黄土丘陵区典型植物根际与非根际土壤性质差异的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究不同植被类型根际与非根际间的土壤性质差异性,对指导植被建设有重要的理论和实践意义。本文选取黄土丘陵区草原带和森林带中16种典型植物,采用野外调查与室内分析相结合的方法,通过研究不同植物根际与非根际土壤性质的差异性,阐明典型植物根际对土壤化学性质和微生物功能多样性的影响,揭示植物根际对土壤质量作用的机理,以期为改善土壤质量、提高土壤养分资源利用效率和保护生态环境等提供重要科学依据。主要研究结论如下:
     (1)在黄土丘陵区的草原带和森林带,16种不同典型植物之间的根际土壤和非根际土壤化学性质(有机质、全氮、铵态氮、硝态氮、全磷、速效磷、速效钾)、土壤酶活性(蔗糖酶、脲酶、碱性磷酸酶、脱氢酶)、微生物生物量(微生物生物量碳、微生物生物量氮、微生物生物量磷)、基础呼吸以及土壤微生物功能多样性(微生物活性AWCD、微生物多样性指数、均匀度指数)均存在不同程度的差异。对不同植物而言,草原带的冷蒿植物根际土壤4种酶活性、微生物生物量碳、微生物生物量氮、基础呼吸和微生物功能多样性各指标都较高,其中碱性磷酸酶活性和脱氢酶活性分别为84.53 mgP2O5.kg~(-1).h~(-1)和24.97 ulH+.g~(-1).h~(-1),皆极显著的高于其他植物;达乌里胡枝子植物的根际和非根际土壤化学性质、酶活性、微生物生物量皆较低,其根际和非根际土壤有机碳含量分别为8.14和5.53 g.kg~(-1),皆极显著的低于其他植物。森林带的白羊草植物根际土壤大部分土壤性质指标都比其他植物高,其有机碳含量为20.59 g.kg~(-1),全氮含量为2.71 g.kg~(-1),微生物量碳含量为547.61 mg.kg~(-1),脱氢酶活性为32.27 ulH+.g~(-1).h~(-1),皆极显著的高于其他植物。铁杆蒿、冷蒿、辽东栎的根际土壤微生物活性AWCD、土壤微生物多样性指数和均匀度指数都很高,这三种植物根际土壤微生物代谢强度高于其他植物。
     (2)大多数植物的根际土壤化学性质、酶活性、微生物生物量和微生物功能多样性各指标都大于非根际土壤,而全磷在各个植物根际土壤与非根际土壤之间的含量很接近。草原带细辛植物的根际土壤速效磷、脲酶、碱性磷酸酶、脱氢酶、微生物生物量碳、微生物生物量磷含量或活性皆小于非根际土壤,而其它12个土壤性质指标表现则为根际土壤大于非根际土壤;森林带刺槐的各个土壤性质指标在根际土壤与非根际土壤之间的差异上无明显规律,其中刺槐的根际土壤碱性磷酸酶活性比非根际土壤小38.43 mgP2O5.kg~(-1).h~(-1),两者差异明显;对白羊草而言,大部分指标在根际土壤与非根际土壤之间的差异上都较大。
     (3)典型草原带各种植物根际土壤微生物的主要碳源利用类型是羧酸类、氨基酸类;非根际土壤微生物的主要碳源利用类型是羧酸类、胺类、氨基酸类。典型森林带各种植物根际土壤微生物的主要碳源利用类型是羧酸类、氨基酸类,非根际土壤微生物的主要碳源利用类型是糖类和羧酸类。
     (4)在不同植物的根际和非根际土壤中,有机碳、全氮、蔗糖酶、微生物生物量碳、微生物生物量氮之间存在显著或极显著相关关系;不同植物土壤微生物功能多样性中的微生物活性AWCD、微生物多样性指数、微生物均匀度指数之间均具有显著或极显著相关性,与其他指标的相关性规律不明显;其余指标在不同植物之间的相关关系表现不一。
     (5)对草原带9种典型植物根际与非根际土壤的18个指标进行主成分分析,结果表明,有机碳、全氮、蔗糖酶、碱性磷酸酶、微生物生物量碳、微生物生物量氮、基础呼吸、微生物多样性指数、均匀度指数这9个指标能大体上反映草原带9种典型植物土壤的化学和微生物学性质,对评价土壤质量有重要意义。与草原带有所不同,有机碳、全氮、硝态氮、全磷、速效磷、速效钾、蔗糖酶、脲酶、碱性磷酸酶、微生物生物量碳、微生物活性AWCD、微生物多样性指数、均匀度指数这13个指标能大体上反映森林带7种典型植物土壤的化学和微生物学性质。
The degradation of soil quality by vegetation deterioration in the loess hilly region has threatened the ecological environment and agriculture sustainable development. Therefore, improving soil quality and speeding up the process of vegetation restoration is one of important goals in ecological rehabilitation project of loess hilly region. 16 typical species of plants were chosen from two representative regions (grassland zone and forest zone) in the loess hilly region, to study the difference of soil chemical properties and soil microbial functional diversity between the rhizosphere and non-rhizosphere by using field sampling and laboratory analysis. The resaech results will provide scientific evidence for preserving or improving soil quality, increasing soil fertility, and use efficiency of nutrient resources, protecting ecological environment. The main research results were as follows:
     (1) Soil chemical properties (organic C, total N, ammonium N, nitrate N, total P, availabel P, available K), soil enzyme activity (invertase, urease, alkaline phoshpatase, dehydrogenase), soil microbial biomass (Cmic, Nmic, and Pmic), basal respiration and soil microbial functional diversity (AWCD, soil microbial diversity index and uniformity index) are different whether rhizosphere soil or non-rhizosphere soil among 16 species of plant in grassland zone and forest zone in the loess hilly region. In grassland area, all kinds enzymes and Cmic、Nmic、basal respiration in the rhizosphere soil of Artemisia frigida was higher than other plants, alkaline phoshpatase activity was 84.53 mgP2O5.kg~(-1).h~(-1), dehydrogenase activity was 24.97 ulH+.g~(-1).h~(-1), they were significant higher than other plants; the main trend of chemical properties、soil enzyme activity、soil microbial biomass in the rhizosphere and non-rhizosphere soil of Lespedeza bicolor Turcz was lower; content of organic C were 8.14 and 5.53 g.kg~(-1) respectivety in the rhizosphere soil and non-rhizosphere soil, they were significant lower than other plants; In forest area, major indicators in the rhizosphere soil of Bothriochloa ischcemum was higher than others plants. content of organic C was 20.59 g.kg~(-1), content of total N was 2.71 g.kg~(-1), content of Cmic was 547.61 mg.kg~(-1), dehydrogenase activity was 32.27 ulH+.g~(-1).h~(-1), they were significant higher than other plants; the rhizosphere soil microbial activity(AWCD), soil microbial diversity index and uniformity index of A. sacrorum, A. frigida, and Quercus liaotungensis Koidz were high, shown that rhizosphere soil microbial metabolic intensity in these three plants are fiercer than others.
     (2) Soil chemical properties, soil enzyme activity, soil microbial biomass and soil microbial functional diversity in rhizosphere soil were higher than in non-rhizosphere soil for most of plants,and the difference of total P in all kinds plant is not significant between rhizosphere soil and non-rhizosphere soil. In grassland area, for Asarum sieboldii Miq, the content or activity of availabel P, urease, alkaline phoshpatase, dehydrogenase , Cmic, and Pmic in the rhizosphere soil was lower than in the non-rhizosphere soil, but the remaining indicators in the rhizosphere soil was higher than in the non-rhizosphere soil; In forest area, there was no significant law among indicators of Robinia Pseudoacacia between rhizosphere soil and non-rhizosphere soil, alkaline phoshpatase of Robinia Pseudoacacia in rhizosphere soil was lower than in non-rhizosphere soil 38.43 mgP2O5.kg~(-1).h~(-1), there was apparent difference. For Bothriochloa ischcemum, there were apparent difference between rhizosphere soil and non-rhizosphere soil for most indicators.
     (3) In grassland area, the major carbon sources of all species of plants’rhizosphere soil microbe were carboxylic acid sort and amino acids sort, and in non-rhizosphere soil were carboxylic acid sort, amine sort, and amino acids sort. In forest area, the major carbon sources of all species of plants’rhizosphere soil microbe were carboxylic acid sort and amino acids sort, and in non-rhizosphere soil were carbohydrate and carboxylic acid sort.
     (4) There were significant correlations between organic C, total N, invertase, Cmic, and Nmic in rhizosphere and non-rhizosphere soil under different plants. There were significant correlation between different species of plants’Soil microbial activity (AWCD), soil microbial diversity index, and uniformity index, but the correlation of soil microbial activity (AWCD), soil microbial diversity index, and uniformity index to other indicators were not obvious. The rest of indicators’s correlation is different.
     (5) By principal components analysis, in all indicators among 9 species of plants in typical grassland area, organic C, total N, invertase, alkaline phoshpatase, Cmic, Nmic, basal respiration, soil microbial diversity index, and uniformity index can be used as the indices to evaluate soil quality. Unlike grassland zone, organic C, total N, nitrate N, total P, availabel P, available K, invertase, urease, Alkaline phoshpatase, Cmic, AWCD, soil microbial diversity index, and uniformity index can general reflect soil chemical and microbial properties under 7 species of typical plants in forest zone.
引文
安韶山,黄懿梅,李壁成,等.2004.云雾山自然保护区不同植物群落土壤酶活性特征研究.水土保持通报,24(6):14-17
    鲍士旦.2008.土壤农化分析(第三版).北京:中国农业出版社
    蔡红,沈仁芳.2005.改良茚三酮比色法测定土壤蛋白酶活性的研究.土壤学报,24(2):306-313
    蔡晓布,张永青,钱成,陈芝兰,熊伟,薛会英,普穷.2004.西藏中部退化土壤在不同培肥措施下的肥力特征.生态学报,24(1):75-83
    蔡燕,王会肖.2006.黄土高原丘陵沟壑区不同植被类型土壤水分动态.水土保持研究,13 (6) : 79-81
    常学秀,文传浩,沈其荣,王焕校.2001.锌厂Pb污染农田小麦根际与非根际土壤酶活性特征研究.生态学杂志,20 (4) :5-8
    陈小燕,吕家珑,张红,王娟,苗惠田.2008.子午岭不同植被类型土壤微生物量与有机酸含量.干旱地区农业研究,26(3):167-170
    杜天庆.2007.苗果园豆科牧草根际土壤脲酶活性的研究.中国生态农业学报,15(1):25-27
    高婷.2006.沙蒿根际、非根际微生物数量的动态变化研究.宁夏农林科技.(3):16-17
    关松荫.1986.土壤酶及其研究法.北京:农业出版社
    郭忠升.2009.黄土高原半干旱区水土保持植被恢复限度—以人工柠条林为例.中国水土保持科学,7(4):49-54
    郝长红,杨建中,颜丽,陈佳广,查春梅,关连珠.2006.沈阳东陵古松根区土壤磷酸酶活性与土壤养分的关系.中国农学通报,22(1):194-196
    何斌,温远光,袁霞,梁宏温,刘世荣.2002.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究.林业科学,38(2):21-26
    胡婵娟,傅伯杰,靳甜甜,刘国华.2009.黄土丘陵沟壑区植被恢复对土壤微生物生物量碳和氮的影响.应用生态学报,20(1):45-50
    胡婵娟,傅伯杰,刘国华,靳甜甜,刘宇.2009.黄土丘陵沟壑区典型人工林下土壤微生物功能多样性.生态学报,29(2):727-733
    胡亚林,汪思龙,颜绍馗.2006.影响土壤微生物活性与群落结构因素研究进展.土壤通报,37(1):170 -176
    侯杰,功富裕,张立华.2006.林木根际土壤研究进展.防护林科技,(1):30-33
    吉艳芝,冯万忠,陈立新,段文标,张笑归.2008.落叶松混交林根际与非根际土壤养分、微生物和酶活性特征.生态环境,17(1):339-343
    贾伟,周怀平,解文艳,关春林,郜春花,石彦琴.2008.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响.植物营养与肥料学报,14(4) :700-705
    孔维栋,刘可星,廖宗文.2004.有机物料种类及腐熟水平对土壤微生物群落的影响.应用生态学报,15(3):487-492
    孔祥斌,张凤荣,齐伟,徐艳.2003.集约化农区土地利用对土壤养分的影响.地理学报,58(3): 333-342
    李宝福,张金文,赖彦斌,潘辉.1999.巨尾桉根际与非根际土壤酶活性的研究.福建林业科技,26(增刊):13-16
    李春格,李晓鸣,王敬国.2006.大豆连作对土体和根际微生物群落功能的影响.生态学报,26(4):1144-1150
    李莲青.2006.钼酸铵分光光度法测定水中总磷的改进.污染防治技术,19(3):66-68
    李灵,张玉,王利宝,王丽梅.2007.不同林地土壤微生物生物量垂直分布及相关性分析.中南林业科技大学学报,27(2):52-57
    李媛媛,周运超,邹军,刘浪,李龙凯.2007.黔中石灰岩地区不同植被类型根际土壤酶研究.安徽农业科学,35(30) :9607-9609
    厉婉华.1994.对苏南丘陵区不同林分下根际根外土壤微生物区系及酶活性研究.生态学杂志,13(6):11-14
    林瑞余,戎红,周军建,于翠平,叶陈英,陈良生,林文雄.2007.苗期化感水稻对根际土壤微生物群落及其功能多样性的影响.生态学报,27(9):3644-3654
    刘建军,陈海滨,田呈明,尚廉斌.1998.秦岭火地塘林区主要树种根际微生态系统土壤性状研究.土壤侵蚀与水土保持学报,4(3):52 -56
    刘子雄,朱天辉,张建.2005.林木根系分泌物与根际微生物研究进展.世界林业研究,18(6) :25-31
    陆景陵.2002.植物营养学(上).第二版.北京:中国农业大学出版社:149
    吕春花,郑粉莉,安韶山.子午岭地区植被演替过程中土壤养分及酶活性特征研究.干旱地区农业研究.27(2):227-232
    庞欣,张福锁,王敬国.2001.根际土壤微生物量氮周转率的研究.核农学报,15(2) :106-110
    彭琳,彭祥琳,余存祖.1983.黄土地区土壤中锌的含量分布、锌肥肥效及其有效施肥条件.土壤学报,20(4): 361-372
    彭佩钦,吴金水,黄道友,汪汉林,唐国勇,黄伟生,朱奇宏.2006.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响.生态学报,26(7):2261-2267
    史衍玺,唐克丽.1998.人为加速侵蚀下土壤质量的生物学特性变化.水土保持学报,(1):28-33
    苏永红,冯起,朱高峰,司建华,常宗强.2008,土壤呼吸与测定方法研究进展.中国沙漠,28(1):57-65
    孙波,赵其国,张桃树,俞慎.1997.土壤质量与持续环境──Ⅲ.土壤质量评价的生物学指标.土壤学报.(5): 225-234
    孙波,车玉萍,林心雄.1997.测定土壤有机质中12C及14C分解速率的密闭培养法.土壤学报,(1):51-531
    孙庆业,任冠举,杨林章,安树青.2005.自然植物群落对铜尾矿废弃地土壤酶活性的影响.土壤学报,42(1):37-43
    孙瑞莲,朱鲁生,赵秉强,周启星,徐晶,张夫道.2004.长期施肥对土壤微生物的影响及其在养分调控中的作用.应用生态学报, 15(10) :1907-1910
    滕晓慧,曹成有,富瑶,崔振波,高恩亮,高菲菲,陈家模.2007.不同年龄小叶锦鸡儿固沙群落土壤酶活性及微生物生物量的变化.生态环境学报,16(3): 1030-1034
    滕应,黄昌勇,龙健,姚槐应.2003.复垦红壤中牧草根际微生物群落功能多样性.中国环境科学,23(3):295-299
    王学翠,童晓茹,温学森,杨德奎.2007.植物与根际微生物关系的研究进展.山东科学, 20(6):40-45
    吴晓芙,胡曰利.2002.土壤微生物生物量作为土壤质量指标的研究.中南林学院学报,22(3):51-53
    席劲瑛,胡洪营,钱易.2003.Biolog方法在环境微生物群落研究中的应用.微生物学报, 43(1):138-141
    谢建昌,周建民.1999.我国土壤钾素研究和钾肥使用的进展.土壤学报,31(5) :244-254
    徐华勤,肖润林,邹冬生,宋同清,罗文,李盛华.2007.长期施肥对茶园土壤微生物群落功能多样性的影响.生态学报,27(8):3355-3361
    许景伟,王卫东,李成.2000,不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究.北京林业大学学报,22(1):51-55
    杨承栋,焦如珍.1999.杉木人工林根际土壤性质恶化的研究.林业科学,35(6) :2 -9
    杨万勤,钟章成,韩玉萍.1999.缙云山森林土壤酶的分布特征和季节动态及其与四川大头茶的关系.西南师范大学学报(自然科学版),24(3) :318-324
    杨玉盛,何宗明,邹双全,俞新妥.1998.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究.生态学报,18(2):198 - 202
    于群英.2001.土壤磷酸酶活性及其影响因素研究.安徽技术师范学院学报,15(4):5-8
    张成娥,陈小利.1997.黄土丘陵不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征.草地学报,5(3):195-199
    张学利,杨树军,张百习.2002.我国林木根际土壤研究进展.沈阳农业大学学报,33(6): 461-465
    张学利,杨树军,张百习,袁春良.2005.不同林龄樟子松根际与非根际土壤的对比.福建林学院学报,25(1):80-84
    赵杨,陈晓阳,骈瑞琪,王秀荣.2006.胡枝子属研究进展.西北林学院学报,21(2):71-75
    郑华,欧阳志云,王效科,方治国,赵同谦,苗鸿.2004.不同森林恢复类型对土壤微生物群落的影响.应用生态学报,15 (11):2019-2024
    郑勇,高勇生,张丽梅,何园球,贺纪正.2008.长期施肥对旱地红壤微生物和酶活性的影响.植物营养与肥料学报,14(2) :316-321
    周瑛,刘维屏,叶惠娜.2006.异丙甲草胺及其高效体对潮土微生物的影响Ⅱ.土壤呼吸.应用生态学报,17(7):1305-1309
    朱志成,贾东林.1994.达乌里胡枝子群落生物量初步研究.中国草地,(3):25-28
    Akmal M, Khan K S, Xu J M. 2004. Dynamics of microbial biomass in a rainfed soil under wheat Cultivation. Pedosphere, 14(1):53-62
    Benizri E, Amiaud B. 2005. Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biology and Biochemistry, 37(11): 2055-2064
    Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorus in soil . Soil Biology and Biochemistry,113(14): 319-329
    Brookes P C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals.Bio. Fertil. Soils, 50: 243-248
    Chen G C, He Z L, Wang Y J. 2004. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils. Pedosphere, 14 (1): 9 -15
    Crayston S J, Wang S, Campbell C D, Edwards A C. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30:369-378
    Di Giovanni G D, Wastrud L S, Seidler R J, Widmer F.1999. Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence PCR ( ERIC-PCR). Microbial Ecology, 37:129-139
    Fan J, Hao M D. 2003. Effects of long-term rotation and fertilization on soilmicrobial biomass carbon and nitrogen. Res. Soil. Water. Cons, 10 (10) : 85-87
    Finzi A C, Breemen N, Canham C D. 1998. Canopy tree-soil interactions within temperate forests : species effects on soil carbon and nitrogen. Ecological Applications, 8 :440-446
    Frossard E, Condron L M, Oberson A. 2000. Processes governing phosphorus availability in temperate soils. Journal of Environm ental Quality, 29 (1) : 15-23
    Groffman P M, Eagan P , Sullivan W M. 1996. Grass species and soil type effects on microbial biomass and activity . Plant and Soil , 183 :61-67
    Ingestad T. 1981. Plant growth in relation to nitrogen supply. Clark F E,Rosswall T(eds). Terrestrial Nitrogen Cycles. Stockholm: Ecol Bull, 33: 268-271
    Johansson M, Stenberg B, Torstensson L. 1999. Microbiological and chemical changes in two arable soils after long-term sludge amendments. Bio. Fertil. Soils,30: 160-167
    John W D, Alice J J. 1996. Methods for assessing soil quality. SSSA special publication number 49, Soil Science Society of America, Inc. Madison, Wisconsin, USA. 203-272
    Kaiser O, Puhler A, Selbitschka W. 2001. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microbial Ecology, 42: 136-149
    Kandeler E, Tscherko D, Spiegel H. 1999. Long-term monitoring of a microbial biomass, N mineralization and enzyme activities of a chemozem under different tillage management. Biology and Fertility of Soils, 28 (4) : 343-351
    Kelting D L, Burger J A, Edwards G S. 1998. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biology And Biochemistry, 30 (7): 961-968
    Kenji K, Yasuhiro T, Tadao A. 1995. Measurement of soilmicrobial biomass phosphorus by an anion exchange membrane method. Soil Biology and Biochemistry, 27 (10) : 1353-1357
    Knowalchuk G A , Buma D S , Boer W D. 2002. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms . Antonie van Leeuwenhoek, 81 :509-520
    Marschner P, Yang C H, Lieberei R, Crowley D E. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33: 1437-1445
    Oberson A, Friesen D K, Rao I M. 2001. Phosphorus transformations in an Oxisol under contrasting land-use systems: the role of the soilmicrobial biomass. Plant and Soil, 237 (2) : 197-210
    Picard C, De Cello F, Venture M, Fani R, Guckert A. 2000. Frequency and biodiversity of 2,4-diacetylphloroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Applied and Environmental Microbiology, 66:948-955
    Riley D. Barber S A. 1969. Bocarbonate accumulation and pH changes at the soybean root-soil interface. Soil Sci Soc Am Prop, 33:905-908
    Riley D, Barber S A. 1970. Salt accumulation at the soybean root soil interface. Soil Sci Soc Am Proc,34:154-155
    Rogers B F, Tate R L. 2001. Temporal analysis of the soil microbial community along a top sequence in Pineland soils. Soil Biology and Biochemistry, 33 :1389-1401
    Schinner F, Ohlinger R, Kandeler E. 1996. Methods in Soil Biology. Berlin Heidelberg: Springer-Verlag, 93
    Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 67: 4742-4751
    Vance E D. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology andBiochemistry, 19: 703-707
    Wu J, Joergensen R G. 1990. Measurement of soil microbial biomass C by fumigation - extraction an automated procedure. Soil Biology and Biochemistry, 22: 1167-1169
    Zabinski C A , Gannon J E. 1997. Effects of recreational impacts on soil microbial communities . Environmental Management, 21 (2) : 233-238
    Zelles L.1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: A review. Biol.Fertil.Soils, 29: 111-129
    Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, Garc?′a-Orenes F, Mataix-Beneyto J. 2006. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biology and Biochemistry, (38): 2125-2134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700