成都平原土壤氮素的时空变异及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据成都平原1982年土壤普查资料与2005年117个区域尺度样点和60个田间尺度样点的土壤氮素含量数据,基于ArcGIS9.0平台运用地统计学方法研究了区域尺度下成都平原区耕层(0~20cm)土壤氮素的空间分布和时空变异特征,采用常规统计分析和缓冲区分析、叠置分析等方法研究了2005年区域尺度和农田尺度下影响土壤氮素的主要因素,并通过田间试验地获得的数据和相关资料,对不同轮作方式下土壤氮素平衡状况进行估算。研究结果分述如下。
     区域尺度下成都平原土壤氮素含量呈现明显的时空变异特征。2005年土壤全氮平均含量为1.29±0.50g kg~(-1),较1982年有所降低;高值区(>2.00g kg~(-1))位于崇州中部,并以此为中心向两侧呈带状减少,在郫县—温江一带和龙泉驿的西南部形成两个低值区(<0.85g kg~(-1));与1982年相比,平原中部和西部除崇州外含量均有不同程度的降低。2005年土壤碱解氮平均含量为72.2±40.9mg kg~(-1),低于1982年的112.4±53.6mg kg~(-1);空间分布以崇州为中心向东和向西均呈先增后减的趋势,向南和向北都逐渐增加,高值区(>110mg kg~(-1))主要位于彭州、新津和新都的部分地区,低值区(<30mg kg~(-1))主要位于平原西南部边缘的大邑—邛崃一带;与1982年相比,碱解氮减少的区域占研究区总面积92.97%。
     从区域尺度和农田尺度两个方面,研究了影响土壤氮素的主要因素。区域尺度下,成都平原主要的4种第四系成土母质中,灰棕色冲积物上发育的土壤全氮极显著高于成都粘土和老冲积物,但与灰色冲积物差异不明显。缓冲区分析表明,在江安河—金马河,冲积物的土壤全氮和碱解氮随着缓冲距离的增加呈极显著的下降趋势,而在蒲阳河—毗河—北河则相反,在府河,全氮呈先增后减的变化,达到极显著相关水平,碱解氮则呈减—增—减变化。在不同土地利用类型之间,菜地和水田的全氮含量显著高于花卉地和旱地。由近年来施氮量的统计可知,土壤全氮和碱解氮含量高值区的施用量明显高于低值区。在距成都市主城区3.0km以内的城乡交错带,土壤全氮和碱解氮含量均随距离的增加呈极显著的增加。农田尺度下,府河冲积物的全氮含量显著或极显著低于江安河—金马河和毗河;从河流上游到下游,冲积物上层(0~20cm)全氮呈下降趋势,下层(20~40cm)则先增后减;在江安河—金马河中游两岸和下游东岸,冲积物全氮含量总体上随距离的增加先增后减,在下游西岸则呈显著或极显著的上升趋势,在毗河上游北岸冲积物全氮呈增—减—增变化,南岸则相反。在成都市主城区以外不同方向上,除主城区以南全氮含量随距离的增加总体呈上升趋势外,其余方向全氮总体上表现为先逐渐增加而后有所下降。
     2003~2005年田间试验地氮素平衡估算结果表明,两处农田都处于氮盈余状态,氮肥施用、前茬秸秆还田是氮素的主要来源,而作物吸收带走、化肥氮的损失是主要输出途径。其中,砂壤土试验地麦—稻和油—稻轮作下盈亏率分别为+7.08%和+23.34%,壤砂土试验地两个麦—稻轮作周期的盈亏率分别为+29.79%和+23.54%。
According to the general detailed soil survey data of 1982 and the chemical analysis dataof soil nitrogen content which were from the 117 regional scale sampling points togetherwith 60 field scale sampling points of 2005, the spatial-temporal variation characteristicsof soil nitrogen at regional scale in Chengdu Plain were performed by the softwareArcGIS9.0, such as geostatistics. Also the influential factors of soil nitrogen werediscussed by routine statistical analysis, buffer analysis and overlay analysis, etc., atregional scale and field scale of 2005. Furthermore, the nitrogen equilibrium of differentcrop rotation types were evaluated by the data from the two test plots and other relatedinformation. The main results were as follows.
     At the regional scale, the content of soil nitrogen presented obvious spatial-temporalvariation characteristics. The results indicated that the content of soil total nitrogen (TN) was1.29±0.50 g kg~(-1) in 2005, lower than the content in 1982. The highest value regions (>2.00gkg~(-1)) of TN content were mainly distributed in the middle part of Chongzhou, and then reducedgradually towards both sides, presenting zonal shapes. The lowest value regions (<0.85g kg~(-1))were located in Pixian-Wenjiang and the southwest of Longquanyi. Comparing with the TNcontent in 1982, the plain of central and western had decreased in varying degrees exceptChongzhou. As far as soil available nitrogen (AN) was concerned, the content was72.2±40.9mg kg~(-1), lower than the content in 1982. Taking Chongzhou as the center, the ANcontent first increased and then decreased towards its east and west, and graduallyincreased towards its south and north. Further more, the highest value regions (>110mgkg~(-1)) were mainly distributed in some parts of Pengzhou, Xinjin and Xindu, while the twolowest value regions (<30mg kg~(-1)) were mainly distributed in some part of Dayi-Qionglaiwhich was in the southwest edge zone of the plain. Comparing with the AN content in 1982,the decreased area accounting for 92.97%of the total.
     The influential factors of soil nitrogen were analyzed at both regional and field scale. At theregional scale, TN content of grey-brown alluvium from which soil derived was highlysignificantly higher than that of Chengdu clay and old alluvium among the four main parentmaterials of Quaternary System in Chengdu Plain, however there was no significant differencebetween the grey-brown alluvium and grey alluvium. Buffer analysis showed that, contrary tothat of Puyang-Pihe-Beihe River, soil TN and AN contents of alluvial deposit presented ahighly significant decreasing tendency as the expand of the buffer distance in Jiang'an-JinmaRiver. Moreover, TN content first increased and then decreased in Fuhe River, presentinghighly significant correlation, while AN content decreased before increasing, and then decreased. Among different land use types, TN content of the vegetable plot and paddy fieldwere both significantly higher than that of flower plot and dryland. From the statistical data ofthe nitrogen fertilizer application in recent years, the highest value regions of TN and ANcontents were both obviously higher than that in the lowest value regions. Furthermore, bothTN and AN contents were highly significantly increased as the increase of the distance in therural-urban fringe of 3.0km outside the Chengdu downtown. At the field scale, soil TN contentof alluvial deposit of Fuhe River was significantly higher than that of Jiang'an-Jinma Riverand Pihe River. From upper reach to lower reach of the rivers, TN content of alluvial deposit in0~20cm profile showed a decreasing tendency, but the content first increased and thendecreased in 20~40cm profile. In Jiang'an-Jinma River, alluvial deposit's TN content ofmiddle reach's side banks and lower reach's east bank increased before decreasing, while in thewest river bank of lower reach, TN content showed significant or highly significant increasingtendency. Also, in Pihe River, alluvial deposit's TN content of upper reaeh's north river bankincreased before decreasing, and then increased, but the variation was just the contrary in thesouth river bank. It was also seen that, TN content increased gradually and then decreased as awhole in different directions outside the downtown, except the south which presented anincreasing tendency.
     Nitrogen equilibrium evaluation of field test from 2003 to 2005 showed that the two testplots were both in surplus condition. Moreover, nitrogen rate and straw residue were theprincipal sources, while crop absorption and loss of N fertilizer were the principal outputpaths. Thus the profit and loss rates were +7.08%and +23.34%in wheat-rice and rape-ricerotation of sandy loam field, and +29.79%and +23.54%in wheat-rice rotation of loamysand field, respectively.
引文
[1] 白军红,邓伟,朱颜明,等.湿地土壤有机质和全氮含量分布特征对比研究.地理科学,2002,22(2):232~237.
    [2] 白军红,邓伟.张玉霞.莫莫格湿地氮磷空间分布规律研究.水土保持学报,2001,15(4):79~81.
    [3] 陈浮,濮励杰,曹慧,等.近20年太湖流域典型区土壤养分时空变化及驱动机理.土壤学报,2002,39(2):236~245.
    [4] 陈伏生,曾德慧,陈广生.土地利用变化对沙地土壤全氮空间分布格局的影响.应用生态学报,2004,15(6):953~957.
    [5] 程先富,史学正,于东升,等.江西省兴国县土壤全氮和有机质的空间变异及其分布格局.应用与环境生物学报,2004,10(1):64~67.
    [6] 杜景龙,姜俐平,基于GIS的土壤变量施肥定量计算及其应用研究.华东师范大学学报(自然科学版),2004,4:79~83.
    [7] 封志明,方玉东.甘肃省县域农田氮素投入产出平衡研究.干旱地区农业研究,2006,24(2):152~158.
    [8] 傅伯杰,郭旭东,陈利顶,等.土地利用变化与土壤养分的变化—以河北省遵化县为例.生态学报,2001,21(6):926~931.
    [9] 高云晖.粮油轮作中施肥对产量和土壤肥力的影响.土壤肥料,2004,1:22~24.
    [10] 龚元石,廖超子.土壤含水量和容重的空间变异及其分形特征.土壤学报,1998,35(1):10~15.
    [11] 郭旭东,傅伯杰,马克明等.基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例.应用生态学报,2000,11(4):557~563.
    [12] 侯景儒,伊镇南,李维明,等.实用地质统计学.北京:地质出版社,1998,27~50.
    [13] 胡金明.三江平原土壤质量变化评价与分析.地理科学,1999,19(5):417~421.
    [14] 胡克林,李保国,陈德立.区域浅层地下水埋深和水质的空间变异性特性.水科学进展,2000,11(4):408~414.
    [15] 胡克林,李保国,黄元仿,等.农田尺度下土体硝酸盐淋失的随机模拟及其风险评价.土壤学报,2005,42(6):909~915.
    [16] 黄道友,陈桂秋,刘守龙,等.红壤丘陵区坡地固体径流基本理化性状探析.中国生态农业学报,2005,13(3):87~90.
    [17] 黄金良,洪华生,张珞平,等.基于GIS和USLE的九龙江流域土壤侵蚀量预测研究.水土保持学报,2004,18(5):75-79.
    [18] 焦峰,温仲明,陈云明.基于GIS的黄丘区土壤水分制图及其定量化分析.水土保持研究,2005,12(3):129~131,177.
    [19] 角媛梅,马明国,肖笃宁.绿洲景观中居民地空间分布特征及其影响因子分析.生态学报,2003,23(10):2092~2100.
    [20] 角媛梅,肖笃宁.绿洲景观空间邻接特征与生态安全分析.应用生态学报,2004,15(1):31~35.
    [21] 孔祥斌,张凤容,齐伟,等.集约化农区土地利用变化对土壤养分的影响—以河北省曲周县为例.地理学报,2003,58(3):333~342.
    [22] 孔祥斌,张凤荣,王茹等.基于GIS的城乡交错带土壤养分时空变化及格局分析—以北京市大兴区为例.生态学报,2003,23(11):2210~2218.
    [23] 李辉信,胡锋,蔡贵信,等.红壤的供氮能力及化肥氮的去向.土壤学报,2002,39(3):390~396.
    [24] 李卫东,李保国,石元春.区域农田土壤质地剖面的随机模拟模型.土壤学报,1999,36(3):289~300.
    [25] 李双才,罗利芳,张科利,等.黄土沟壑丘陵区退耕对土壤侵蚀影响的模拟研究.水土保持学报,2004,18(1):74~77,81.
    [26] 李晓燕,张树文,王宗明,等.吉林省德惠市土壤特性空间变异特征与格局.地理学报,2004,59(6):899~997.
    [27] 刘世梁,傅伯杰,陈利顶,等.卧龙自然保护区土地利用变化对土壤性质的影响.地理研究,2002,21(6):682-688.
    [28] 刘世梁,傅伯杰,马克明,等.岷江上游高原植被类型与景观特征对土壤性质的影响.应用生态学报,2004,15(1):26~30.
    [29] 刘学军,巨晓棠,张福锁.减量施氮对冬小麦—夏玉米种植体系中氮利用与平衡的影响.应用生态学报,2004,15(3):458~462.
    [30] 刘付程,史学正,于东升,等.基于地统计学和GIS的太湖典型地区土壤属性制图研究—以土壤全氮制图为例.土壤学报,2004,41(1):20~27.
    [31] 刘作新,唐力生.褐土机械组成空间变异等级次序地统计学估计.农业工程学报,2003,19(3):27~32.
    [32] 刘万代,王化岑,杨青华,等.施氮对土壤水分亏缺下冬小麦生产力的影响.土壤通报,2002,31(6):262~264.
    [33] 刘杏梅,徐建民,章明奎,等.太湖流域土壤养分空间变异特征分析—以浙江省平湖市为例.浙江大学学报,2003,29(1):76~82.
    [34] 鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究II.农田养分收入参数.土壤通报,1996,27(4):151~154.
    [35] 鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究Ⅳ.农田养分平衡的评价方法和原则.土壤通报,1996,27(5):197~199.
    [36] 鲁如坤,谢建昌,蔡贵信,等.土壤—植物营养学原理.北京:化学工业出版社,1998,1~10.
    [37] 马军花,任理.冬小麦生育期农田尺度下土壤硝态氮淋失动态的数值模拟.生态学报,2004,24(10):2289~2301.
    [38] 门明新,彭正萍,刘云慧,等.基于SOTER的河北省土壤有机碳、氮密度的空间分布.土壤通报,2005,36(4):469~473.
    [39] 聂艳,周勇,朱海燕.基于GIS和PSR模型的农用地资源评价研究.水土保持学报,2004,18(2):92~96.
    [40] 牛灵安.郝晋王民.覃莉,等.盐渍土改造区土壤养分的时空变异性研究.土壤学报.2005.42(1):84~90.
    [41] 潘响亮.邓伟.农业流域河岸缓冲区研究综述.农业环境科学学报,2003,22(2):244~247.
    [42] 潘瑜春,薛绪掌,陈立平,等.基于GIS的变量施肥尺度效应模拟系统.农业工程学报,2005,21(6):77~81.
    [43] 房世波,潘剑君,杨武年,等.南京市郊蔬菜地土壤肥力的时空变化规律.土壤,2003,35(6):518~521.
    [44] 彭奎,欧阳华,朱波.农林复合生态系统氮素平衡及其评价—以中国科学院盐亭农业生态试验站为例.长江流域资源与环境,2004,13(3):252~257.
    [45] 秦耀东.土壤空间变异研究中的定量分析.地球科学进展,1992,7(1):44~49.
    [46] 秦光蔚,周祥.秸秆综合利用技术.江苏:江苏科学技术出版社,2001,2~3.
    [47] 秦永胜,卡刘松,余新晓,等,华北土石山区水源保护林小流域土壤侵蚀过程的模拟研究.土壤学报,2004,41(6):864~869.
    [48] 邱扬,傅伯杰,王军,等.黄土高原小流域土壤养分的时空变异及其影响因了.自然科学进展,2004,14(3):294~299.
    [49] 王胜佳,陈义,李实烨.长期三熟制下谷物产量和土壤氮磷钾及有机质性状的演化.土壤通报,2003,34(3):187~190.
    [50] 王洪杰,李宪文,史学正,等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系.水土保持学报,2003,17(2):44~50.
    [51] 王政权.地统计学及在生态学中的应用.北京:科学出版社,1999,86~125.
    [52] 韦庆,卢文喜.ARC/INFO在城市环境分析中的应用.世界地质,2002,21(2):163~166.
    [53] 沈善敏,万洪富,谢建昌.中国土壤肥力.北京:中国农业出版社,1998,89~109,170~182.
    [54] 夏汉平,敖惠修,何道泉,等.顺德生态乐园之土壤及其合理利用建议.生态科学,2000,19(30):79~88.
    [55] 肖庆文,倪晋仁,李天宏.基于土壤水分分布的土地利用空间优化方法—以黄土高原杏子河流域为例.自然资源报,2005,20(3):317~325.
    [56] 徐可英.国内外精确农业发展现状与对策.中国农业资源与区划,2000,2:53~56.
    [57] 闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响.土壤学报,2005,42(3):440~446.
    [58] 杨耀臣.蒙特卡罗方法与人口仿真学.合肥:中国科技大学出版社,1999,1~5.
    [59] 杨子生,刘彦随,Liang L H,等.金沙江下游近40年来土壤侵蚀—以云南彝良为例.山地学报,2005,23(2):144~152.
    [60] 张菊清.GIS中缓冲区分析后的误差估计.测绘通报,2002,1:7~10.
    [61] 张雪林.浙江省紫色土的成土特征与性状.浙江大学报(自然科学版),1997,20(2):90~96.
    [62] 张秀英,冯学智,赵传燕.基于GIS的黄土高原小流域土壤水分时空分布模拟—以定西安家沟为例.自然资源学报,2005,20(1):132~139.
    [63] 张春霞,郝明德,王旭刚,等.黄土高原沟壑区小流域土壤养分分布特征.水土保持研究,2003,10(1):78~80.
    [64] 张玉铭,胡春胜,张佳宝,等.太行山前平原农田生态系统氮素循环与平衡研究.植物营养与肥料学报,2006,12(1):5~11.
    [65] 张世熔,黄元仿,李保国.冲积平原区土壤颗粒组成的趋势效应与异向性特征.农业工程学报,2004,20(1):56~60.
    [66] 张庆利,史学正,潘贤章,等.江苏省金坛市土壤肥力的时空变化特征.土壤学报,2004,41(2):315~319.
    [67] 张玉斌,吴发启,曹宁,等.泥河沟流域不同土地利用土壤养分分析.水土保持通报,2005,25(2):23~26.
    [68] 章明奎,徐建民.利用方式和土壤类型对土壤肥力质量指标的影响.浙江大学学报(农业与生命科学版),2002,28(3):277~282.
    [69] 周乃健,郝久青.回归等值线图在土壤水分时空变化动态分析中的应用.农业工程学报,1997,13(1):112~115.
    [70] 周卫军,王凯荣,张光远.有机无机结合施肥对红壤稻田土壤氮素供应和水稻生产的影响.生态学报,2003,23(5):917~912.
    [71] 周焱,徐建刚.基于GIS的交通经济带空间边界界定方法研究—以沪宁杭高速公路经济带为例.世界地理研究,2003。12(2):78~85.
    [72] 朱同新,蔡强国.黄土高原黄土洞穴系统的水文特性研究.土壤侵蚀与水土保持学报,1997,3(4):13~19.
    [73] 朱蕾,黄敬峰,李军.GIS和RS支持下的土壤侵蚀模型应用研究.浙江大学学报(农业与生命科学版),2005,31(4):413~416.
    [74] Alphen B J, Stoorvogel J J. A functional approach to soil characterization in support of precision agriculture. Soil Sci. Soc. Am. J., 2000, 64(5): 1706~1713.
    [75] Ardell D H, Curtis A R, Ronald F F. Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system. Soil Sci. Soc. Am. J., 1999, 63(4): 912-917.
    [76] Bahri A, Berndtsson R. Nitrogen source impact on the spatial variability of organic carbon and nitrogen in soil. Soil Sci., 1996, 161(5): 288~297.
    [77] Bathgate J D, Duram L A. A geographic information systems based landscape classification model to enhance soil survey: A southern Illinois case study. Journal of Soil and Water Conservation, 2003, 58(3): 119~127.
    [78] Binkley D, Kaye J, Barry M, et al. First-rotation changes in soil carbon and nitrogen in a eucalyptus plantation in Hawaii. Soil Sci. Soc. Am. J., 2004, 68(5): 1713~1719.
    [79] Brannon G R, Hajek B E Update and recorrelation of soil surveys using GIS and statistical analysis. Soil Sci. Soc. Am. J., 2000, 64(2): 679~685.
    [80] Bruland G L, Richardson C J. Spatial variability of soil properties in created, restored, and paired natural wetlands. Soil Sci. Soc. Am. J, 2005, 69(1):273-284.
    [81] Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties. I. The semivariogram and punctual kriging. J. Soil Sci., 1980, 31(2):315-331.
    [82] Brye K R, Kucharik C J. Carbon and nitrogen sequestration in two prairie topochronosequences on contrasting soils in southern Wisconsin. The American Midland Naturalist, 2003,149(1):90-104.
    [83] Bronson KF, Zobeck T M, Chua T T, et al. Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Sci. Soc. Am. J., 2004, 68(5): 1695-1704.
    [84] Carpenter T M, Georgakakos K P. Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model. Journal of Hydrology, 2004,298(1-4):202-221.
    [85] David J W, Antonio P M. Comparison of uniform and variable-rate phosphorus fertilization for com-soybean rotations. Agronomy Journal, 2004, 96: 26-33.
    [86] DeBusk W F, Newman S, Reddy K R. Spatial-temporal patterns of soil phosphorus enrichment in everglades water conservation area 2A. J. Environ. Qual., 2001,30: 1438-1446.
    [87] Dinnes D L, Karlen D L, Jaynes D B, et al. Nitrogen management strategies to reduce nitrate leaching in tilt-drained Midwestern soils. Agronomy Journal, 2002, 94(1):153-171.
    [88] Driscoll C, Whitall D, John A, et al. Nitrogen pollution: sources and consequences in the U.S. northeast: [1]. Environment, 2003, 45(7):8-23.
    [89] Du C W, Zhou J M , Wang H Y, et al. A preliminary study on natural matrix materials for controlled release nitrogen fertilizers. Pedosphere, 2004,14(1):45-52.
    [90] Faruk D, Hubert M, Adel S, et al. A decision support system for phosphorus management at a watershed scale. J. Environ. Qual., 2002,31: 937-945.
    [91] Franzluebbers A J, Stuedemann J A. Bermudagrass management in the Southern Piedmont USA: VII. Soil-profile organic carbon and total nitrogen. Soil Sci. Soc. Am. J., 2005, 69(5):1455-1462.
    [92] Gilliam F S, Lyttle N L, Thomas A, et al. Soil variability along a nitrogen mineralization and nitrification gradient in a nitrogen-saturated hardwood forest. Soil Sci. Soc. Am. J., 2005,69(1):247-256.
    [93] Gilliam F S, Yurish B M, Adams M B. Temporal and spatial variation of nitrogen transformations in nitrogen-saturated soils of a central Appalachian hardwood forest. Canadian Journal of Forest Research, 2001, 31(10):1768-1785.
    [94] Goovaerts P. Comparative performance of indicator algorithms for modeling conditional probability distribution functions. Math. Geol, 1994,26:389-411.
    [95] Gorres J, Gold A J. Incorporating spatial variability into GIS to estimate nitrate leaching at the aquifer scale. J. Environ. Qual., 19%, 25(3): 491-498.
    [96] Govindaraju R S, Corradini C, Morbidelli R. A semi-analytical model of expected areal-average infiltration under spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. Journal of Hydrology, 2006, 316(1-4):184-194.
    [97] Hanowski J M, Wolter P T, Niemi G J. Effects of prescriptive riparian buffers on landscape characteristics in northern Minnesota, USA. Journal of the American Water Resources Association, 2002,38(3):633-639.
    [98] Harter T, Davis H, Mathews M, et al. Shallow groundwater quality on dairy farms with irrigated forage crops. Journal of Contaminant Hydrology, 2002, 55(3/4):287-315.
    [99] Iqbal J, Thomasson J A, Jenkins J N, et al. Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci. Soc. Am. J, 2005,69(4):1338-1350.
    [100] Johnson R M, Richard E P. Sugarcane yield, sugarcane quality, and soil variability in Louisiana. Agronomy Journal, 2005, 97(3):760-771.
    [101] Keijan W P, Nunan N, Crawford J W. An efficient chain model for the simulation of heterogeneous soil structure. Soil Sci. Soc. Am. J., 2004,68(2):346-351.
    [102] Keller A, Steiger B V, Schulin R, et al. A stochastic empirical model for regional heavy-metal balances in agroecosystems. J. Environ. Qual., 2001, 30: 1976-1989.
    [103] Koch B, Khosla R, Frasier W M, et al. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agronomy Journal, 2004,96: 1572-1580.
    [104]Kolberg R L, Westfall D G, Peterson G A. Influence of cropping intensity and nitrogen fertilizer rates on insitu nitrogen mineralization. Soil Sci. Soc. Am. J., 1999, 63(1):129-134.
    [105] Lake, I E, Lovett A A, Hiscock K M, et al. Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. Journal of Environmental Management, 2003,68(3):315-328.
    [106]Lauzon J D, O'Halloran I P, Fallow D J, et al. Spatial variability of soil test phosphorus, potassium, and pH of Ontario soils. Agronomy Journal, 2005,97(2):524-532.
    [107]Lessoff S C, Indelman P. Analytical model of solute transport by unsteady unsaturated gravitational infiltration. Journal of Contaminant Hydrology, 2004, 72(1-4):85-107.
    [108] Liu X Y, Wu Y Y, Gong S Y. Groundwater resource forecast system based on GIS technology. Transactions of the Chinese Society of Agricultural Engineering. 2003, 19(4): 171-174.
    [109] Lu Z M, Zhang D X. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Advances in Water Resources, 2004, 27(8):775-784.
    [110] Mclaughlin C J, Smith C A, Buddemeier R W. Rivers, runoff, and reefs. Global & Planetary Change, 2003, 39(1/2), 191-199.
    [111] Milkha S A, Tejinder S K, John W D, et al. Yield and nitrogen dynamics in a rice-wheat system using green manure and inorganic fertilizer. Soil Sci. Soc. Am. J., 2000, 64(5): 1867-1876.
    [112]Minami K. N cycle, N flow trends in Japan, and strategies for reducing N_2O emission and NO_3~- pollution. Pedosphere, 2005,15(2):164-172.
    [113] Mohammad N A, Jagath J K. Implications of on-ground nitrogen loading and soil transformations on ground water quality management. Journal of the American Water Resources Association, 2004, 40(1):165-187.
    [114] Moran K K, Six J, Horwath W R, et al. Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Sci. Soc. Am. J., 2005, 69(6): 1730-1736.
    [115]Morakinyo J A, Mackay R. Geostatistical modelling of ground conditions to support the assessment of site contamination. Stochastic Environmental Research & Risk Assessment, 2006,20 (1): 106-118.
    [116] Mzuku M, Khosla R, Reich R, et al. Spatial variability of measured soil properties across site-specific management zones. Soil Sci. Soc. Am. J, 2005, 69(5): 1572-1579.
    [117] Paul G S, Janis E H, Nguyen V H. Reforestation and topography affect montane soil properties, nitrogen pools and nitrogen transformations in Hawaii. Soil Sci. Soc. Am. J., 2004, 68(3):959-968.
    [118] Paul J W, Zebarth B J. Denitrification and nitrate leaching during the fall and winter following dairy cattle slurry application. Canadian Journal of Soil Science, 1997, 77:231-240.
    [119]Perez-Quezada J F, Pettygrove G S, Plant R E. Spatial-temporal analysis of yield and soil factors in two four-crop-rotation fields in the Sacramento Valley, California. Agronomy Journal, 2003, 95(3):676-687.
    [120]Popescu R, Deodatis G, Nobahar A. Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics, 2005,20(4):324-341.
    [121]Pienkowski P, Gamrat R, Kupiec M. Evaluation of transformations of midfield ponds in an agroecosystem on Wetyn Plain. Institute for Land Reclamation and Grassland Farming, Raszyn, Poland: 2004,4(11):351-362.
    [122] Ringrose S. The use of integrated remotely sensed and GIS data to determine causes of vegetation cover change in southern Botswana. Applied Geography Sevenoaks, 1996,16(3):225-242.
    [123] Ronnie W H, Robert G M, David E C. Using Soil Electrical Conductivity to Improve Nutrient Management. Agronomy Journal, 2003,95: 508-519.
    [124] Sanchez J E, Harwood R R, Willson T C, et al. Managing soil carbon and nitrogen for productivity and environment quality. Agronomy Journal, 2004, 96(3):769-775.
    [125] Schmidt J P, Dejoia A J, Ferguson R B, et al. Corn yield response to nitrogen at multiple in field locations. Agronomy Journal, 2002,94(4):798-806.
    [126] Shaffer M J. Nitrogen modeling for soil management. Journal of Soil and Water Conservation, 2002, 57(6):417-425.
    [127] Shahandeh H, Wright AL, Hons F M, et al. Spatial and temporal variation of soil nitrogen parameters related to soil texture and corn yield. Agronomy Journal, 2005, 97(3):772-782.
    [128] Shen R P, Sun B, Zhao Q G, Spatial and temporal variability of N, P and K balances for agroecosystems in China. Pedosphere, 2005, 15(3):347-355.
    [129] Sheng M Y, Feng M L, Sukhdev S M, et al. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in northwestern China. Agronomy Journal, 2004, 96(4):1039-1049.
    [130] Thomas J S, David W M. Spatial variation of plant-available phosphorus in pastures with contrasting management. Soil Sci. Soc. Am. J., 2003, 67: 826-836.
    [131]Triantafilis J, Odeh I O A, McBratney A B. Five geostatistical models to predict soil salinity from electromagnetic induction sata across irrigated cotton. Soil Sci. Soc. Am. J., 2001, 65(3): 869-878.
    [132]Uttam K M, Victor U S, Rao N H. Profile water balance model under irrigated and rainfed systems. Agronomy Journal, 2002, 94: 1204-1211.
    [133] Vandenbygaart A J, Gregorich E G, Angers D A, et al. Uncertainty analysis of soil organic carbon stock change in Canadian cropland from 1991 to 2001.Global Change Biology, 2004,10(6):983-994.
    [134]Vanotti M B, Leclerc S A, Bundy L G Short-term effects of nitrogen fertilization on soil organic nitrogen availability. Soil Sci. Soc. Am. J., 1995, 59(5):1349-1350.
    [135] Vine M F, Degnan D, Hanchette C. Geographic information systems: their use in environmental epidemiologic research. Environmental Health Perspectives, 1997, 105(6):598-605.
    [136] Walley F, Yates T, Groenigen J V, et al. Relationships between soil nitrogen availability indices, yield, and nitrogen accumulation of Wheat. Soil Sci. Soc. Am. J., 2002, 66(5): 1549-1561.
    [137] Wang X J, Li F Y, Fan Z P, et al. Changes of soil organic carbon and nitrogen in forage grass fields, citrus orchard and coniferous forests. Journal of Forestry Research, 2004, 15(1): 29-32.
    [138] Weaver A R, Kissel D E, Chen F, et al. Mapping soil pH buffering capacity of selected fields in the coastal plain. Soil Sci. Soc. Am. J., 2004, 68(2): 662-668.
    
    [139] Webster R. Quantitative spatial analysis of soil in the field. Advance in Soil Sci., 1985, 3:1-70.
    [140]Wilcke W. Small-scale variability of metal concentrations in soil leachates. Soil Sci. Soc. Am. J., 2000, 64:138-143.
    [141] Ying O Y, Peter N K, Robert S M, et al. Spatial distribution of DDT in sediments from estuarine rivers of central Florida. J. Environ. Qual., 2003, 32:1710-1716.
    [142]Zebarth B J, Younie M F, Paul J W, et al. Fertilizer banding influence on spatial and temporal distribution of soil inorganic nitrogen in a corn field. Soil Sci. Soc. Am. J., 1999,63(6):1924-1932.
    [143] Zhang Y G, Jiang Y, Liang W J, et al. Vertical variation and storage of nitrogen in an aquic brown soil under different land uses. Journal of Forestry Research, 2004,15(3): 192-196.
    [144] Zhou Y, Maszle D, Spear R C, et al. The application of geographic information system (GIS) and spatial analysis in anti-schistosomiasis in mountainous region. Chinese Journal of Schistosomiasis Control, 1999,11 (5):263-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700