.玉米、小麦与花生间作改善花生铁营养机制的探讨.生态学报,1998,18(5):489-495
    [176]李隆,左元梅,刘秀荣,等.根际微生态系统理论在我们农业高产高效中的作用—间套种作物种间的根际微生态效应的发展及应用前景.中国农业科技导报,1999,1(4):34-40
    [177]宁堂原.春夏玉米套作氮素竞争利用及对产量品质的影响机理研究.山东农业大学博士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700