黄土高原水蚀风蚀交错带小流域植被恢复的水土环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地利用结构/覆被变化是全球变化研究的热点问题之一。土地利用结构变化引起如土壤水分、土壤养分等物质的循环发生变化。黄土高原是我国水土流失最为严重的地区,也是生态环境建设重点实施的区域之一。近年来该区开展了大量的水土流失治理和植被建设工作,特别是1999年国家在西部10省363县开展的“退耕还林还草”工程以来,对黄土高原土地利用格局及生态环境产生了强烈影响。本文针对黄土高原地区植被恢复的水土环境效应问题,以水蚀风蚀交错带为主要研究区域,选择神木六道沟流域退化生态系统为研究对象开展了试验研究,通过小区—坡面—流域尺度研究了土地利用及其格局与土壤水分、土壤理化特性、植被群落演替特征、生态水文循环特征和径流侵蚀的相互关系,得到了以下主要结果:
     1、混合的土地利用结构形成了土壤含水量高低不同的斑块镶嵌坡面格局,有助于坡面径流侵蚀的控制。小流域内土壤水分呈中等变异,且具有明显的空间结构,高斯模型可以较好的反映这种结构特征。干旱条件下,土壤水分保持较高的基台值和变程,而异质比相对较低,且它们随土壤剖面分布差异明显,表明土壤含水量的不同能改变土壤水分的变异程度及分布格局。建立了土壤水分空间回归预测模型,干旱条件下土地利用和土壤属性变量综合解释了78.7%-86.5%的土壤水分空间变异;而较湿润条件下增加了地形属性变量,三者综合仅能解释58.2%-77.7%的土壤水分空间变异。模型的平均预测误差和均方根预测误差都较小,模型可用于研究区土壤水分的预测。
     2、通过不同土地利用空间配置成混合利用结构拦截和减少径流侵蚀,形成了土壤属性坡面斑块镶嵌格局。小流域内除土壤容重外,土壤理化性状呈中等的空间变异,且均具有中等的空间自相关,其变异性由土壤系统内部因素包括土壤质地、矿物、成土过程、地形特征和人类活动造成的外部因素包括施肥和耕作等共同控制。建立了土壤理化属性的多元回归预测模型,不同土壤属性模型的自变量不同,表明不同的土壤理化性状变异受不同的环境因子控制。分析认为合理配置土地利用形成斑块状结构和增加养分的投入可以有效地改善该地区的土壤质量。
     3、Kriging插值显示混合土地利用结构小区土壤表层水分和容重呈明显的斑块镶嵌格局,与土地利用结构一致,易于形成径流侵蚀的自我调控系统,其中M1小区(柠条-豆地-苜蓿)的年侵蚀模数最低,两年的减蚀率分别达到98%和94%。从侵蚀控制角度出发提出了土地管理策略:通过土地利用配置,提高土壤的空间变异性,形成水文单元镶嵌分布的径流侵蚀自我调控系统;通过农业措施可提高镶嵌结构下各斑块的土壤水分入渗能力,从而提高整个流域产流的土壤入渗能力阈值。
     4、种植的苜蓿7年内产量持续增加,而后逐渐降低,大约在种植10年左右后演替发育成顶级草地群落—长芒草群落。随着苜蓿生长年限的延长,土壤容重增加,苜蓿人工草地群落阶段对土壤水分消耗严重。但在演替后期,土壤水分是一个补给恢复过程。苜蓿人工草地退化一方面是由于与乡土物种之间的竞争引起,但更重要的因素是苜蓿生长对土壤水分的过渡消耗而形成的土壤水分胁迫。有效控制植物种群密度可以减少苜蓿草地的土壤水分消耗;通过改变土地利用方式,苜蓿草地与农作物、翻耕裸露进行轮作可以有效地恢复因苜蓿生长消耗的土壤水分。
     5、研究区柠条林冠层平均截留率为24.2%,稳定截留率约为12%。“漏斗”状结构的杏树林冠平均截留率为15.1%,稳定截留率约为10%。相对于农地小区,2007年长芒草、柠条、杏树和撂荒地的减蚀率基本都达到了80%。植被盖度和高度因子对坡面产流产沙的灰色关联度都大于0.5。土地利用类型和土壤性质对土壤水分含量具有重要的影响,各小区浅层土壤水分季节变化剧烈,随土壤深度增加土壤含水量变化减小。柠条和杏树林地剖面土壤水分的季节变化表现为“消耗-补偿”的过程,0-120cm土层储水量表现为:杏树林>沙黄土柠条>黄绵土柠条>硬黄土柠条>风沙土柠条,120-400cm土层由于受降雨的影响较小,土壤储水量未表现出明显的季节变化,其储水量表现为杏树>沙黄土柠条>硬黄土柠条>黄绵土柠条>风沙土柠条。黄绵土种植的4-6年生苜蓿土壤水分消耗大,而农地撂荒后演替发育的浅根系草本对浅层土壤水分的消耗比农作物对水分的消耗要多。
     6、水量平衡分析结果表明,两个生长季度平均下来,各小区土壤水分基本保持平衡,观测期末土壤储水均略有盈余,其中农地的盈余最高,为106.9mm,ET/P为71.0%。单个生长季各小区水量平衡具有一定的差异性,2008年黄绵土、风沙土柠条地和黄绵土生长的苜蓿(I)地蒸散量超过了同期降水量,ET/P分别为103.2%、102.5%和104.6%,观测期末土壤储水呈负平衡。用SWAP模型的模拟结果表明,土壤水分和储水量模拟结果与实测值具有很好的一致性;长芒草地水分收支基本平衡,苜蓿草地的水分支出是农地的1.38倍,其中苜蓿的蒸腾耗水量是农地绿豆的3.88倍,这是引起苜蓿草地群落过度消耗土壤储水而呈现负补偿的主要原因。可见,农地退耕还林还草后会增加SVAT系统水分支出,如果植被群落耗水过大很可能使土壤干化。
     植被恢复的水土环境效应研究从一定角度评价了水蚀风蚀交错带退耕还林(草)工程对环境的影响,同时也为进一步开展科学合理的植被恢复提供指导。本文在野外测定的基础上,对水蚀风蚀带小流域植被恢复的水土环境效应进行了研究,并主要就土地利用及格局改变下土壤水分、土壤水分物理-养分属性空间分异特性及其水土保持效应、人工建设植被的群落演替特征与土壤水分物理属性的耦合关系及不同生态系统水分循环过程和植被耗水规律等问题进行了较为深入的分析。希望本文对于不同景观尺度下土壤属性时空变异及SVAT系统水分循环的基础理论研究提供借鉴,对黄土高原以小流域为基本单元的生态环境建设具有实践指导意义。基于土地利用格局下土壤属性时空变异规律的生态过程模拟似应是这一领域今后研究的重点之一。
In recent years, much attention has been focused on the land use/cover change at various scales. Land use/cover change may influence soil water and soil nutrients, as well as various material cycles. The Loess Plateau is very serious in soil erosion and water loss and is one of the key regions for eco-environmental construction. Much effort on soil erosion control and ecosystem restoration has been made in recent years, especially the project of“Conversion of Farmland to Forest and Grassland Regeneration”, which initiated in 1999 and carried out in 10 provinces including 363 counties located in mid- and western China. Extensive vegetation restoration was implemented and land use/cover has changed during the 8 years since this program started. The paper mainly considered the soil-water environmental effects of revegetation on the Plateau. The primary study area of this project was the crisscross area of wind-water erosion in the north part of the Plateau. Liu Daogou watershed was the representative small watershed for the severely degraded ecosystems in this area. Through two years field observations, the effects of land use and its patterns on soil moisture, soil water-physical and nutrient properties, successional characteristics of vegetation community, eco-hydrological cycle and runoff and erosion were studied in plot, slope, and small watershed scales. The results are as follows:
     1. The mixed land use structures formed the patterns of plaque mosaic with different soil moisture in the slope, which was helpful to slope runoff and erosion controlling. In the small watershed, soil moisture presented moderate variability, and had obvious spatial structures, which could be described by Gaussian models. Compared to the moist condition, the soil moisture had higher sill and range, but lower nugget-to-sill ratio under dry condition, indicating that precipitation could change the intensity of soil moisture variability and the distribution structure. We constructed the spatial regression-prediction models of soil moisture. In these models, land uses and soil attribution variables could synthetically explain 78.7%-86.5% of the soil moisture spatial variability under dry condition; but under moist condition, integrated the land uses, soil texture and topographic variables could only explain 58.2%-77.7% of the variability. The models had small mean prediction errors (MPE) and root mean square prediction errors (RMSPE), which could be used in the research region to predict soil moisture.
     2. Mixed land uses patterns developed by the spatial arrangement of different land uses could trap the runoff and sediments, which ultimately formed the plaque mosaic patterns of soil physcical and chemical properties on the slope. Except for soil bulk density in the small watershed, soil physical and chemical properties presented moderate variability, and had moderate spatial autocorrelation. These spatial variabilities could be controlled by intrinsic variations in soil characteristics (texture, mineralogy and soil genesis processes) and extrinsic variations (soil fertilization and cultivation practices). The study built the spatial multiple regression-prediction models of soil properties. There were different variables entered to the different soil properties prediction models, which meant that at different soil depths, there were different environmental factors controlled the spatial variabilities of different soil properties. The results suggested that creating a mosaic pattern to increasing spatial variation of areas by land use arrangement to trap soil nutrients to stay in the ecosystem and more nutrient matter input such as manure addition and crop residues return would improve the soil quality effectively on the hilly area of the Plateau.
     3. Kriging interpolation represented that soil surface moisture and bulk density in mixed land-use structure plot had apparent characteristics of plaque mosaic pattern, which were uniform with land-use structures and easy to form self-regulation system of runoff erosion. M1 plot (korshinsk peashrub-mung bean-alfalfa) had the smallest annual erosion modulus, and the erosion reduction rate in the research two years reached to 98% and 94%, respectively. With regards to the control of erosion, this study suggested two practices for land management, i.e., creating a mosaic pattern by land use arrangement and raising the soil infiltration capacity within the spatial mosaic pattern.
     4. Alfalfa yield increases for about seven years after seeding, then, it declines and alfalfa is replaced by a natural community, dominated by stipa bungeana, that begins to thrive about ten years after seeding with alfalfa. Soil bulk density increases over time and soil water is severely depleted under alfalfa. The decline in alfalfa yields is most likely related to water stress resulting from depletion of soil water at deeper depths of the soil profiles, rather than by competition from native species. Restricting the plant density could reduce water consumption by alfalfa; while soil water recharge may be facilitated by rotating alfalfa with other crops, natural vegetation or by leaving the soil bare for more than three years before replanting.
     5. In the study site, the average canopy interception rate of korshinsk peashrub was 24.2%, and the steady interception rate was about 12%. The average interception rate of apricots canopy with“Funnel”shape was 15.1%, at the same time the steady interception rate was about 10%. Compared to farmland, the erosion reduction rate of stipa bungeana land, korshinsk peashrub land, apricot land and fallow land were greater than 80% in 2007. Gray correlation analysis suggested that vegetation coverage and plant height were the the important factors affecting the runoff and sediment production on sloping land, whose gray correlation degrees all exceeded 0.5. The soil moisture in a profile was greatly affected by different land uses and soil texture. At top layers for every plot, soil moisture varied seasonally, but with the increase of soil depth, these variations were reduced. The soil moisture in the soil profiles showed a“consumption-compensation”seasonal process in korshinsk peashrub and apricot land. The soil water storage in 0-120cm was apricot> korshinsk peashrub in sandy loess soil> korshinsk peashrub in loess soil> korshinsk peashrub in hard loess soil> korshinsk peashrub in sandy soil. The soil water storage didn’t show obvious seasonal changes with small effect of rainfall at 120-400cm soil depth. The soil water storage in 120-400cm was apricot> korshinsk peashrub in sand loess soil> korshinsk peashrub in hard loess soil > korshinsk peashrub in loess soil> korshinsk peashrub in sand soil. 4-6 years old M.sativa used more water in 0-400cm soil layer, and the soil moisture consumption of the top layer by the shallow root herbage in fallow land was greater than in crop land by bean.
     6. The water balance of different land uses indicated that the soil water kept balance for the each plot over the whole study period. There was a slight surplus in soil water storage during the end of the observation period on each land use, especially farmland, which had the highest surplus, being 106.9mm, and the average evapotranspiration/precipitation (ET/P) was 71.0%. In each experimental year, the soil water balance condition had small difference among the land uses. Korshinsk peashrub in loess soil and in sand soil and the alfalfa (I) grown on loess soil in 2008 had more evapotranspiration than precipitation in the study period, and ET/P were 103.2%, 102.5% and 104.6%, respectively. In the end of the observation period, soil water storages were in negative balance. The simulation of water flow by SWAP model represented that the predicted values of soil moisture and soil water storage had obviously consistent with the measured values. The water input on stipa bungeana grassland was roughly equal to the output. The water output on alfalfa grassland was 1.38 times of that on cropland, and the evapotranspiration of alfalfa was 3.88 times of that on cropland with mung bean, which was the main reason causing soil water deficit on alfalfa grassland. So conversion of farmland to forest and grassland regeneration will increase the output of water in the SVAT system, if there is a great deal of water consumption by vegetation community, it will lead to soil desiccation.
     Based on a small watershed, the studies of the soil-water environmental effects of revegetation evaluated the project of“Conversion of Farmland to Forest and Grassland Regeneration”in the Wind-water Erosion Crisscross Zone, but also could be as recommendation for revegetation practice. In this paper, issues related to the soil-water environmental effects including temporal-spatial variability of soil moisture, soil-water physical and nutrient properties under the effect of land use and its patterns, successional characteristics of vegetation community and their relationships with soil-water physical properties under vegetation construction processes, the water flow of soil-vegetation-atmosphere-transport and its consumption characteristics of the representative sparse vegetation in the region are analyzed. Hopefully, the paper could be of some importance for both the basic research of soil variability, water cycle of SVAT system and practical application of vegetation restoration. In the future, more accurate modeling of ecological processes should be done by taking the characteristics of temporal-spatial soil variability based on land use patterns into consideration.
引文
[1]傅伯杰,陈利顶,马克明.黄土丘陵小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246.
    [2] Bormann, H., Breuer, L., Gr?ff, T., Huisman, J. A.. Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis [J]. Ecological Modelling, 2007, 209(1):29-40.
    [3] Wang, X. J., Gong, Z. T.. Monitoring and evaluation of soil changes under land use of different patterns at a small regional level in south China [J]. Pedosphere, 1998,6:373-378.
    [4] Rey, F.. Influence of vegetation distribution on sediment yield in forested marly gullies [J]. Catena, 2003, 50:549-562.
    [5] Abdul, G., Jens, R. J., Ole, K. B., et al. Runoff and losses of soil and nutrients from small watersheds under shifting cultivation in the Chittagong Hill Tract of Bangladed [J]. Journal of Hydrology, 2003, 279:293-309.
    [6] Wang, X. J., Gong, Z. T. . Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China [J]. Geoderma, 1998, 81:339-355.
    [7] Wezel, A., Rajot, J. L., Herbrig, C.. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger [J]. Journal of Arid Environments, 2000, 44:383-398.
    [8]申元村,杨勤业,等.加快黄土高原水土保持生态建设的战略思考[J].中国水土保持, 2004, 6: 6-7.
    [9]唐克丽.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J].西北水土保持研究所集刊, 1993, 18:2-15.
    [10]中国国际工程咨询公司.退耕还林工程中期评估报告[R]. 2003.
    [11]刘杰,杨志峰,崔保山,等.人为干扰下的生态负效应研究综述[J].生态学杂志,2005,24(11):1317-1322.
    [12] USEPA. Guidelines for Ecological Risk Assessment[M]. FRL-6011-2, 1998.
    [13]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000. 86-l14.
    [14]苏人琼.黄土高原地区水资源问题及其对策[M].北京:中国科学出版社,1990.
    [15]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [16]朱显谟.抢救“土壤水库”治理黄土高原生态环境[J].中国科学院院刊,2000,4:293-295.
    [17]王金叶,王艺林,金博文,等.干旱半干旱区山地森林的水分调节功能[J].林业科学,2001,37(5):120-124.
    [18]吴钦孝,赵鸿雁.黄土高原森林水文生态效应和林草适宜覆盖指标[J].水土保持通报,2000,20(5):32-34.
    [19]周长瑞.森林的防洪减灾机理[J].山东林业科技,1998,6:35-38.
    [20] Rodriguez-Iturbe, I.. Ecohydrology: a hydrologic perspective of climate–soil–vegetation dynamics [J]. Water Resources Research, 2000, 36: 3–9.
    [21]余优森,林日暖,邓振镛,等.人工草地土壤水分周年变化规律的研究[J].土壤学报,1992,29(2):175-182.
    [22]贾志清,宋桂萍,李清河,等.宁南山区典型流域土壤水分动态变化规律研究[J].北京林业大学学报,1997,19(3):15-20.
    [23]龚学臣,杨立廷,牛瑞明.冀西北风沙半干旱区农田土壤水分动态分析[J].土壤侵蚀与水土保持学报,1998,4(2):88-91.
    [24]韩仕峰,杨新民,张效忠.黄土高原西部地区土壤水分亏缺及提高途径[J].水土保持通报,1988,8(2):57-59.
    [25]韩仕峰.黄土高原土壤水分资源特征[J].水土保持通报,1990,(l):21-26.
    [26]杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992.282-290.
    [27]杨海军,孙立达,余新晓.普西黄土区水土保持林水量平衡的研究[J].北京林业大学学报,1993,15(3):42-50.
    [28]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社, 1997.
    [28]王国梁,刘国彬,周生路.黄土高原土壤干层研究评述[J].水土保持学报,2003,17(6):156-159.
    [29]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427-432.
    [30]王力,邵明安,侯庆春.土壤干层量化指标初探[J].水土保持学报,2000,14(4):87-90.
    [31]杨维西.试论我国北方地区人工植被土壤干化问题[J].林业科学,1996,32(1):78-85.
    [32]王力,邵明安.黄土高原退耕还林条件下的土壤干化问题[J].世界林业研究,2004,17(4):57-60.
    [33]程积民,万惠娥,王静.黄土丘陵区紫花苜蓿生长与土壤水分变化[J].应用生态学报,2005,16(3):435-438.
    [34]陈洪松,王克林,邵明安.黄土区人工林草植被深层土壤干燥化研究进展[J].林业科学,2005a,41(4):155-161.
    [35]陈洪松,邵明安,王克林.黄土区深层土壤干燥化与土壤水分循环特征[J].生态学报,2005b,25(10):2491-2498.
    [36]樊军,邵明安,王全九.陕北水蚀风蚀交错带苜蓿地土壤水分过耗与恢复[J].草地学报,2006,14(3):261-264.
    [37]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1646.
    [38] Famiglietti, J.S., Rudnicki, J.W., Rodell, M.. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas [J]. Journal of Hydrology 1998, 210: 259–281.
    [39] Grayson, R. B., Western, A. W., Chiew, F. H. S., et al. Preferred states in spatial soil moisture patterns: local and nonlocal controls [J]. Water Resources Research, 1997, 33:2897-2908.
    [40] Buttafucco, G., Castrignano, A., Busoni, E., Dimase, A.C.. Studying the spatial structure evolution of soil water content using multivariate geostatistics [J]. Journal of Hydrology, 2005, 311,202-218.
    [41]刘春利,邵明安,张兴昌,等.神木水蚀风蚀交错带退耕坡地土壤水分空间变异性研究[J].水土保持学报,2005,19(1):132-135.
    [42]胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异性研究[J].水科学进展,2006,17(1):74-81.
    [43]王军,傅伯杰,邱扬,等.黄土丘陵小流域土壤水分的时空变异特征—半变异函数[J].地理学报,2000,55(4):428-438.
    [44]潘成忠,上官周平.黄土半干旱丘陵区陡坡地土壤水分空间变异性研究[J].农业工程学报,2003,19(6):5-9.
    [45] Qiu, Y., Fu, B.J., Wang, J., et al. Spatiotemporal prediction of soil moisture contentusing multiple-linear regression in a small catchment of the Loess Plateau, China [J]. Catena, 2003, 54:173-195.
    [46] Fu, B.J., Wang, J., Chen, L.D., et al. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China [J]. Catena, 2003, 54:197-213.
    [47] Doran, J.W., Coleman, D. C., Bezdicek, D. F.. Defining soil quality for sustainable environment [M]. SSSA Special Publication, 1994. 35.
    [48] Karlen, D. L., Maushach, M. J., Doran, J. W., et al. Soil quality: A concept, definition, and framework for evaluation [J]. Soil Science Society of America Journal, 1997, 61:4-10.
    [49] Li, Y., Lindstrom, M. J.. Evaluating soil quality, soil redistribution relationship on terraces and steep hillslope [J]. Soil Science Society of America Journal, 2001, 65:1500-1508.
    [50] Lu, D., Moran, E., Mausel, P.. Linking Amazon secondary succession forest growth to soil properties [J]. Land Degradation & Development, 2002,13:331-343.
    [51]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报,2005,19(1):93-96.
    [52]项文化,田大伦,闫文德,等.杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累[J].生态学报,2003,23(4):695-702.
    [53]薛萐,刘国彬,戴全厚,等.不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响[J].自然资源学报,2007,22(1):20-27.
    [54]潘成忠,上官周平,刘国彬.黄土丘陵沟壑区退耕草地土壤质量演变[J].生态学报,2006,26(3):690-696.
    [55]陈奇伯,费希亮.土壤侵蚀预报研究的新进展[J].中国水土保持,1996,22(2):20-23.
    [56]李鹏,李占斌,郑良勇.植被保持水土有效性研究进展[J].水土保持研究,2002,9(1):76-80.
    [57]李鹏,李占斌,郑良勇.植被恢复演替初期对模拟降雨产流特征的影响[J].水土保持学报,2004,18(1):54-57, 62.
    [58] Hofmann, L., Ries, R. E., Gilly, J. E.. Relationship of runoff and soil loss to ground covers of native and reclaimed grazing land [J]. Agronomy Journal, 1983, 75:599-602.
    [59]查轩,唐克丽,张科利,等.植被对土壤特性及土壤侵蚀的影响研究[J].水土保持学报,1992,6(2):52-59.
    [60] Kirkby, M.. Modeling the interactions between soil surface properties and water erosion [J]. Catena, 2001, 46(2-3):89-102.
    [61] Gilly, J.E., Risse, L.M.. Runoff and soil loss as affected by the application of manure [J]. Transaction of the ASAE, 2000, 43(6):1583-1588.
    [62] Fitzjohn, C., Ternan, J. L., Williams, A. G.. Soil moisture variability in a semi-arid gully catchment: implications for runoff and erosion control [J]. Catena, 1998, 32:55-70.
    [63] Fu, B.J., Chen, L.D.. Agricultural landscape spatial pattern analysis in the semi-arid hill area of the Loess Plateau, China [J]. Journal of Arid Environment, 2000, 44(3):291-303.
    [64] Ludwig, J. A., Tongway, D. J., Marsden, S. G.. Strips, strands on stipples: modeling the influence of three landscape banding patterns on resource capture and productivity in a semi-arid woodlands, Australia [J]. Catena, 1999, 37:257-273.
    [65]黄志霖,傅伯杰,陈利顶,等.黄土丘陵沟壑区不同退耕类型径流、侵蚀效应及其时间变化特征[J].水土保持学报,2004,18(4):37-41.
    [66] Western, A. W., Bloschl, G.. On the spatial scaling of soil moisture [J]. Journal of Hydrology, 1999, 217:203-224.
    [67] Flügel, W. A.. Delineating hydrological response units by geographical information system analyses for regional hydrological modeling using PRMS/MMS in the drainage basin of the river Brol Germany [J]. Hydrological Processes, 1995, 9:423-436.
    [68] Fu, B. J.. Soil erosion and its control in the Loess Plateau of China [J]. Soil land use and Management, 1989, (5):76-82.
    [69] Fu, B. J., Gulinck, H.. Land evaluation in area of severe erosion, the Loess Plateau of China [J]. Land Degradation and Rehabilitation. 1995, (1):33-40.
    [70] Rey, F.. Effectiveness of vegetation barriers for marly sediment trapping [J]. Earth Surface Processes and Landforms, 2004, 29:1161-1169.
    [71] Mart nez Raya A, Dur dn Zuazo V H, Francia Mart nez J R. Soil erosion and runoff response to plant-cover strips on semiarid slopes (SE Spain) [J]. Land Degradationand Development, 2006, 17(1):1-11.
    [72]陈浩,蔡强国.坡面植被恢复对沟道侵蚀产沙的影响[J].中国科学D辑地球科学,2006, 36(1): 69-80.
    [73] Van Rompaey, A. J. J., Verstraeten, G., Van Oost, K., Gowrs, G., et al. Modeling mean annual sediment yield using a distributed approach [J]. Earth Surface Processes and Landforms, 2001, 26:1221-1236.
    [74] Fernandez, C., Wu, J. Q., Mccool, D. K., et al. Estimating water erosion and sediment erosion with GIS, RUSLE and SEDD [J]. Journal of Soil and Water Conservation, 2003, 58(3):128-136.
    [75]王晗生,刘国彬.植被结构及其防止土壤侵蚀作用分析[J].干旱区资源与环境,1999,13(2):62-68.
    [76] Gash, J. H. C.. Comparative estimates of interception loss from three coniferous forests in Great Britain [J]. Journal of Hydrology, 1980, 48:89~105.
    [77]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究.1998, (6):14-23.
    [78]石生新.高强度人工降雨入渗规律[J].水土保持通报,1992,12(2):49-54.
    [79]吴长文,王礼先.林地坡面水动力学特性及其阻延地表径流研究[J].水土保持学报,1995,9(2):32-38.
    [80]张光辉,梁一民.黄土丘陵区人工草地盖度季动态及其水保效益[J].水土保持通报,1995,15(2),38-43.
    [81]康绍忠,聂光镛,等.内蒙古敖包小流域土壤入渗分布规律的研究[J].土壤侵蚀与水土保持学报,1996,2(2):38-46.
    [82]蒋定生,黄国俊,范兴科.黄土高原坡耕地水土保持措施效益评价试验研究(Ⅲ) [J].水土保持学报,1990,(4):8~13,20.
    [83]宋孝玉,李水杰,陈洪松等.黄土沟壑区不同下垫面条件农田降雨入渗及产流规律[J].干早地区农业研究,1998,4:65-72.
    [84] Fohrer, N., Haverkamp, S., Eckhardt, K., et al. Hydrologic response to land use changes on the catchment scale [J]. Physics and Chemistry of Earth(B), 2001, 26(7-8):577-582.
    [85] Kleidon, A., Heimann, M.. Assessing the role of deep rooted vegetation in the climate system wity model simulation: mechanism, comparison to observations andimplications for Amazonian deforestation [J]. Climate Dynamics, 2000, 16:183-199.
    [86] Zhou, X. F.. Proper Assessment for Forest Hydrological Effect [J]. Journal of Natural Resources, 2001, 16: 420-426.
    [87] Braud, I., Vich, A.I.J., Zuluaga, J., et al. Vegetation influence of runoff and sediment yield in the Audes region: observation and modeling [J]. Journal of hydrology, 2001, 254:124-144.
    [88] Domingo, F., Villagarcia, L., Brenner, A. J., et al. Evapotranspiration model for semi-arid shrub-lands tested against data from SE Spain [J]. Agricultural and Forest Meteorology, 1999, 95:67-84.
    [89] Vǒrǒsmarty, C. J., Federer, C. A., Schloss, A. L., et al. Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling [J]. Journal of Hydrology, 1998, 207:147-169.
    [90]陈一鹗,刘康.渭北旱塬紫花苜蓿的蒸腾强度与水量平衡研究[J].水土保持通报,1990,10(6):108-112.
    [91]杨海军,孙立达,等.晋西黄土区水土保持林水量平衡的研究[J].北京林业大学学报,1993,15(3):42-50.
    [92]王彦辉,熊伟,于澎涛,等.干旱缺水地区森林植被蒸散耗水研究[J].中国水土保持科学,2006,4(4):19-25.
    [93]黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域植被生态用水评价[J].水土保持学报,2005,19(2):152-155,194.
    [94] BAHC. The operational plan, IGBP: A study of global change of ICSC[R]. IGBP report No. 27.1993:1-84.
    [95]苏宏新,桑卫国.宏观植物生态模型的研究现状与展望[J].植物生态学报,2002,26(增刊):98-106.
    [96] Moehrlen, Corinna.. Literature review of current used SVAT models UCC[R]. Department of Civil & Environmental Engineering Internal Report.1999:04-99.
    [97]于维忠.论流域产流[J].水利学报,1985,(2):1-11.
    [98] Kroes, J.G. and J.C.van Dam(eds). Reference Manual SWAP version 3.0.3. Wageningen, Alterra, Green World Research. ALTERRA-report.773. 2003.
    [99] Johnson, I.. WaterMod—Water dynamics, evapotranspiration and crop growth. www.greenhat.com.au.2003
    [100] Jansson, P.E., Karlberg, L.. Coupled heat and mass transfer model for soil–plant-atmosphere systems. Royal Institute of Technology, Dept. of Land and Water Resources Engineering, Stockholm. 2001.
    [101]樊军.水蚀风蚀交错带土壤水分运动与数值模拟研究[D].中国科学院水利部水土保持研究所,2005.
    [102] Allen, R.G., Pereira, L.G., Raes, D., Smith, M.. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO irrigation and Drainge Paper 56, FAO, 1998, ISBN 92-5-104219-5.
    [103]黄明斌,邵明安,李玉山.一个改进的随机动力学水平衡模型及其应用研究:I.模型[J].水利学报,2000,(6):20-26.
    [104]黄明斌,邵明安,李玉山.一个改进的随机动力学水平衡模型及其应用研究:II.应用[J].水利学报,2000,(6):27-33.
    [105]陈洪松,邵明安,王克林.黄土区荒草地土壤水平衡的数值模拟[J].土壤学报. 2005, 42(3):353-359.
    [106]李细元,陈国良.人工草地土壤水系统动力学模型与过耗恢复预测[J].水土保持研究,1996,3(1):166-178.
    [107]卫三平,王力,吴发启.土壤干化的水文生态效应[J].水土保持学报,2007,21(5):123-12.
    [108]伍业钢,李哈滨.景观生态学的理论与发展[M].当代生态学博论(刘建国主编).中国科学技术出版社,北京,1992.
    [109]邬建国.生态学范式变迁综论[M].生态学报,1996,16:449-460.
    [110] Gehlke, C.E., Biehl, H.. Certain effects of grouping upon the size of the correlation coefficient in census tract material [J]. Journal of American Statistical Association, 1934, 29(Suppl.):169-170.
    [111] Yule, G., Kendall, M.. An introduction to the theory of statistics [M]. New York: Charles Giffin and Company Limited, 1950.
    [112] Dutilleul, P., Legendre, P.. Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept [J]. Oikos, 1993, 66:152-171.
    [113] Turner, M.G.. Landscape ecology: the effect of pattern on process [J]. Annual review of ecology and systematics, 1989, 20:171-197.
    [114] Jenerette, G.D., Wu, J.G.. On the definitions of scale [J]. Bulletin of the ecologicalsociety of America, 2000, 81:104-105.
    [115] Wu, J.G., Qi, Y.. Dealing with scale in landscape analysis: an overview [M]. Geographic information sciences, 2000, 6:1-5.
    [116] Kotliar, N.B., Wiens, J.A.. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity [M]. Oikos, 1990, 59: 253-260.
    [117] Western, A.W., Bloschl, G., Grayson, R.B.. Geostatistical characterization of soil moisture patterns in the Tarrawarra Catchment [J]. Journal of Hydrology, 1998, 205:20-37.
    [118] Morris, S.J., Boerner, R.E.J.. Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hardwood forests [J]. Landscape Ecology, 1998, 13:215-224.
    [119] Urban, D.L., O’Neill, Shugart, H.H.Jr.. Landscape Ecology: A hierarchical perspective can help scientists understand spatial patterns [J]. Bioscience, 1987, 37(2):119-127.
    [120] Meenterneyer, V., Box, E.O.. Scale effects in landscape studies [M]. In: Turner, M.G.(eds). Landscape Heterogeneity and Disturbance. Springer-Verlag, New York, U.S.A. 1987.
    [121] Hill, R.D., Peart, M.R.. Land use, runoff, erosion and their control: a review for southern China [J]. Hydrological Processes. 1998, 12:2029-2042.
    [122] Wendt, R.C., Alberts, E.E., Hjelmfelt, A.T.. Variability of runoff and soil loss from fallow experimental plots[J]. Soil Science Society of America Journal, 1986, 50:730-736.
    [123]蒋定生等编著.黄土高原水土流失与治理模式[M].中国水利水电出版社,北京,1997.
    [124] Kosmas, C., Danalatos, N.C., Cammeraat, L.H., Chabart, M.. The effect of land use on runoff and soil erosion rates under Mediterranean conditions [J]. Catena, 1997, 29(1):45-59.
    [125] Rai, S.C., Sharma, E.. Hydrology and nutrient flux in an agrarian watershed of the Sikkim Himalaya [J]. Journal of Soil and Water Conservation, 1998, 53(2):125-132.
    [126] Bergkamp, G.. A hierarchical view of the interactions of runoff and infiltration withvegetation and mircrotopography in semiarid shrublands [J]. Catena, 1998, 33(3-4):201-220.
    [127] Pennock, D.J., de John, E.. Spatial pattern of soil redistribution in Boroll landscapes, Southern Saskatchewan, Canada [J]. Soil Science, 1990, 150(6):867-873.
    [128] Trimble, S.W.. Response to science [J]. Science, 1999, 286:1187-1189.
    [129] James, L. D.. NSF research in hydrological sciences [J]. Journal o f Hydrology,1995,172:3-14.
    [130] Kalma, J. D.,Sivapalan, M.. Scale Issues in Hydrological Modelling[M]. Chichester : Wiley, 1995.
    [131] Robert, L., Wilby, David, S. Schimel. Scales of interaction in eco-h ydrological relations[A].In:Baird, A. J..eds. Eco-hydrology[C]. London: Routledge, 1999. 39-66.
    [132] Dawson, T. E.,Chapin, F. S.. Scaling Physiological Processes: Leaf to Globe [M].New York:Academic Press,1993.
    [133] Garrison Sposito. Scale Dependence and Scale Invariance in Hydrology [M]. Cambridge: Cambridge University Press,1998. 6-31.
    [134] Hatton, T. J.,Salvucci, G. D.,Wu, H. I.. Eagleson's optimality theory of an eco-hydrological equilibrium: quo vadis? [J].Functional Ecology,1997,11:665-674.
    [135]穆兴民.神木县农业气候资源及灾害天气分析[A].中国科学院水利部西北水土保持研究所集刊,1993,18:24-35.
    [136]张平仓,王斌科,唐克丽.神木试区环境特征[A].中国科学院水利部西北水土保持研究所集刊,1993,18:16-22.
    [137]贾恒义,雍绍萍,王富乾.神木试区的土壤资源[A].中国科学院水利部西北水土保持研究所集刊,1993,18:36-46.
    [138]侯庆春.神木试区自然条件及环境整治综合分析[A].中国科学院水利部西北水土保持研究所集刊,1993,18:136-137.
    [139]杨勤科,郑粉莉,张竹梅.神木试区土地资源与利用[A].中国科学院水利部西北水土保持研究所集刊,1993,18:47-56.
    [140] Gomez-Plaza, A., Alvarez-Rogel, J., Albaladejo, J., Castillo, V.M.. Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment [J]. Hydrological Processes, 2000, 14:1261-1277.
    [141] Cubera, E., Moreno, G.. Effect of land-use on soil water dynamic in dehesas ofCentral-Western Spain [J]. Catena, 2007, 71: 298-308.
    [142] Timm, L.C., Reichardt, K., Oliveira, J.C.M., Cassaro, F.A.M., Tominaga, T.T., Bacchi, O.O.S., Dourado-Neto, D., Nielsen, D.R.. State-space approach to evaluate the relation between soil physical and chemical properties [J]. Brazilian Journal of Soil Science, 2004, 28: 49-58.
    [143] Timm, L.C., Pires, L.F., Roveratti, R., Arthur, R.C.J., Reichardt, K., Oliveira, J.C.M., Bacchi, O.O.S.. Field spatial and temporal patterns of soil water content and bulk density changes [J]. Scientia Agricola, 2006, 63: 55-64.
    [144] Brocca, L., Morbidelli, R., Melone, F., Moramarco, T.. Soil moisture spatial variability in experimental areas of central Italy [J]. Journal of Hydrology, 2007, 333 (2-4): 356-373.
    [145] Hu, W., Shao, M.A., Wang, Q.J., Reichardt, K.. Soil water content temporal-spatial variability of the surface layer of a Loess Plateau hillside in China [J]. Scientia Agricola, 2008, 65 (3): 277-289.
    [146] Hengl, T., Heuvelink, G. B. M., Stein, A.. A generic framework for spatial prediction of soil variables based on regression-kriging [J]. Geoderma, 2004,120:75-93.
    [147] Giertz, S., Junge, B., Diekkrüger, B.. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa [J]. Physics and Chemistry of the Earth, 2005, 30: 485-496.
    [148] Zhang, Y.K., Schilling, K.E.. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis [J]. Journal of Hydrology, 2006, 319: 328-338.
    [149] Qiu, Y., Fu, B.J., Wang, J., Chen, L.D.. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China [J]. Journal of Hydrology, 2001, 240: 243-263.
    [150] Hu, W., Shao, M.A., Wang, Q.J., Fan, J., Reichardt, K.. Spatial variability of soil hydraulic properties on a steep slope in the Loess Plateau of China [J]. Scientia Agricola, 2008, 65 (3): 268-276.
    [151] Luck, S.H.. Effects of antecedent soil moisture on rainwash erosion [J]. Catena, 1985, 12 (2): 129-139.
    [152] Ibanez, J.J., De-Alba, S., Bermudez, F.F., Garcia-Alvarez, A.. Pedodiversity: concepts and measures [J]. Catena, 1995, 24: 215-232.
    [153] Bergkamp, G., Cammeraat, L.H., Martinez-fernandez, J.. Water movement and vegetation patterns on shrubland and an abandoned field in two desertification-threatened areas in Spain [J]. Earth Surface Processes and Landforms, 1996, 21: 1073-1090.
    [154] Kimura, R., Fan, J., Zhang, X.C., Takayama, N., Kamichika, M., Matsuoka, N.. Evapotranspiration over the Grassland Field in the Liudaogou Basin of the Loess Plateau, China [J]. Acta Oecologica, 2006, 29: 45-53.
    [155] Wilcox, B.P., Dowhower, S.L., Teague, W.R., et al.. Long-Term Water Balance in a Semiarid Shrubland [J]. Rangeland and Ecology Management, 2006, 59: 600-606.
    [156] Barling, R.D., Moore, I.D., Grayson, R.B.. A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content [J]. Water Resources Research, 1994, 30: 1029-1044.
    [157] Seghieri, J., Galle, S., Rajot, J.L., Ehrmann, M.. Relationships between soil moisture and growth of herbaceous plants in a natural vegetation mosaic in Niger [J]. Journal of Arid Environments, 1997, 36:87-102.
    [158] Chen, L.D., Huang, Z.L., Gong, J., Fu, B.J., Huang, Y.L.. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China [J]. Catena, 2007, 70: 200-208.
    [159]张继光,陈宏松,苏以荣,等.湿润和干旱条件下喀斯特地区洼地表层土壤水分的空间变异性[J].应用生态学报,2006,17(2):2277-2282.
    [160]成向荣.黄土高原农牧交错带土壤-人工植被-大气系统水量转化规律及模拟[D].中国科学院教育部水土保持与生态环境研究中心,2008.
    [161] Singh, J.S., Milchunas, D.G., Lauenroth, W.K.. Soil water dynamics and vegetation patterns in a semiarid grassland [J]. Plant Ecology, 1998, 134:77-79.
    [162] She,D.L., Shao,M.A.. Spatial variability of soil organic C and total N in a small catchment of the Loess Plateau, China [J]. Acta Agriculturae Scandinavica Section B- Soil and Plant Science, DOI:10.1080/09064710802425304.
    [163] Ettema, C.H., Wardle, D.A.. Spatial soil ecology [J]. Trends in Ecology & Evolution, 2002, 17: 177-183.
    [164] Gallardo, A., Paramá, R.. Spatial variability of soil elements in two plant communities of NW Spain [J]. Geoderma, 2007, 139: 199-208.
    [165] Wang, J., Fu, B.J., Qiu, Y., Chen, L.D.. Analysis on soil nutrient characteristics for sustainable land use in Danangou catchment of the Loess Plateau, China [J]. Catena, 2003, 54: 17-29.
    [166] Matheron, G.. Principles of geostatistics [J]. Economic Geology, 1963, 58, 1246–1266.
    [167] Dai, W.H., Huang, Y.. Relation of soil organic matter concentration to climate and altitude in zonal soils of China [J]. Catena, 2006, 65: 87-94.
    [168] Liu, D.W., Wang, Z.M., Zhang, B., Song, K.S., Li, X.Y., Li, J.P., Li, F., Duan, H.T.. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China [J]. Agriculture Ecosystem & Environment, 2006, 113: 73-81.
    [169] Wang, J., Fu, B.J., Qiu, Y., Chen, L.D.. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China [J]. Journal of Arid Environments, 2001, 48: 537-550.
    [170] Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten, T., Schulze, E.D.. Spatial and vertical variation of soil carbon at two grassland sites-Implications for measuring soil carbon stocks [J]. Geoderma, 2007, 141:272-282.
    [171]佘冬立,邵明安.成垄压实耕作条件下土壤水分分布的试验研究[J].水土保持学报,2007,21(5):110-113,141.
    [172]许明祥,刘国彬.黄土丘陵区刺槐人工林土壤养分特征及演变[J].植物营养与肥料学报,2004,10(1):40-46.
    [173] Goovaerts, P.. Geostatistics in soil science: State-of-the-art and perspectives [J]. Geoderma, 1999, 89:1-45.
    [174] Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., Konopka, A. E.. Field-scale variability of soil properties in Central Iowa soils [J]. Soil Science Society of America Journal, 1994, 58: 1501–1511.
    [175] K?l??, K., ?zg?z, E., Akba?, F.. Assessment of spatial variability in penetration resistance as related to some soil physical properties of two fluvents in Turkey [J]. Soil & Tillage Research, 2004, 76: 1–11.
    [176] Moore, I. D., Gessler, P. E., Nieslen, G. A., Peterson, G. A.. Soil attribute prediction using terrain analysis [J]. Soil Science Society of America Journal, 1993, 57: 443-452.
    [177] Ata Rezaei, S., Gilkes, J. R.. The effects of landscape attributes and plant community on soil chemical properties in rangelands [J]. Geoderma, 2005, 125: 167-176.
    [178] Tsui, C.C., Chen, Z.S., Hsieh, C.F.. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan [J]. Geoderma, 2004, 123:131-142.
    [179] Dezzeo, N., Chacón, N., Sanoja, E., Picón,G.. Changes in soil properties and vegetation characteristics along a forest-savanna gradient in southern Venezuela [J]. Forest Ecology and Management, 2004, 200: 183-193.
    [180]余新晓,张晓明,武思宏,魏天兴,张学培.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J].山地学报,2006,24(1):19-26.
    [181] Morgan, R.P.C.. Soil conservation options and in the U.K [J]. Soil Use and Management, 1992, 8: 176-180.
    [182] Wang, G.H., Zhang, X.S.. Supporting of potential forage production to the herbivore-based pastoral farming industry on the Loess Plateau [J]. Acta Botanica Sinica, 2003, 45:1186-1194.
    [183]张成娥,陈小利.黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征[J].草地学报,1997,5(3):195-199.
    [184] Crawford, M.C., Macfarlane, M.R.. Lucerne reduces soil moisture and increases livestock production in an area of high groundwater recharge potential [J]. Australian Journal of Experimental Agriculture, 1995, 35: 171-180.
    [185] Li, Y.S., Huang, M.B.. Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China [J]. Agriculture, Ecosystems and Environment, 2008, 124: 24-32.
    [186]李裕元,邵明安,上官周平,樊军,王丽梅.黄土高原北部紫花苜蓿草地退化过程与植被演替研究[J].草业学报,2006,15(2):85-92.
    [187] Li, Y.Y.; Shao, M.A. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China [J]. Journal Arid Environments, 2006, 64: 77-96.
    [188]李裕元,邵明安.黄土高原北部紫花苜蓿草地退化过程中与植物多样性研究[J].应用生态学报,2005,16 (2): 2321-2327.
    [189] Daly, E., Porporto, A., Rodriguez-Iturbe, I.. Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part II: stochastic analysis and ecohydrological significance [J]. Journal of Hydrometerology, 2004, 5: 559-566.
    [190] Dunin, F.X., Smith, C.J., Zegelin, S.J., Leuning, R., Denmead, O.T., Poss, R.. Water balance changes in a crop rotation involving Lucerne [J]. Australian Journal of Experimental Agriculture, 2001, 52: 247-261.
    [191]王长廷,曹广民,王启兰,等.三江源地区不同建植期人工草地植被特征及其与土壤特征的关系[J].应用生态学报,2007,18 (11):2426-2431, 2007.
    [192] Wondzell, S.M., Ludwing, J.A.. Community dynamics of desert grasslands: influences of climate, landforms and soil [J]. Journal of Vegetation Science, 1995, 6: 337-390.
    [193]邵明安,王全九,黄明斌.土壤物理学[M].高等教育出版社, 2006.
    [194]赵文智,程国栋.生态水文学—揭示生态格局和生态过程水文学机制的科学[J].冰川冻土,2001,23(4):450-457.
    [195]陈洪松,邵明安,王克林.黄土区荒草地和裸地土壤水分的循环特征[J].应用生态学报,2005,16(10):1853-1857.
    [196]蔡体久,朱道光,盛后财.原始红松林和次生白桦林降雨截留分配效应研究[J].中国水土保持科学,2006,4(6):61-65.
    [197]王佑民.我国林冠降水再分配研究综述[J].西北林学院学报,2000,15(3):1-7.
    [198]杨立文,张理宏.林冠对降雨截留过程的研究.见:李昌哲主编.太行山水土保持林营造技术及效益研究[M].北京:中国科学技术出版社,1991.76-84.
    [199]王彦辉.刺槐对降雨的截持作用[J].生态学报,1987,7(1):43-49.
    [200] Rutter, A.J., Kershaw, K.A., Robins, P.C., et al.. A predictive model of rainfall interception in forests 1. Derivation of the model from observations in a plantation of Corsicanpine [J]. Agricultural Meteorology, 1971, 9:367-384.
    [201] Gash, J. H. C.. An analytical model of rainfall interception by forests [J]. Quarterly Journal of the Royal Meteorological Society. 1979, 105:43-55.
    [202]崔启武,边履刚,史继德,等.林冠对降水的截留作用[J].林业科学,1980,16(2):141-146.
    [203]刘家冈.林冠对降雨的截留过程[J].北京林业大学学报,1987,9(2):140-144.
    [204]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [205] Wallace, J., Mcjannet, D.. On interception modeling of a lowland coastal rainforest in northern Queensland, Australia [J]. Journal of Hydrology, 2006, 141: 244-256.
    [206] Deguchi, A., Hattori, S., Park, H.. The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash models [J]. Journal of Hydrology, 2006, 318: 80-102.
    [207]范世香,高雁,程银才,白清俊.林冠对降雨截留能力的研究[J].地理科学,2007,27(2): 200-204.
    [208]周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997,72-73.
    [209]邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002.
    [210]王学萌,穆月英,唐翼东.灰色系统分析方法论初探[J].系统辩证学学报,1995,3(2):85-89.
    [211]张北赢,徐学选,刘文兆,杜峰.黄土丘陵区不同土地利用的土壤水分灰色关联度[J].生态学报,2008,28(1):163-663.
    [212]徐建华.现代地理学中的数学方法[M].北京.高等教育出版社,2002.
    [213]杨文治,邵明安,彭新德,等.黄土高原环境的旱化与黄土中水分的关系[J].中国科学(D辑),1998,28(4):357-365.
    [214]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998.
    [215] Feddes, R.A., Kowalik, P.J., Zaradny, H.. Simulation of water use and crop yield [M]. Simulation Monograph PUDOC Wageningen, 1978, 189.
    [216]何锦.基于SWAP模型的农田水分动态模拟研究[D].长安大学,2006.
    [217] Kroes, J.G., Van Dam, J.C., Groenendijk, P., Hendriks, R.F.A., Jacobs, C.M.J.. SWAP version 3.2. Theory description and user manual. www.alterra.wur.nl.
    [218] Oliveira, R. S., Bezerra, L., Davidson, E. A., et al. Deep root function in soil water dynamics in cerrado savannas of central Brazil [J]. Function Ecology, 2005, 19:574-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700