放牧对巢湖滩涂植物群落及土壤理化性质影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地与人类的生存和发展密切相关,它在为人类提供多种自然资源的同时,还具有这不可替代的环境功能和效益,在控制污染、调节气候、美化环境等方面发挥重要作用。因此,湿地被誉为“地球之肾”。此外,湖泊滩涂作为湿地的重要组成部分,是中国重要的可利用土地资源,滩涂研究对于湿地的开发利用以及自然生态环境的保护有十分重要的意义。
     一直以来,我国提倡和鼓励利用滩涂围垦造田,以此扩大耕地面积。然而近年来,放牧活动逐渐在滩涂湿地兴盛起来,放牧动物的啃食和践踏对改变草地生态系统中植物群落的组成、结构和功能均发挥着重要的作用。不同的放牧强度对植被组成、物种多样性、生产力以及土壤理化性质等的影响不同,过度放牧会造成植物群落物种多样性减少以及植被生产力下降。
     本研究针对滩涂植物群落、植物物种组成、土壤理化性质、土壤酶活性等进行研究,并在研究的基础上,提出了滩涂修复的措施。主要结果如下:
     (1)巢湖滩涂的主要植物群落类型为狗牙根-陌上菅群落和荇菜群落。研究表明,放牧区的植物高度、盖度、频度、密度、物种多样性和生物量等均明显低于对照区;对实验区的植物进行营养元素氮、磷分析,对照区的植物体内总氮和总磷含量均高于放牧区的植物体内氮磷含量,放牧活动对植物体内营养元素氮磷的含量的影响明显。说明过度放牧食草性动物对滩涂植物存在很大的影响。
     (2)对实验区的土壤理化性质进行分析,发现放牧区土壤的含水量、电导率、pH值、氮含量、磷含量、有机质含量等均低于对照区。其中,总氮、总磷、总有机质之间存在明显的正相关性。
     (3)对土壤中脲酶、芳基硫酸酯酶、脱氢酶及酸性磷酸酶的活性的检测,发现不同种类的酶在放牧区和对照区的活性存在很大的差异。分析土壤的呼吸作用,结果表明,对照区的土壤呼吸作用强度显著高于放牧区。
     (4)基于上述实验结果,放牧活动对实验区的植物群落和土壤性质产生了很大的破坏影响。为了更合理开发利用滩涂,在部分实验区进行了一系列的滩涂湿地修复试验,以便探索巢湖滩涂有效合理利用的模式和方法。结果表明,修复后的实验区,植物高度、盖度、生物量及多样性都有所增加;土壤氮、磷、有机质含量呈现季节性变化,但总体上呈现上升趋势;周围水体中氮磷有机质含量下降。说明修复后的实验区植物生长繁茂,能够拦截湖泊内的部分氮磷有机质,构成了拦截氮磷的“陷阱”。尽管修复试验的结果显示,修复区植被生长状况良好,巢湖湖区的水质也有所改善,但是修复工程仍然存在一些问题,需要进一步研究和探讨。
Wetland ecosystem is closely related to human survival and development. It plays a huge environmental regulation and ecological benefits, and also provides a variety of resources. Wetland ecosystems is irreplaceable. Wetland ecosystem is known as the kidney of the globe. As an important component of wetland, lake beach is an important available land resources. In china, lake beach is with the large area, distribution of relative concentration, good location conditions, great potential for comprehensive development. Research of wetlands are of great significance to development and utilization and environmental protection.
     Beach with a variety of purposes, reclamation has been the main form of beach use. In China, promoting and encouraging people to use of beach reclamation, expanson of cultivated area, and then it can be used for planting.However, as the abuse of reclamation of people around, causes serious water pollution,and serious siltation.In recent years, grazing activities gradually flourished in coastal wetlands, and it had a great impact on the beach plant communities and soil properties.
     Animals, either directly or indirectly on plants for food, thus the survival of plants (or the quality of life) produced a strong negative impact. Such as animal trampling can alter soil physical and chemical properties, the ultimate impact of plants on soil nutrient and water use efficiency, grazing animals can damage the photosynthetic organs of plants, long-term impacts on plant becomes low, the vegetation becomes sparse.
     In this study, beach plant communities, plant species composition, soil properties, soil enzyme activity were studied, and based on the study, the measures for beach restoration were proposed.
     The main results are as follows:
     (1) The major component of plants of beach communities is Bermudagrass communitiy and community of Nymphoides peltatum. According to the survey, plant height, coverage, frequency, density, species diversity and biomass tendency of grazing areas were lower than in control areas obvious; Analysis on theplant nutrition elements of nitrogen, phosphorus of experimental areas, in the control area total plants nitrogen and phosphorus contents were higher than grazing zone, grazing activities on the plant nutrients nitrogen and phosphorus content of the body is evident. Description overgrazing herbivorous animals there is a big plant on the tidal influence. It shows that grazing activity has significant effect on the nitrogen and phosphorus content of plants. Over-grazing on the beach has great influence on plants.
     (2) Analysis of the experimental zone of soil properties, found that soil water content conductivity, pH, nitrogen, phosphorus, organic matter content in grazing areas were lower than that in the control area. Among them, the nitrogen, phosphorus, organic matter were correlated.
     (3) Detection of soil urease, arylsulfatase, dehydrogenase and acid phosphatase activity, found that grazing area and control area vary widely.Analysis of soil respiration, the results show that soil respiration is higher in the control area than in grazing area.
     (4) Based on the above results, grazing activities had a great impact on the plant communities and soil properties. For more rational development and use of beaches, a series of tidal wetlands restoration were taken in some experimental areas.The results showed that in the repairedarea, plant height, coverage, biomass and diversity have increased; soil nitrogen, phosphorus, organic matter content showed seasonal changes, but in general the rise; the nitrogen,phosphorus and organic matter content decreased in around water.It shows in the experimental area plant grow well and it can block part of nitrogen and phosphorus in lake organic matter, constitute the interception of nitrogen and phosphorus "trap". But the restoration works still have some issues that require further study and discussion.
引文
[1]张洪波.析滩涂的性质[J].科技信息,2007,(13):10.
    [2]任美锷.中国滩涂开发利用的现状与对策[J].中国科学院院刊,1996,11(6):440-443.
    [3]林茂昌.福建沿海滩涂围垦的问题及对策研究[J].林业勘察设计,2006,(1):98-100.
    [4]祁祥春,徐伟,谷晓光,等.射阳县滩涂湿地资源现状及保护利用对策[J].苏林业科技,001,8(1):55-57.
    [5]肖亮.国前湿地资源及保护[M].生物学教学2002,27(11):42-43.
    [6]《中国湿地保护行动计划》
    [7]吴志刚.国外湿地保护立法述评[J].上海政法学院学报:法治论丛,2006,21(5):98-102.
    [8]Gregory Loucougaray, Anne Bonis, Jan-Bernard Bouzille. Effects of grazing by hourses and/or cattle on diversity of coastal grasslands in western France [J]. Biological Conservation,2004,116:59-71.
    [9]Roberto Danovaro, Antonio Pusceddu. Biodiversity and ecosystem functioning in coastal lagoons:Does microbial diversity play any role?[J]. Estuarine,Coastal andShelf Science,2007,75:4-12.
    [10]刘伟,贾利,陶军德.黑龙江省的湿地及其合理利用与保护[J].国土与自然资源研究,1999,(3):52-54.
    [11]李如忠,洪天求.巢湖流域农业非点源污染控制对策研究[J]..合肥工业大学学报(社会科学版),2006,20(1):105-110.
    [12]章琪,强昌林.巢湖饮用水源污染现状与饮用水处理对策[J].工业用水与废水,2008.39(6).pp.15-18.
    [13]刘家乐,陈天虎.环巢湖地区实现可持续发展探讨[J].巢湖学院学报,2007,9(6).pp.65-68.
    [14]薛巧英.水环境质量评价方法的比较分析[J].环境保护科学2004,30(124).pp.64-67.
    [15]金高洁,高超.巢湖生态环境问题及治理措施研究[J].2008,39(6):80-82,105.
    [16]刘勇.安徽梅雨年际变化特征研究[J].安徽气象,2003,(3).
    [17]高英志,汪诗平,韩兴国,等.退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究[J].植物生态学报,2004,28(3):285-293.
    [18]Van Wijnen, H.J., R.van der Wal&J.P.Baker.1999. The impact of herbivores on nitrogen mineralization rate:consequences for salt-marsh succession[J]. Oecologia,118:225-231.
    [19]汪诗平,李永宏.不同放牧率和放牧时期绵羊粪便中各化学成分变化及与所食牧草各成[J].动物营养学报,1997,9(2):49-56.
    [20]李俊生,郭玉荣.放牧扰动对山地荒漠草地植物群落结构的影响[J].东北林业大学学报,2005,33(1)35-37.
    [21]中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [22]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法.第4版.北京:中国环境科学出版社,2002.
    [23]黄建辉.植物群落调查方法概要[J].生物学通报,1992,(5):45-46.
    [24]杨在中,郝敦元,杨持.植物群落种群分布格局研究的新方法[J].生态学报,1984,4(3):237-247.
    [25]金相灿,庞燕,王圣瑞,等.长江中下游浅水湖沉积物磷形态及其分布特征研究[J].农业环境科学学报,2008,27(1):279-285.
    [26]谷雪景,赵吉,王娟.内蒙古典型草原土壤微生物生物量研究[J].农业环境科学学报,2007,26(4):1444-1448.
    [27]王启兰,王长庭,杜岩功,等.放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系[J].草业学报,2008,17(2):39-46.
    [28]Dick W A, Tabatabai M A. Significance and potential use of soil enzymes. In: Blaine Metting Red. Soil Microbial Ecology. Application in Agricultural and Environmental Management[J]. New York:Marcel Dekker,1993.95-127.
    [29]杨殿林,韩国栋,胡跃高,等.放牧对贝加尔针茅草原群落植物多样性和生产力的影响[J].生态学杂志,2006,25(12):1470-1475.
    [30]白永飞,李德新,许志信,等.牧压梯度对克氏针茅生长和繁殖的影响[J].生态学报,1999,19(4):479-484.
    [31]傅华,陈亚明,周志宇.阿拉善荒漠草地恢复初期植被与土壤环境的变化[J].中
    国沙漠,2003,3(6):661-664.
    [32]李瑜琴,赵景波.过度放牧对生态环境的影响与控制对策[J].中国沙漠,2005,25(3):404-408.
    [33]Osem Y, Perevolot sky A, Kigel J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland:interactions with small-scale spatial and temporal variation in primary productivity [J]. Journal of Ecology,2002,90:936-946
    [34]Fleischner T L. Ecological coasts of livestock grazing in western North America[J]. Conservation Biology,1994,8:629-644.
    [35]Ellison L. The influence of grazing on plant succession[J]. Botanical Review,1960,26:1-78.
    [36]汪诗平.不同放牧率下绵羊的食性及食物多样性与草地植物多样性间的关系[J].生态学报,2001,21(2):237-243.
    [37]李香真,邢雪荣.不同放牧率对旱黄梅衣生物量和化学元素组成的影响[J].应用生态学报,2001,12(3):369-373.
    [38]Ll Y. H.Research on the grazing degradation model of the main steppe rangeland in Inner Mongolia and some considerations for the establishment of a computerized rangeland montoring system[J]. Acta Phytoecol sin,1994,18(1):68-79.
    [39]Ll Y. H. Research on the grazing degradation model of the main steppe rangeland in Inner Mongolia and some considerations for the establishment of a computerized rangeland montoring system [J]. Acta Phytoecol& Geobio sin, 1988,12(3):189-196.
    [40]汪诗平,李永宏.内蒙古典型草原退化机理的研究[J].应用生态学报,1999,10(4):437-441.
    [41]刘钟龄,王炜.内蒙古草原植被在持续牧压下退化演替的模式与诊断[J].草地学报,1998,6(4):224-251.
    [42]马银山,张世挺.植物从个体到群落水平对放牧的响应[J].生态学杂志,2009,28(1):113-121.
    [43]Diza S,Lavorel S, Mcintyre S, et al. Plant trait responses to grazing-A global synthesis[J]. Global Change Biology,2007,13:13-341.
    [44]王德利,滕星.放牧条件下人工草地植物高度的异质性变化[J].东北师大学报:自然科学版,2003,35(1):102-109.
    [45]王德利.植物生态场导论[M].长春:吉林科学技术出版社,1994,200-204.
    [46]赵哈林,张铜会,赵学勇,等.放牧对沙质草地生态系统组分的影响[J].应用生态学报,2004,15(3):420-424.
    [47]董全民,赵新全,李青云,等.小嵩草高寒草甸土壤营养因子及水分含量对牦牛放牧率的响应.Ⅰ.夏季草场土壤营养因子及水分含量的变化[J].西北植物学报,2004,24(13):2228-2236.
    [48]董全民,赵新全,马玉寿,等.牦牛放牧率和放牧季节对小嵩草高寒草甸土壤养分的影响[J].生态学杂志,2005,24(7):729-735.
    [49]玉辉,何兴元,周广胜.放牧强度对羊革草原的影响[J].草地学报,2002,10(1):45-49.
    [50]LeCain D R,Morgan J A,Schuman G E, el al.Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado[J].Agriculture,Ecosystems& Environment.2002,93:421-435.
    [51]Percival H J,Parfitt R L.Scott N A.Factors controlling soil carbon levels in New Zealand grassland:Is clay content important? [J]. Soil Sci. Soc. Am.J,2000,64:1623-1630.
    [52]Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-rid mixed-grass and short-grass rangelands[J]. Environmental Pollution, 2002,116:457-463.
    [53]Burke I C, Laurenroth W K, Milchunas D G. Biogeochemistry of managed grasslands in central North America. In:Paul E A eds. Soil Organic Matter in Temperate Agreocosystems:Long-term Experiments in North America[J]. Boca Raton:CRC Press,1997,85-102.
    [54]Tisdale J M, Oades J M.Organic matter and water stable aggregates in soils[J].Soil Sci.,1982,33:141-163.
    [55]Tomanek G W. Dynamics of mulch layer in grassland ecosystem. In:Dix R L eds. The grassland ecosystem,a preliminary synthesis[J]. Range Sci.Dep.Series No.2.Fort Collins:Colorado State Univ,1969,225-240.
    [56]ZHANG J X,ZHAO J M. The N,P,K dynamics of Kobresia humills eadow in alpine meadow ecosystem [J].Alpine Meadow Ecosystem,1995,4:11-18.
    [57]CAO G M,ZHANG J X,BAO X K.The phosphorus cycling in an alpine meadow ecosystem [J].Ecologica Sinica,1999,9(22):514-518.
    [58]WANG Q I,YANG T.Study on the nitrogen metabolic activity in alpine meadow soil[J].Alpine Meadow Ecosystern,1995,4:79-182.
    [59]DY G,LI J Z,SHI ZH X,et. Studies on the denitrification of soil microorganism caused the nitrigen losslpine meadow ecosystem [J].Alpply Ecosystern,1995,4:189-195.
    [60]H X ZH,CHEN Z ZH.Nitrogen loss and management in grassed grassland[J].Climate-Environment Research[J], Alpply Ecosystern,1997,2(3):241-250.
    [61]BAO X K,CAO G M,ZHAO B I.Nonbiological fixation of organic phosphorus in alpine soil [J]. Alpine Meadow Ecosystern,1991,3:247-256.
    [62]MA Y SH, IANGBN, LI Q Y, etc.Study on rehabilitating and re-building technologies for degenerated alpine meadow in the Changjiang and Yellow River source region[J]. Grassland cience,2002,19(9):1-5.
    [63]Frank.D.A.& R.D.Evans. Effects of native grazers on grassland N cycling in Yellowstone National Park[J]. Ecology,1997,78:2238-2248.
    [64]Feigin. A., H.Koh1,G. Shearer& B. Commoner.1974. Variation in the natural Nitrogen-15 abundance in nitrate mineralized during incubation of several Illinois soils[J].Soil Science Society of America Proceedings,38:90-95.
    [65]Barber.S.A. Soil nutrient bioavailability. A mechanistic approach [J]. New York:John Wiley& Sons.1984.
    [66]Schimel,J.,P.,L. E. Jackson& M. K. Firestone. Spatial and temporal efects on plant。 microbial competition for inorganic nitrogenin a California annual grassland[J]. Soil Biology an d Biochemistry,1989,21:1059-1066.
    [67]Jackson.L.EJ.P.Schimel& M.K.Firestone. Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biology and Biochemistry[J].1989,21:409-415.
    [68]Recous S.,B.Mary& G.Faurie. Micmbial immobilization of ammonium and nitrate in cultivated soils[J]. Soil Biology and Biochemistry,1990,22:913-922.
    [69]Azam.F.,A.Lodhi& M. Ashraf. Interaction of 15N-labelled ammonium nitrogen
    with Dative soil nitrogen during incubation and growth of maize[J].Soil Biology and Biochemistry,1991,23:473-477.
    [70]Jansson.S.L.,M.J.Ha Uam& W.V.Bortholomew..Preferential utilization of ammonium over nitrate by microorganisms in the decomposition of oat straw[J].Plant and Soil,1955,5:382-390.
    [71]Wickramasinghe, K.N.,G. A. Rodgers& D. S. Jenkinson.1985. Nitrification in acid tea soils and a neutral grassland soil effects of nitrificafion inhibitors and inorganic salts[J]. Soil Biology and Biochemistry,17:249-252.
    [72]Liu,L.P.&Y.N.Liao. Bidogical characterisfics and biodivemity oftlle soil micmorganisms in vancinens steppe and& grand steppe under different grazing intensities[J]. Research on Grassland Ecosystem,1996,5:70-79.
    [73]Holt J A.Grazing pressure and soil carbon.microbial biomass and enzyme activities in semi-arid northeastern Australia[J].Appl.Soil Ecol.,1997,5:143-149.
    [74]Coleman D C,Reid C P P,Cole C V.Biological strategies of nutrient cycling in soil systems[J].Advances in Ecological Research,1983,13:1-55.
    [75]Jenkinson D S, Ladd J N. Microbial biomass in soil:Measurement and turnover[J]. In Paul E A,eds.Soil Biochem.,New York:Marcel Dekker,1981,5:415-471.
    [76]Jenkinson D S. The determination of microbial biomass carbon and nitrogen in soils. In Wilson J R,ed. Advances in Nitrogen Cycling in Agriculture Ecosystem[J]. Wallingford:C.A.B.International,1988,368-386.
    [77]Voroney R P,Paul E A.Determination of Kc and Kn for calibration of the chloroform fumigation-incubation method[J].Soil Biol. And Biochem.,1984,16:9-14.
    [78]Juma N G,Paul E A.Mineralizable soil nitrogen:Amounts and extractability ratios[J].Soil Sci.Am.J.,1984,48:76-80.
    [79]Myrold D D. Relationship between microbial biomass nitrogen and a nitrogen availability index[J].Soil Sci.Soc.Am.J,1987,51:1047-1049.
    [80]Smith J L,Paul E A.The significance of soil microbial biomass[J].In Bollag J M.eds. Soil Biochemistry.New York:Marcel Dekker,1990,357-396.
    [81]Roy S, Singh J S. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest[J]. Ecology,1994,82:503-509.
    [82]Anderson T H, Domsch K H. The metabolic quotient for CO2(qCO2) as a specific activity parameter to assess the effects of environmental conditions. such as pH, on the microbial biomass of forest soils[J]. Soil Biol. Biochem.,1993,25:393-395.
    [83]俞慎,李振高.熏蒸提取法测定土壤微生物量研究进展[J].土壤学进展,1994,22(6):42-50.
    [84]曹慧,杨浩,孙波,.不同种植时间菜园土壤微生物生物量和酶活性变化特征[J].土壤,2002,(4):197-200.
    [85]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2):61-69.
    [86]Roy S, Singh J S. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest[J].Journal of Ecology,1994,82:503-509.
    [87]Powlson D S, Brook S P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology& Biochemistry,1987,19:159-164.
    [88]Sparling G P. Soil microbial biomass, active and nutrient cycling as indicators of soil health[A]. In:Pankhurst C E, Doube B M, Gupta V V,et al.Biological Indicators of Soil Health[M].Cab International,1997,97-119.
    [89]邵玉琴,赵吉,包青海.库布齐固定沙丘土壤微生物生物量的垂直分布研究[J].中国沙漠,2001,21(1):88-92.
    [90]Dalal R C,Henderson P A, Guasby J M. Organic matter and microbial biomass in a vertisol after 20 years of zero-illage[J]. Soil Biology& Biochemistry,1991,23:435-441.
    [91]Gregorich E G, Carter M R, Angers D A, etc,Towards a minimum data set to assess soil organic matter quality in agricultural soils[J].Canadian Journal of Soil Science,1994,74:376-385.
    [92]Holt J A. Grazing pressure and soil carbon,microbial biomass and enzyme activities in semi-arid northeastern Australia[J]. Applied Soil Ecology,1997,5:143-149.
    [93]孙波,张桃,赵其国.我国中亚热带缓丘区红粘土红壤肥力的演化Ⅱ.化学和生物学肥力的演化[J].土壤学报,1999,36,(2):203-217.
    [94]姜培坤,徐秋芳,俞益武.土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,2002,19(1):17-19.
    [95]张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029-2033.
    [96]姚拓,龙瑞军.天祝高寒草地不同扰动生境土壤三大类微生物数量动态研究[J].草业学报,2006,15(2):93-99.
    [97]Navarro T, Aladosb C L, Cabezudo B. Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrub lands of SE Spain[J]. Journal of Arid Environments,2006,64:298-322.
    [98]Zhou L.K.. Soil Enzymology[J]. Beijing:Science Press,1989.
    [99]王启兰,曹广民,王长庭.放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J].植物营养与肥料学报,2007,13(5):856-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700