黄土高原沟壑区土壤生物学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤酶是土壤重要组分之一,在营养物质转化、能量转移、污染物清除等过程中发挥着重要作用,同时其与土壤质量的关系也是人们关注的主要课题之一。本文采用非缓冲液法,对黄土高原沟壑代表区域——长武县土壤酶(转化酶、纤维素酶、淀粉酶、脲酶、蛋白酶、磷酸酶、芳基硫酸酯酶、过氧化氢酶、脱氢酶、尿酸盐酶)特征及微生物区系进行了较为系统的研究,并借助动力学手段研究了土壤酶酶促反应的机理及与土壤性质间的关系。以期筛选获得可较敏感反映土壤肥力水平的酶类,构建土壤酶学监测指标,完善土壤酶学理论等,最终从土壤酶角度,为该地土壤质量评价提供依据;为当地农业的可持续发展奠定基础。本论文研究获得的主要结果如下:
     (1)黄土高原沟壑区农田土壤十种土壤生化活性中仅脲酶、转化酶、磷酸酶、脱氢酶及呼吸强度与大多数化学性质达显著或极显著相关水平,且其变异系数较大,揭示此五种生化活性关系密切,对土壤环境条件改变更敏感。可在一定程度上可指示土壤肥力水平的高低。
     (2)黄土高原沟壑区果园表层土壤的转化酶、脲酶、磷酸酶、脱氢酶活性比下层分别大1.2、1.5、1.6、1.3倍,表层土壤有机质含量是下层的1.2倍,反映出这四种酶与果园土壤有机质变化是一致的;不同果园中酶空间变化的情况是不同的,随土层加深,磷酸酶、脲酶活性显著下降的比例分别为96%、88%,而转化酶和脱氢酶活性的较差,只达到60%、52%,过氧化氢酶活性变化趋势不明显;相关分析结果表明土壤酶与土壤化学性质关系十分密切,揭示出土壤脱氢酶、磷酸酶、转化酶、脲酶可作为本地区果园土壤的肥力指标。主成分分析构建的土壤酶—化学性质综合信息系统不仅可以反映出土壤酶与土壤化学性质对土壤肥力的贡献及其相互关系,而且综合得分能够直接反映出土壤肥力水平的高低,可作为土壤质量评价的指标之一。
     (3)黄土高原沟壑区高肥力土壤中水解酶Km高于低肥力,但差别不大,均为同一数量级。不同肥力间的脲酶Vmax、Vmax/Km、k值达到显著性差异。转化酶Vmax/Km、k能够反映土壤酸碱度的变化,脲酶动力参数与化学性质达到显著相关,表明脲酶的动力学参数Vmax、Vmax/Km、K可作为该地区土壤肥力评价的指标之一。
     (4)利用稀释平板法研究土壤微生物区系的变化,发现细菌占土壤微生物总数83.35%~93.47%、真菌小于0.02%、放线菌占6.51%~23.07%。反映该地农田土壤微生物多样性的Shannon-Wiener指数、Simpson指数、Mcintosh指数范围分别在0.24~0.56、0.12~0.36、0.80~0.94之间。相关分析表明多样性指数较好地反映了该地土壤肥力的水平,可作为土壤质量监测的生物学指标之一。
     (5)计算获得了我们构建的土壤总体酶活性指标(TEI),其与其他土壤生物学指标BIF、EAN一起与土壤化学性质相关分析结果表明,除EAN外,二者关系均达到极显著正相关,尤以TEI、TEI5最佳;主成分分析得到的土壤肥力综合得分与三个参数BIF、TEI和TEI5均达极显著正相关,揭示出土壤酶参数TEI可作为土壤肥力水平指标之一。表明相对单个酶活性参数来讲,总体酶活性指标更具准确、适应性更广泛。
     (6)黄土高原沟壑区宅基地通过一年的复垦后,有机肥+菌肥和有机肥处理增强了土壤转化酶、脲酶、磷酸酶、芳基硫酸酯酶、脱氢酶活性、呼吸强度和放线菌数量,施用化肥、复合肥对土壤酶和微生物数量影响不大。过氧化氢酶对不同施肥制度反应不敏感。总体酶活性指标(TEI)可以很好的评价不同施肥措施对土壤生物学性质的影响,并从各方面获得有机肥能够增强宅基地土壤生化活性和肥力水平,是一个很好的改良措施。
     综上所述,非缓冲液法更能准确反映土壤酶的真实状况;总体酶活性指标TEI可作为本地区土壤肥力评价及预警的指标。但要利用此指标来对该地区农田土壤肥力质量进行分级,还得作进一步的研究。
Soil enzyme is one of the major components in soil, playing important roles in transfer of nutrient and matter, shift of energy and remediation of pollutants. And meanwhile the relationship between soil enzyme and soil quality is a main scientific project to study. So, this experiment investigates the soil enzymes activities (such as invertase, cellulose, amylase, protease, urease, phosphatase, arylslphatase, dehydrogenase, catalase, uricase) by using no-buffer method and microbiota in Changwu where is as the representative of Loess Plateau gully region; studies the reaction mechanism of hydrolytic enzymatic activity, and also the relationship between it and soil properties by kinetic. It is expected to find some soil enzymes which can sensitively reflect the level of soil fertility, built soil enzymatic monitoring indicators and developed soil enzyme theory; and finally, provided the basis for soil quality assessment and laid the foundation for the sustaining development of agriculture in Loess Plateau from soil enzyme perspective. They will be showed as following:
     (1) In Loess Plateau gully region, biochemical activities of soil urease, invertase, dehydrogenase and respiration of farmland were more sensitive to environmental change among these ten biochemical activities. There was a significant correlation between urease, invertase, phosphatase, dehydrogenase and respiration, and also between these five soil biochemical activities and most of soil chemical properties. This indicated that these five soil biochemical activities can be used as indicators for soil fertility.
     (2)Invertase, urease, phosphatase, and dehydrogenase activities in surface soil were respectively 1.2, 1.5, 1.6, 1.3 times higher than that in subsoil in Loess Plateau gully region. And soil organic matter content in surface soil is 1.2 times higher than that in subsoil. It indicated that the four soil enzymes had the same regularity with soil organic matter. Soil enzyme spatial variation was different in different orchards. As the soil depth increased, phosphatase and urease activity significantly had proportion of 96% and 88% decreases, while invertase and dehydrogenase activities only had proportion of 60% and 52% decreases. There was no significant influence on hydrogen peroxide activity. The correlation coefficient showed that soil enzymes and soil chemical properties related significantly. This indicated that soil dehydrogenase, phosphatase, invertase, urease can be used as indicators of orchard soil fertility in this region. Construction of principal component analysis of soil enzymes - the chemical nature of the integrated information system can not only reflect soil enzymes and chemical properties had effects on soil fertility and their relationships, but also the comprehensive scores directly reflected soil fertility, it can be indicator to evaluate soil quality.
     (3)In Loess Plateau gully region, Km of hydrolase changed in the same rank quantitatively, but high fertility soil’s was higher than low fertility.Vmax, Vmax/Km and k of urease were significant differences among different fertilizers. Vmax/Km and k of invertase could reflect the change of pH. There were significant positive correlation between urease kinetics and soil chemical characteristic, it was revealed that the Vmax、Vmax/Km and k of urease could be one of indexes to evaluate fertilizer of soil.
     (4)Pour plate method was used to study the soil microflora. The results showed bacteria, fungi and actinomyces accounted for 83.35%~93.47%, less than 0.02% and 6.51%~23.07% of the total of soil microorganism, respectively, indicating that the Shannon-Wiener index、Simpson index and Mcintosh index of this area were 0.24~0.56、0.12~0.36、0.80~0.94 respectively. the correlation analysis showed the diversity index could correctly describe the soil fertility of this area, and could be used as one of the biological indicators for the soil biological survey.
     (5)Among combinational parameters such as BIF, EAN, TEI and TEI5 obtained in this experiment, BIF, TEI and TEI5 had a significantly positive correlation with chemical properties with TEI5 as the most significant. This suggested that these three parameters can be used to monitor soil fertility. By processing the data of soil biochemical activities and chemical properties in principal component analysis and clustering analysis, the soil information system obtained in this experiment can better show the variation of soil fertility and the multiple scores were significantly positive correlated with BIF, TEIand TEI5, and this indicated that they can be used to monitor soil fertility levels. A simplified expression of the total enzymatic activity index may be more useful than individual soil enzyme activity to measures of soil quality.
     (6)Addition of the organic manure and bacterial manure on homestead caused significant increases in the activity of some enzymes (such as invertase, urease, phosphatase, arylslphatase, dehydrogenase) and the respiration rate and the number of actinomycete tested. The increases were much higher than a year of reclamation ago. But addition of fertilizer or compound fertilizer had little effect on soil enzymes and number of soil microorganisms. Catalase activity didn’t change in different fertilization system. Total enzymatic activity index (TEI) can be a good evaluation of different fertilization on soil biological properties, and organic fertilizer is a appropriate soil improvement measures that can enhance soil biological activity and fertility in homestead.
     To sum up, our results confirm that enzyme activity can be determined more accurately by no-buffer method than by buffer method, and the total enzymatic activity index (TEI) is suitable indicator of soil fertility and monitoring soil status in Loess Plateau gully region. But to use this index to soil fertility in the region to grade, have to be studied further.
引文
安韶山,黄懿梅,刘梦云,李壁成. 2005.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价. 水土保持研究,12(3):31~34
    鲍士旦. 2000.土壤农化分析.北京:中国农业出版
    蔡少华,和文祥,呼蕾,闫晋晋. 2008.六价铬对土壤脱氢酶活性的影响.西北农业学报,17(5):208~214
    曹兴,金莉莉. 2008.农田生态系统土壤呼吸研究进展.现代农业科技,22:156~159
    曹志洪. 2001.解译土壤质量演变规律,确保土壤资源持续利用.世界科技研究与进, 23(3):28~32
    陈宗泽,殷勤燕. 1997.大豆连作对土壤微生物量的影响.大豆通报,(6):15
    程丽娟,薛泉宏. 2000.微生物学实验技术.北京:世界图书出版社
    戴伟,白红英. 1995.土壤过氧化氢酶活度及其动力学特征与土壤性质的关系.北京林业大学学报,17(1):37~41
    戴伟,王兵. 1994.大岗山红黄壤中过氧化氢酶与土壤性质关系的研究.林业科技通讯,4:17~18
    丁菡,胡海波,王人潮. 2007.半干旱区土壤酶活性与其理化及微生物的关系.南京林业大学学报(自然科学版),31(2):13~18
    董艳,汤利,郑毅,朱有勇,张福锁. 2008.小麦-蚕豆间作条件下氮肥施用量对根际微生物区系的影响.应用生态学报,19(7):1559~1566
    董艳,董坤,郑毅,田芝花,鲁耀,汤利. 2009.种植年限和种植模式对设施土壤微生物区系和酶活性的影响.农业环境科学学报,8(3):527~532
    樊军,郝明德. 2002.旱地农田土壤脲酶与碱性磷酸酶动力学特征.干旱地区农业研究,20(1):35~37
    樊军,郝明德. 2003.黄土高原旱地轮作与施肥长期定位试验研究Ⅰ.长期轮作与施肥对土壤酶活性的影响.植物营养与肥料学报,9(1):9~131
    樊军,郝明德. 2003.黄土高原旱地轮作与施肥长期定位试验研究Ⅱ.土壤酶活性与土壤肥力.植物营养与肥料学报,9(2):146~150
    樊红科,杜志辉,吴岱彦,雷新乐. 2009.渭北高原不同施肥方案土壤效应及对再植苹果生长发育的影响.干旱地区农业研究, 27(1):56~60
    高瑞,吕家珑. 2005.长期定位施肥土壤酶活性及其肥力变化研究.中国生态农业学报,13(1):143~145
    关松荫. 1986.土壤酶及其研究法.北京:农业出版社:1~320
    郝慧荣,李振方,熊君,陈慧,张重义,林文雄. 2008.连作怀牛膝根际土壤微生物区系及酶活性的变化研究.中国生态农业学报,16(2):307~311
    郝建朝,吴沿友,连宾,吴春笃. 2006.土壤多酚氧化酶性质研究及意义.土壤通报,37(3):470~474
    和文祥,陈会明,朱铭莪,张一平. 2002.土壤肥力对其脲酶与汞镉关系的影响.华中农业大学学报,21(6):526~530
    和文祥,陈会明,朱铭莪. 2003.汞镉对游离和固定化脲酶活性的影响.土壤学报,40(6):945~951
    和文祥,来航线,武永军,朱铭莪. 2001.培肥对土壤酶活性影响的研究.浙江大学学报(农业与生命科学版),27(3):265~268
    和文祥,刘恩斌,朱铭莪. 2001.土壤脲酶活性与底物浓度定量关系研究.西北农业学报,10(1):62~66
    和文祥,谭向平,王旭东,郝明德. 2009.土壤总体酶活性指标的初步研究.土壤学报,待刊
    和文祥,朱铭莪,张一平. 2000.土壤酶与重金属关系的研究现状.土壤与环境, 9(2):139~142
    和文祥,朱铭莪. 1997.陕西土壤脲酶活性与土壤肥力关系分析.土壤学报,34(3):392~398
    和文祥,朱铭莪. 1997.陕西土壤脲酶活性与土壤肥力关系分析.土壤学报,34(4):392~397
    和文祥,朱铭莪. 1997.陕西土壤脲酶与土壤肥力关系研究Ⅱ.土壤脲酶的动力学特征.土壤学报,34(1):42~52
    和文祥. 1999.汞镉对土壤脲酶活性特征影响的研究.[博士学位论文].杨凌:西北农业大学
    胡君利,林先贵,尹睿,褚海燕,张华勇,王俊华,曹志洪. 2008.浙江慈溪旱作农田土壤微生物学性状的时空演变特征.应用生态学报,19(9):1977~1982
    黄婷,王旭东,王彩霞,岳西杰. 2009.黄土高原沟壑区果园土壤质量现状评价.现代农业科技,37(21):212~214
    贾恒义,彭琳,彭祥林,余存祖. 1994.黄土高原地区土壤养分资源分区及其评价.水土保持学报,8(3):22~28
    贾克功. 1995.果树再植病害研究进展.见:韩振海.中国科协第二届青年学术年会园艺学论文集.北京:北京农业大学出版社:296~302
    贾新民,郑玉龙,于泉林,赵萍,沙永平,高彦彬. 1995.大豆连作土壤多酚氧化酶研究.黑龙江八一农垦大学学报,8(2):42~43
    蒋端生,曾希柏,张杨珠,陈建国. 2008.土壤质量管理Ⅰ.土壤功能和土壤质量.湖南农业科学,(5):86~89
    焦婷,常根柱,周学辉,杨红善,侯彦会,苗小林,刘荣堂,蒲小鹏. 2009.高寒草甸草场不同载畜量下土壤酶与土壤肥力的关系研究.草业学报,18(6):98~104
    黎青慧,田霄鸿. 2006.陕西平衡施肥示范果园土壤肥力调查分析.西北园艺, 18(2):47-48
    李东坡,武志杰,陈利军,朱平,任军,梁成华. 2004.长期不同培肥黑土磷酸酶活性动态变化及其影响因素.植物营养与肥料学报,10(5):550~553
    李华兴,卢维盛,刘远金,张新明,陈喜崇,李永锋,霍锦添. 2001.不同耕作方法对水稻生长和土壤生态的影响.应用生态学报,12(4):553~556
    李腊梅,陆琴,严蔚东,王校常. 2006.太湖地区稻麦二熟制下长期秸秆还田对土壤酶活性的影响. 土壤,38(4):422~428
    李燕红,赵辅昆. 2005.纤维素酶的研究进展.生命科学,17(5):392~397
    林天,何园球,李成亮,杨芳,徐江兵. 2005.红壤旱地中土壤酶对长期施肥的响应.土壤学报,42(4):682~686
    林超峰,陈占全,薛泉宏,来航线,陈来生,张登山. 2007.青海三江源地区风沙土养分及微生物区系. 应用生态学报,18(1):101~106
    林雁冰,薛泉宏,颜霞. 2008.不同栽培模式下玉米根系对土壤微生物区系的影响.西北农林科技大学学报(自然科学版),36(12):101~107,114
    刘海芳,马军辉,金辽,陆琴,严蔚东,王校常. 2009.水稻土FDA水解酶活性的测定方法及应用.土壤学报,46(2):365~367
    刘建国,卞新民,李彦斌,张伟,李崧. 2008.长期连作和秸秆还田对棉田土壤生物活性的影响. 应用生态学报,19(5):1027~1032
    刘建新,王鑫,杨建霞. 2005.覆草对果园土壤腐殖质组成和生物学特性的影响.水土保持学报,19(4):93~95
    刘梦云,常庆瑞,齐雁冰,安韶山. 2006.宁南山区不同土地利用方式土壤酶活性特征研究.中国生态农业学报,14(3):67~70.
    刘世梁,傅伯杰,刘国华,马克明. 2006.我国土壤质量及其评价研究的进展.土壤通报,37(1):831~826
    罗林涛. 2009.关于旧村废弃宅基地复垦整理的思考.陕西农业科学,15(5):173~175
    罗希茜,郝晓晖,陈涛,邓婵娟,吴金水,胡荣桂. 2009.期不同施肥对稻田土壤微生物群落功能多样性的影响.生态学报,29(2):740~748
    骆永明. 2008.土壤环境的生物地球化学过程、质量演变和风险管理研究展望.土壤学报,45(5):851~846
    马兰戈尼. 2002.酶催化动力学——方法与应用.1(1).赵裕蓉,张鹏译. 2007.北京:化学工业出版社:4~32
    苗琳,王立,黄高宝,罗珠珠,李登航. 2009.保护性耕作对旱地麦田土壤酶活性的影响.干旱地区农业研究,27(1):6~11
    闵红,和文祥,李晓明,刘国斌,杨祥. 2007.黄土丘陵区植被恢复过程中土壤微生物数量演变特征.西北植物学报,27(3):0588~0593
    莫淑勋. 1992.有机肥料中磷及其与土壤磷素肥力的关系.土壤学进展,20(3):1~9
    邱莉萍,刘军,和文祥,王益权,孙慧敏. 2003.长期培肥对土壤酶活性的影响.干旱地区农业研究,21(4):45~47
    陕西省国土资源厅. 2008.关于推进农村宅基地复垦整理促进新农村建设的意见.陕西省人民政府公报,3:43~45
    沈菊培,陈利军. 2005.土壤磷酸酶活性对施肥-种植-耕作制度的响应.土壤通报, 36(4):622~627.
    司美茹,赵云峰. 2009.不同种植年限菜田土壤微生物区系的研究.微生物学杂志, 29(2):71~76
    苏涛,司美茹,马宗琪. 2006.不同土地利用方式对根际土壤微生物数量的影响.农业环境科学学报, 25(增刊):136~139
    孙建,刘苗,李立军,刘景辉,张星杰. 2009.免耕与留茬对土壤微生物量C、N及酶活性的影响. 生态学报,29(10):5505~5519
    唐玉姝,慈恩,颜廷梅,魏朝富,杨林章,沈明星. 2008.太湖地区长期定位试验稻麦两季土壤酶活性与土壤肥力关系.土壤学报,45(5):999~1006
    王兵,刘国彬,薛萐,李占斌,李鹏,刘娴. 2009.黄土丘陵区撂荒对土壤酶活性的影响.草地学报,17(3):283~287
    王颖,许广波,刘文利. 2005.苹果梨园土壤酶活性初报.土壤通报,36(3): 383~386
    王博文,陈立新. 2006.土壤质量评价方法述评.中国水土保持科学,4(2):120~126
    王聪颖,和文祥,何敏超. 2006.乙醇对土壤转化酶活性的影响.西北农林科技大学学报(自然科学版),34(9):125~129
    王校常,陆琴,李腊梅,严蔚东. 2006.太湖地区典型水稻土FDA水解酶活性的剖面分布特征.植物营养与肥料学报,12(6):834~839
    王祎宁,赵国柱,谢响明,邸晓亮. 2009.漆酶及其应用的研究进展.生物技术通报, 24(5):35~38
    王宗明,梁银丽. 2002.黄土塬区作物生产潜力分析—以长武试区为例.水土保持通报,22(1):30~33
    吴海燕,金荣德,范作伟,高星爱,张余莽,赵兰坡. 2009.东北黑土区不同耕作方式土壤养分与酶活性的时空变化.水土保持学报,23(6):154~157
    肖永兰,袁正平,张杨珠,蒋健容,钟绶苓. 1991,不同耕作制对水田土壤酶活性的影响.湖南农学院学报,(A06):260~266
    熊鸿焰,李廷轩,余海英. 2008.水旱轮作条件下不同免耕年限土壤微生物数量及影响因素.武汉大学学报(理学版), 54(2):244~248
    熊明彪,雷孝章,田应兵,宋光煜,曹叔尤. 2003.长期施肥对紫色土酶活的影响.四川大学学报(工程科学版), 35(4):60~63,99
    徐珍,郭正元,黄帆,杨仁斌,唐美珍. 2006.唑螨酯对土壤呼吸作用和过氧化氢酶活性的影响.农药,45(10):692~694
    许光辉,郑洪元. 1986.土壤微生物分析方法手册.北京:农业出版社:2
    闫颖,袁星,樊宏娜. 2004.五种农药对土壤转化酶活性的影响.中国环境科学,24(5):588~591
    杨超,刘国顺,邱立友,祖朝龙,王芳. 2007.不同植烟土壤微生物数量调查研究.中国烟草科学28(5):31~36
    杨春璐,孙铁珩,和文祥. 2006.汞和两种农药复合污染对土壤转化酶活性的影响中国环境科学,26(4):486~490
    杨海君,肖启明,刘安元. 2005.土壤微生物多样性及其作用研究进展.南华大学学报(自然科学版),19(4):21~26
    杨万勤,王开运. 2004.森林土壤酶的研究进展.林业科学,40(2):152~159
    杨文杰,吴发启,崔彬,方丽. 2004a.苹果产业在陕西省经济发展中的战略地位及渭北地区苹果产业化发展模式研究.中国农学通报,20(5):284~377
    杨文杰,吴发启,方丽. 2004b.陕西省渭北黄土高原苹果发展战略研究.西北农业学报,13(3):158~161
    杨招弟,蔡立群,张仁陟,李爱宗. 2008.不同耕作方式对旱地土壤酶活性的影响.土壤通报,39(3):514~517
    姚晓华. 2008.土壤微生物群落多样性研究方法及进展.广西农业生物科学,27(增刊):84~88
    叶家颖,唐艳. 2000.新会橙果园土壤蛋白酶活性与土壤养分的关系.广西园艺4:5~6
    殷瑞敬,温晓霞,廖允成,黄金辉,高茂盛. 2009.耕作和覆盖对苹果园土壤酶活性的影响.园艺学报,36(5):717~722
    袁志发,周静芋.多元统计分析.北京:科学出版社:2002
    岳中辉,王博文,王洪峰,阎秀峰. 2009.松嫩平原西部盐碱草地土壤多酚氧化酶活性及其与主要肥力因子的关系.草业学报,18(4):251~255
    张成娥,杜社妮,白岗栓,梁银丽. 2001.黄土塬区果园套种对土壤微生物及酶活性的影响.土壤与环境,10(2):121~123
    张成娥,梁银丽. 1999.高原沟壑区套作苹果幼圆土壤养分及酶活性研究.干旱地区农业研究,17(14):22~26
    张成霞,南志标. 2010.放牧对草地土壤微生物影响的研究述评草.草业科学, 27(1):65~70
    章家恩,刘文高,胡刚. 2002.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,11(2):140~143
    张建林,陆欣,王申贵. 2001.有机物料配比施用对土壤碱性磷酸酶活性的影响.土壤通报,32(2):75~791
    张萍,郭辉军,刀志灵,龙碧云. 1999.高黎贡山土壤微生物的数量和多样性.生物多样性,7(4):297~302
    张穗生,叶家颖. 2002.冬种绿肥对新会橙果园土壤蛋白酶活性的影响.广西园艺,2:5~6
    张信娣,曹慧,徐冬青,金叶飞,陈银科. 2008.光合细菌和有机肥对土壤主要微生物类群和土壤酶活性的影响.土壤,40(3):443~447
    张焱华,吴敏,何鹏,佘贵连,吴炳孙,韦家少. 2007.土壤酶活性与土壤肥力关系的研究进展.安徽农业科学,35(34):139~142
    张咏梅,周国逸,吴宁. 2004.土壤酶学的研究进展.热带亚热带植物学报,12(1):83~90
    张昱,程智慧,徐强,李娟. 2007.玉米/蒜苗套作系统中土壤微生物和土壤酶状况分析.土壤通报,38(6):1136~1140
    张玉兰,陈利军,刘桂芬,武志杰. 2003.土壤水解酶类催化动力学研究进展.应用生态学报,14(12):2326~2332
    张玉兰,陈利军. 2006.土壤芳基硫酸酯酶及其活性和农业措施影响.土壤通报,37(4):792~798
    张玉兰,王俊宇,陈振华,张广娜,陈利军. 2008.草甸白浆土水解酶活性和动力学特性对保护性耕作方式的响应.水土保持学报,22(3):163~167
    张志卿,艾应伟,杨雅云,刘浩,裴娟,曾丽霞. 2009.铁路边坡土壤微生物数量和酶活性研究.水土保持通报,29(4):61~66
    赵其国. 2008.提升对土壤认识,创新现代土壤学.土壤学报,45(5):771~777
    赵先丽,周广胜,周莉,吕国红,贾庆宇,谢艳兵. 2008.盘锦芦苇湿地土壤微生物数量研究.土壤通报,39(6):1377~1379
    赵月春,付蓉,莫测辉,易筱筠. 2008.土壤类型与污染浓度对漆酶修复DDT污染土壤的影响.生态环境,7(2):611~614
    郑洪元,张德生,郑莲娣. 1985.土壤中具有蛋白酶活性的酶-腐殖质复合物的提取及其性质的研究. 土壤学报,22(4):357~364
    郑洪元,张德生. 1981.土壤蛋白酶活性的测定及其性质.土壤通报,12(3):32~34
    郑丽英,张益良,杨仁斌. 2007.双草醚对土壤呼吸作用及土壤酶活性的影响.农业环境科学学报,26(3):1117~1120
    郑昭佩,刘作新. 2003.土壤质量及其评价.应用生态学报,14(1):131~134.
    中国科学院水利部水土保持研究所. 1991.土地资源及生产力研究.北京:科学技术文献出版社:4~6
    周礼恺. 1983.土壤酶活性的总体在评价土壤肥力水平中的作用.土壤学报,20(4):413~417
    周礼恺. 1987.土壤酶学.北京:科学出版社:11~257
    朱铭莪,乔安生. 1994.不同施肥条件下娄土脲酶动力学研究.西北农业大学学报,22(4):89~92
    Acton D F, Padbury G A. 1993. A conceptual framework for soil quality assessment and monitoring. A Program to Assess and Monitor Soil Quality in Canada. Soil Quality Evaluation Summary. Ottawa:Res Branch Agriculture
    Amann R L, Ludwig W, Schleifer K H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59: 143~169
    Bandick A K, Dick R P. 1999. Field management effects on soil enzyme activities. Soil Biol. Biochem., 31: 1471~1479
    Bastida F, Zsolnay A, Herńandaz T, Carcia C. 2008. Past, present and future of soil quality indices: A biological perspective. Geoderma, 147: 159~171
    Beck T H. 1984. Methods and application of soil microbiological analysis at the Landensanstalt fur Bodenkultur und Pflanzenbau (LBB) for the determination of some aspects of soil fertility.In:Proceeding of the Fifth Symposium on Soil Biology. Bucharest:Rumanian National Society of Soil Science:13~20
    Burns R G. 1978. Soil Enzymes. New York:Academic Press:370
    Burns R G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol & Biochem, 14(5): 423~427
    Calderon J F, Jackson L E, Scow K M, Rolston D E. 2000. Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry, 32: 1547~1559
    Chaer G, Fernandes M, Myrold D, Bottomley P. 2009. Comparative Resistance and Resilience of Soil Microbial Communities and Enzyme Activities in Adjacent Native Forest and Agricultural Soils. Microb. Ecol., 58: 414~424
    Claus H, Filip Z. 1990. Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes. Soil Biology and Biochemistry, 22(4): 483~488
    Cookson P, Andre G. 1996. LepieceUrease enzyme activities in soils of the Batinah region of the Sultanate of Oman. Journal of Arid Environments, 32: 225~238
    Cooper P J M. 1972. Arylsulphatase activity in northern Nigerian soils. Soil Biol. Biochem., 4(3): 333~337 De la Paz-Jiménez M. De la Horra A M, Pruzzo L, Palma R M. 2002. Soil quality: a new index base microbiological and biochemical parameters. Biol. Fertil. Soils, 35: 302~306
    Deng S P, Tabatabai M A. 1994. Cellulase activity of soils. Soil Biol.Biochem., 26: 1347~1354
    Dick R P, Sandor J A, Eash N S. 1994. Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru. Agric. Ecosyst.Environ, 50: 123~131
    Dick R P. 1997. Soil enzyme activities as integrative indicators of soil health. In:Pankhurst C E, Doube B M, Gupta V V S R.(Eds.). Biological Indicators of Soil Health. Wallingford:CAB International:121~156
    Dick W A, Cheng L, Wang P. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem., 32: 1915~1919
    Dick W A, Tabatabai M A. 1984. Kinetic parameters of phosphatases in soils and organic wastermaterials. Soil Science, 137(1): 7~15
    Doran J W, Parkin T B. 1994. Defining and assessing soil quality. In:Doran J W, Coleman D C, Bezdicek D F, Stewart B A.(Eds.). Defining Soil Quality for a Sustainable Environment. Madison:SSSA SpecialPublication:3~21
    Doran J W, Saffley M. 1997. Defining and assessing soil health and sustainable productivity. In: Pankhurst C E, Doube B M, Gupta V V S R.(Eds.). Biological Indicators of Soil Health. Wallingford:CAB International:1~28
    Doran J W, Zeiss M R. 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15: 3~11
    Drijber R A, Doran J W, Parkhurst A M, Lyon D J. 2000. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology & Biochemistry, 32: 1419~1430
    Eivazi F, Tabatabai M A. 1977. Phosphates in soils. Soil Biol. Biochem., 9: 167~172.
    Elliott E T. 1994. The potential use of soil biotic activity as an indicator of productivity, sustainability and pollution. In:Pankhurst C E, Doube B M, Gupta V V S R, Grace P R.(eds). Soil biota: management in sustainable farming systems. Melbourne:CSIRO:250~256
    Eriksson K E L, Blancbette R A, Ander P. 1990. Biodegration of cellulose. In: Eriksson K E L, Blanchette R A, Ander P. (Eds.). Microbial and Enzymatic Degradation of Wood and Wood Components. New York:Springer-Verlag:89~180
    Frank T, Malkomes H P. 1993. Influence of temperature on microbial activities and their reaction to the herbicide Goltix in different soils under laboratory conditions. Zentralblatt für Mikrobiol., 148: 403~412
    Gianfreda L, Bollag J M. 1996. Influence of natural and anthropogenic factors on enzyme activity in soil. In: Stotzky G, Bollag J M.(Eds.). Soil Biochemistry. New York:Marcel Dekker:123~194
    Gianfreda L, Cristofaro A D, Rao M A, Violante A. 1995. Kinetic Behavior of Synthetic Organo-and Organo-Mineral-Urease Complexes. Soil Sci Soc Am J, 59: 811~815
    Gramss G, Voigt K D, Kirsche B. 1999. Oxidoreductase enzymes liberated by plant root sand their effects on soil humic material. Chemosphere, 38: 1482~1494
    Gupta V V S R, Germida J J. 1988. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol. Biochem., 20: 777~786
    Kandeler E, Stemmer M, Klimanek E M. 1999. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biology & Biochemistry, 31: 261~273
    Karlen D L, Mausbach M J, Doran J W. 1997. Soil quality: a concept,definition, and framework for evaluation. Soil Sci. Soc. Am. J., 61: 4~10
    Kennedy A C, Smith K L. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil, 170: 75~86
    Klein D A. 1989. Cellulose functions in arid soil development. Arid Soil Res. Rehab., 3: 185~198
    Klose S, Moore J M, Tabatabai M A. 1999. Arylsulfatase activity of microbial biomass in soils as affected by cropping systems. Biol. Fertil.Soil, 29(1): 46~54
    Klose S, Tabatabai M A. 1999. Arylsulphatase activity of microbialn biomass in soils. SSSAJ, 63: 569~574.
    Knauff U, Schulz M, Scherer H W. 2003. Arylsufatase activity in the rhizosphere and roots of different crop species. Euro. J. Agro., 19(2): 215~223
    Kramer D N, Guilbault G G. 1963. A substrate for the fluorimetric determination of lipase activity. Analytical Chemistry, 35: 588~589
    Lilian Gianfrda. 1995. Filomena Sannino and A ntonio Violante1, Pesticide effects on the activity of free,immobilized and soil invertase. Soil Biol & Biochem, 27(9): 1201~1208
    Makoi1 J H J R. Ndakidemi P A. 2008. Selected soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 7(3): 181~191
    Martens D A, Johanson J B, Frankenberger J W T. 1992. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci., 153(1): 53~61
    Marx M C, Kandeler E, Wood M, Wermbter N, Jarvis S C. 2005. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biology and Biochemistry, 37: 35~48
    Marxa M C, Kandelerb E, Wooda M, Wermbterc N, Jarvisc S C. 2005. enzymes in soil particle-size fractions: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biology &Biochemistry, 37: 35~48
    Monreal C M, Bergstrom D W. 2000. Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil biochemical quality. Can. J. Soil Sci., 80: 419~428
    Moon A P, Smith T J. 2005. Organophosphate inhibition of an arylesterase from Lumbricus terrestris and reversal by pralidoxime. Soil Biology and Biochemistry, 37: 1211~1213
    Nakamura T, Mochida K, Ozoe Y, Ukawa S, Sakai M, Mitsugi S. 1990. Enzymological properties of three soil hydrolases and effects of several pesticides on their activities. Journal of Pesticide Science (Japan), 15: 593~598
    Nannipieri P, Sequi P, Fusi P. 1996. Humus and enzyme activity. In:Piccolo A (Ed.). Humic Substances in Terrestrial Ecosystems. New York:Elsevier:293~328.
    Parkhust C E, Doube B M, Gupta V V S R. 1997. Bioindicators of soil health. Oxon:CAB International Paulson K N, Kurtz L T. 1970. Michaelis constant of soil urease. Soil Science Society of America, 34(1): 70~72
    Perucci P, Scarponi L. 1983. Effect of crop residue addition on arylsulphatase activity in soils. Plant and Soil, 73: 323~326
    Perucci P. 1992. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol Fertil Soil, 14: 54~60
    Pettit N M, Gregory L J, Freedman R B, Burns R G. 1977. Differential stabilities of soil enzymes: Assay and properties of phosphatase and arylsulphatase. Biochimica Et Biophysica Acta (BBA)-Enzymology, 485(2): 357~366
    Pettit N M, Smith A R J, Freedman R B, Burns R G. 1976. Soil urease: Activity, stability and kinetic properties. Soil Biology and Biochemistry, 8(6): 479~484
    Pflug W. 1981. Effect of humic acids on the activity of soil enzymes. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 144: 423~425
    Primo-Parmo S L, Sorenson R C, Teiber J, La Du B N. 1996. The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics, 33: 498~507
    Puglisia E, Del Rea A A M, Raob M A, Gianfredab L. 2006. Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biology & Biochemistry, 38: 1673~1681
    Rao M A, Gianfreda L, Palmiero F, Violante A. 1996. Interactions of acid phosphatase with clays, organic molecules and organo-mineral complexes. Soil Science, 161: 751~760
    Rao M A, Violante A, Gianfreda L. 2000. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability . Soil Biology & Biochemistry, 32: 1007~1014
    Reddy G B, Faza A. 1989. Dehydrogenase activity in sludge amended soil. Soil Biol. Biochem., 21(2): 327
    Riffaldi R, Saviozzi A, Levi-Minzi R, Cardelli R. 2002. Biochemical properties of a Mediterranean soil as affected by long-term crop managment systems. Soil & Tillage Research, 67: 109~114
    Sakai Y, Ayukawa K, Yurimoto H, Yamamoto K, Kato N. 1998. A novel arylesterase active toward 7-aminocephalosporanic acid from Agrobacterium radiobacter IFO 12607: purification and characterization. Journal of Fermentation and Bioengineering, 85: 8~62
    Sakorn P P. 1987. Urease activity and fertility status of some low land rice soils in the central plain. Thai J of Agric Sci, 20: 173~186
    Sarkar J M, Leonowicz A, Bollag J M. 1989. Immobilization of enzymes on clays and soils. Soil Biology &Biochemistry, 21: 223~230.
    Satyanarayana T, Getzin L W. 1973. Properties of stable cell-free esterase from soil. Biochemistry, 12: 375~380
    Schmidt G, Laskowski S M. 1961. Phosphate ester cleavage (Survey). In:Boyer P D, Lardy H, Myrback K(eds). The enzymes, 2nd edn. New York:Academic Press:3~35
    Schnürer J , Rosswall T. 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied Environ. Microbi., 43: 1256~1261
    Siegel B Z. 1993. Plant peroxidases: an organismic perspective. Plant Growth Regulation, 12: 303~312
    Singh O V, Jain R K. 2003. Phytoremediation of toxic aromatic pollutants from soil. Applied Microbiology and Biotechnology, 63: 128~135
    Skujins J. 1978. History of abiotic soil enzyme research. In:Burns R G.(ed). Soil enzymes. London:Academic Press:1~49
    Sojka R E, Upchurch R R. 1999. Reservation regarding the soil quality concept. Soil Sci.Soc. Am. J., 63: 1039~1054
    Somova L A, Pechurkin N S. 2001. Functional ,regulatory and indicator features of microorganisms in man-made ecosystems. Advanced Space Research, 27(9): 1563~1570
    Speir T W, Ross D J. 1978. Soil phosphatase and sulphatase. In:Burns R G (Ed.). Soil Enzymes. London:Academic Press:197~250
    Srinivasulu M, Rangaswamy V. 2006. Activities of invertase and cellulase as influenced by the application of tridemorph and captan to groundnut (Arachis hypogaea) soil. Afr. J. Biotechnol., 5(2): 175~180
    Stefanic G, Eliade G, Chirnogeanu I. 1984. Researches concerning a biological index of fertility. In:Nemes M P, Kiss S, Papacostea P, et al. Eds. Proceedings of the Fifth Symposium on Soil Biology. Bucharest:Rumanian National Society of Soil Science:35~45
    Stemmer M, Gerzabek M H, Kandeler E. 1999. Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biology & Biochemistry, 31: 9~18
    Swisher R, Carroll G C. 1980. Fluorescein diacetate hydrolysis as an estimator of microbial biomass on coniferous needle surfaces. Microbial ecology, 6(3): 217~226
    Tabatabai M A, Dick W A. 2002. Enzymes in soil Research and developments in measuring activities. In:Burns R G, Dick R P. Enzymes in the Environment, Activity, Ecology, and Applications. New York: Marcel Dekker: 567~595
    Tabatabai M A. 1973. Michealis constant of urease of in soil fractions. Proc. Soil. Soc., 37: 707~710 Tabatabai M A. 1994. Soil enzymes. In: Weaver R W, Augle J S, Bottomley P S. ( Ed.). Methods of soil analysis. Part 2. Microbiological and biochemical properties. Madison:SSSA:775~883
    Tabatabai M A. 1997. Effects of trace elements on urease activity in soils. Soil Biology and Biochemistry, 9(1): 9~13
    Terman G L. 1979. Volatilization losses of nitrogen as ammonia from surface applied fertilizers, organic amendments and crop residues. A dvances in A gronomy, 31: 189~223
    Toshimitsu N, Hamada H, Kojima M. 1986. Purification and some properties of an esterase from yeast. Journal of Fermentation Technology, 64: 459~462
    Trasar-Cepeda C, Leirós C, Gil-Sotres F, Seoane S. 1998. Towards a biochemical quality index for soils: An expression relating several biological and biochemical properties. Biol Fertil Soils, 26: 100~106
    Trasar-Cepeda C. 1998. Towards a biochemical quality index for soils: An expression relating several biological and biochemical properties. Biol Fertil Soils, 26: 100~106
    Trasar-Cepeda M C, Gil-Sotres F. 1988. Kinetics of acid phosphatase activity in various soils of Galicia (NW Spain). Soil Biology and Biochemistry, 20(3): 275~280
    Visser S, Parkinson D. 1992. Soil biological criteria as indicators of soil quality: soil microorganisms. Am J Altern Agric, 7: 33~37
    Vong P C, Dedourge O, Lasserre-Joulin F, Guckert A. 2003. Immobilized-S, microbial biomass-S and soil arylsulphatase activity in the rhizosphere soil of rape and barley as affected by labile substrate C and N additions. Soil Biol. Biochem., 35: 1651~1661.
    Welp G. 1999. Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol Fertil Soils, 30(1-2): 132~139
    Wilke B M. 1991. Effect of single and successive additions of cadmium, nickel and zinc on carbon dioxide evolution and dehydrogenase activity in a sandy Luvisol. Biol. Fert. Soils, 11: 34~37
    Yang Z, Liu S, Zheng D, Feng S. 2006. Effects of cadium, zinc and lead on soil enzyme activities. J. Environ. Sci., 18(6): 1135~1141.
    Zak JC. 1994. Functional diversity of microbial communities: a quantitative approach. Soil iology and Biochemistry, 26: 1101~1105.
    Zantua M I, Bremner J M. 1975. Preservation of soil samples for assay of urease activity. Soil Biology and biochemistry, 7(4-5): 297~299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700