应用地表水—地下水耦合模型研究不同尺度的水文响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受全球气候变化及人类活动的影响,水资源的短缺及有效管理,成为日益关注的热点问题。采用地表水-地下水耦合的分布式水文模型,分析水循环过程、拟定流域水资源管理方案,对于揭示水循环规律、有效管理水资源具有重要理论与实际意义。
     这些年来,众多科研机构开发了一系列复杂程度各异的模型软件。在这些软件开发过程中,对非饱和水流运动过程的刻画是水循环中最关键的环节之一,因为其计算精度直接影向着模拟结果的可信度。非饱和水流运动过程一般用传统的Richards方程来刻画。基于Richards方程建立流域水文模型的一个局限性在于需要大量的参数。Richards方程主要适用于刻画小尺度均质的非饱和流,但它经常被用于刻画大尺度非均质流动系统,这个问题引起了人们对Richards模型在大尺度流域模拟中的可行性和有效性的讨论。运用Richards方程来刻画流域尺度上的非饱和流增加了对计算机运算能力的要求,因为获取方程的数值解需要对模型进行空间和时间上的离散。运用Richards方程计算较复杂,在流域尺度上是否有更加简单快捷的模型能够获得和Richards方程相同或者更好的模拟效果呢?
     全球气候变化和日益加剧的人类活动(土地利用方式变化)对水文循环产生了深远的影响。对同一地区,不同土地利用方式、不同尺度(点和流域尺度)对水文循环有何影响,对于不同地区,不同的气候条件和土地利用方式对水文循环有何影响。
     针对这些问题,本文通过丹麦水力学研究所(DHI)开发的分布式水文模型(MIKESHIE)软件建立地表水-地下水耦合的Skiern流域分布式水文模型,并对此模型进行参数率定。在此基础上对以下几个方面进行研究:(1)模型结构方面,非饱和流概念模型对流域水文向应的影响(2)模型应用方面,以丹麦Skiern流域流域为例,不同土地利用方式、不同尺度(点和流域尺度)对流域水文响应的影响;以丹麦Skiern流域和华北平原为例,对比分析不同的气候和土地利用方式对水文循环的影响。
     (1)非饱和概念模型对流域水文响应的影响
     本文在建立Skjern流域地表水地下水耦合的流域水文模型的基础上,比较了这些非饱和流概念模型模拟的水文响应异同点。基于丹麦土壤属性数据库,采用了Pedo-transfer-functions (PTFs)方法获取土壤水力参数。根据土壤颗分数据,0-30cm的土壤具有2种类型(粗砂,亚粘土),30cm-70cm的土壤有3种类型(粗砂,粘土,细砂),70-300cm的土壤有4种类型(粗砂,砂质粘土,亚粘土,粘土)。利用ARCGIS软件进行空间叠加获得24种不同的岩性组合,来刻画Skjern流域非饱和带的非均质性。针对上面提出的问题,本文建立5种不同的非饱和流水文模型:两层水均衡模型TLM (Simple two layer water balance model for the root zone andinstantaneous routing of the excess water to water table)简单参数化的Richard方程模型RI2( Richards' equation -simple parameterization)基于PTFs和土壤数据库获取参数的Richard方程模型RI24 ( Richards' equation-parameterization determined on the basis of pedo-transfer functions and detailed soilmaps),考虑优先流的Richard方程模型RIBP (Richards' equation with bypass to accommodatefor spatial variability)考虑重力流的Richard方程模型RIGR (Simplified version of Richards' equation onlyconsidering gravity flow)分别对这5种模型进行参数率定之后,得出如下结论:(1)5种非饱和流模型都具有相同的季节变化特征,在春季和冬季,降水量丰富,地下水补给和河流径流量大,而在夏季和秋季,降水量减少,相应的地下水补给和河流径流量减少。(2)水文响应时间RIBP和RIGR快于TLM,RI2和RI24,RIBP和RIGR模拟地下水位和流量数据与观测值的响应时间一致,RI2,RI24和TLM模拟的地下水位和流量数据与观测值比较有一定的滞后性。这是由于Skiern流域大部分是砂土,大孔隙较多,具有优先流存在,而RIBP能刻画这部分优先流,故其水文响应时间和观测值一致,而其他模型忽略这部分优先流存在,故其与观测值相比有一定的滞后效应。(3)TLM模拟的地下水补给量和径流量比其他模型大。对比模拟效果,选取Nash and Sutcliffe系数(R2),均方差函数和变异系数为评价指标,5种模型中TLM的模拟结果和观测值最为接近,TLM较其它4种模型而言更简单,对模型作参数率定时所需运行时间更短,故TLM相比于RI更适用于Skjern流域。
     (2)不同土地利用方式对流域水文响应的影响
     土地利用方式对流域尺度水文响应的影响是一个未解决的问题,并且受到大多数发展中国家的关注(Im et al.2005)。采用极端土地利用法在Skjern流域构建土地利用变化情景,运用考虑植被影响的MIKESHE模型研究土地利用变化情景下的水文响应。场景一:将流域内植被全部调整成森林,流域内林地面积增大996.75 km~2,变化后森林面积占总面积的84%。对比变化前后结果差异发现,在1990年(丰水年),径流最大峰值为28.67 m~3/s,比变化之前减少了5.48m~3/s,峰值出现时间推后1天;在1996年(干旱年),径流最大峰值为13.63m~3/s,比变化之前减少了5.44 m~3/s,峰值出现时间推后2天,说明在其他条件(降雨、地形)一定的情况下,森林面积增加能够减少产流总量、径流深度、径流系数,削弱洪峰流量,增加地下水补给,提高地下水位,减少水土流失。
     同理,根据极端土地利用方法,将Skjern流域植被类型100%调整为草地,欧石楠,谷和果树,对Skjern流域的蒸散发量,径流量,地下水补给量进行模拟研究。结果表明草地的蒸腾量在草地,欧石楠,谷和果树这4种植被中最大,约467mm/y,并引起洪峰流量增加、峰现时间提前。
     (3)不同尺度(点和流域尺度)对水文响应的影响
     在Skjern流域选择5个不同土地利用方式(森林,草地,谷,欧石楠和果树)的典型区,用荷兰自由大学开发的集中参数模型(EARTH)建立5个土地利用方式不同的模型,并对这5个模型进行参数率定。运用点面结合的方法,对比EARTH模型获得的点尺度上的模拟结果和MIKESHE流域尺度模拟结果。结果表明,EARTH模型对森林,草地,谷,欧石楠和果树这5种植被进行模拟,草地实际腾发量最高。通过对两个模型的地下水位模拟值和观测值对比,发现两者模拟效果都很好。说明简单的EARTH模型和复杂的MIKESHE模型都适用于Skjern流域。但是,EARTH模型计算的补给量和地下水位偏高,主要是没有考虑地下水开采。
     (4)不同的气候和土地利用方式对水文循环的影响
     选取两个典型区丹麦Skjern流域和华北平原,研究不同的气候和土地利用方式对水文循环的影响。运用一维非饱和流模型HYDRUSID模拟华北平原5个典型区的水文响应。
     运用一维非饱和流模型DAISY,考虑植被作物生长全过程(从作物播种到收割)模拟。在Skjern流域选择4种典型植被研究植被变化对水文响应的影响。
     a.不同气候条件对水文响应的影响。丹麦属于温带海洋性气候,年降水700-800 mm,40%的降雨集中于9月到11月,4月到8月间降雨量偏少。华北平原属于季风气候影响下的半干旱半湿润气候,年降水在500-600mm,80%的降水集中在6月到9月。故两者的地下水补给季节性变化特征不同,丹麦补给集中在9-12月和1-3月,而华北平原地下水补给多集中在6-9月。
     b.地下水埋深对地下水补给的影响。这两个研究区有着共性,对于浅层地下水,入渗补给很快到达地下水面,峰值的滞后时间不是很明显,大约都滞后1-2天;对于地下水位埋深在2-5m之间的,年地下水补给量峰值代表一系列降雨量产生的累积效应,滞后现象较为明显,峰值滞后4-5天。对于地下水位埋深大10m,峰值滞后时间很长。
     c.不同的土地利用方式对水文响应的影响。丹麦Skjern流域农作物主要是夏玉米,冬小麦和果树,华北平原作物主要是夏玉米和冬小麦。本文用DAISY模型研究了作物生长全过程对水文响应的影响,包括从作物播种到收割的全过程,结果表明考虑作物生长全过程,这两个研究区具有相似性,夏玉米生长期地下水补给量大于冬小麦生长期。
     d.不同的灌溉方式对水文响应的影响。由于丹麦雨量充沛,据统计数据表明全年灌溉量约60mm,灌溉方式对地下水补给量占降水和灌溉总百分比很小,而华北平原属于半干旱半湿润气候,全年的灌溉量是全年降水量的50%左右,华北平原灌溉对地下水产生的补给约占降水和灌溉总量的27-49%。
     创新点
     (1)研究分布式流域水文模型中不同非饱和流概念模型(TLM,RI2,RI24,RIBP,RIGR)对流域水文响应的影响。
     (2)基于高分辨率的DEM与土壤数据库,构建地表水和地下水耦合的流域尺度分布式水文模型。采用PTFs方法土壤水力传导系数,通过GIS进行空间叠加,表征Skjern流域的土壤非均质性。
     (3)对比丹麦和华北平原两个研究区,研究不同气候、不同土地利用方式条件下水文响应的异同点。
Water is one of the most precious natural resource,upon which mankind depends forsurvival.The Water Framework Directive adopted by the European Union prescribes that waterresources management strategies must be developed at catchment scale - the natural geographicaland hydrological unit - instead of according to administrative or political bounds and theecological state of both surface- and groundwater must be considered.The catchment or basinscale is also used as the management scale in the concept of Integrated Water ResourcesManagement (IWRM) that is widely adopted as the management principle in developingcountries.The catchment or basin scale is also used as the management scale in the concept ofIntegrated Water Resources Management (IWRM) that is widely adopted as the managementprinciple in developing countries.In water circle,there is one-way or two-way transformationbetween rainfall,surface water,unsaturated flow and ground water,while surface water andgroundwater separation method in active water resources evaluation separate the complicativetransformation between surface water and ground water.In a word.Integrated Water ResourcesManagement (IWRM) will be a trend of Chinese water resource management in the future.
     A number of modeling tools have been developed over the past decades with quite diversityin complexity and in how the individual hydrological processes are represented.Water dynamicsin the unsaturated zone is one of the most important processes as it controls model precision.One of the limitations in using a catchment model based on a Richards' equation formulation isthe huge amount of parameters required to run the model.Using Richards' equation as themodeling platform for unsaturated flow simulations at catchment scale increase thecomputational demand,as small spatial and temporal discretizations are required in thenumerical approximation of the equation.Given these complications a relevant questiontherefore arises whether simpler and less demanding modeling approaches will provide same results or perhaps even better at catchment scale?
     Global climate change and human activities (land use change) have a great effect on thehydrological circle.To one study area,different land use and scale have an effect on hydrologicalcircle;to different study areas,and different climate and land use conditions have an effect onhydrological circle.
     Aiming at the problem,MIKESHE software developed by DHI (Danish hydrology institute),which represent a state-of-art of distributed hydrological model,is used to establish surface waterand ground water coupling model of Skjern catchment,and standard parameterization andcalibration of the model has been done.The objective of this study is to test and analyze theeffect of using different models for unsaturated flow on the dynamic response of an integrateddistributed hydrological model and analyzes effect of different climate and land use condions onhydrological circle.
     The effect of different unsaturated flow models on dynamic response of afully-distributed hydrological modelBased on soil database of Denmark,Pedo-transfer-functions (PTFs) are used to derive hydraulicparameters of soil.From surface to 30cm depth,there are 4 types of soil,from 30cm to 70cm,there are 2 types of soil,from 70cm to 300cm,there are 3 types of soil,and 24 combinations ofsoil are obtained through ARCGIS software in order to describe the heterogeneity of unsaturatedzone in Skjern catchment.
     Aiming at the problems,5 unsaturated models have been established:
     TLM (Simple two layer water balance model for the root zone and instantaneous routing ofthe excess water to water table)RI2 (Richards' equation -simple parameterization)
     R124 (Richards' equation -parameterization determined on the basis of pedo-transferfunctions and detailed soil maps)
     RIBP ( Richards' equation with bypass to accommodate for spatial variability)
     RIGR (Simplified version of Richards' equation only considering gravity flow)
     The results show that four kinds of unsaturated flow model have the same seasonalcharacters,in spring and winter,the rainfall is plentiful,the groundwater recharge and riverdischarge is big,while in summer and autumn,the rainfall reduced,the groundwater recharge andriver discharge decreased.The hydrological response of bypass flow model and gravity flow modelis quicker than two layers model and Richard equation model,which the simulated groundwaterlevel and discharge of bypass flow model and gravity flow model have a good agreement with theobservations,the simulated groundwater level and discharge of Richard equation model and twolayer model have a time-lag compared with observations,one reason is the sand covers main areaof Skjern catchment,macropore exist,and preferential flow occurs.The groundwater recharge andriver discharge of two layers model is bigger than the other three models.Compared simulatedeffect of four unsaturated conceptual models,Nash and Sutcliffe coefficient (R2),Root MeanSquare Error (RMSE),Correlation Coefficient (R) are chosen as model performance criteria,thesimulated results of two layers model are the most similar to the observations in four unsaturated conceptual models,and further more it is the most simple one which needs the shortest computertime,therefore two layer model is more fitable for Skjern catchment.
     The effect of land use change on water balance components such as groundwaterrecharge,evapotranspiration and groundwater dynamic response
     Several land cover scenarios in the upstream area of Skjern catchment were developed by theextreme land use/cover method.Based on those land cover scenarios,MIKESHE model was usedto predict the possible hydrological variations resulted from land cover change.Results also showthat afforestation in the Skjern catchment might raise evapotranspiration and reduce runoff,and cutdown and delay flood peaks effectively.Conversion from forests to grassland,grain,heather andhomestead covers tends to reduce evapotranspiration and increase runoff volume.This invariablycould make flood peaks increase and appear in advance.
     Site scale and Catchment scale combinations in Skjern catchment
     Actual evapotranspiration,percolation,recharge and groundwater level fluctuations weresimulated for a period of twenty years (1990-1999) using EARTH and MIKESHE models Theresults of EARTH model represent one dimensional site scale,while MIKESHE model representcatchment scale.Both models appear to simulate the slow groundwater level fluctuations of thestudy area with high accuracy from 1990-1999.However,the simulated result of EARTH modelis a bit higher than the observed data probably as a result of it does not consider groundwaterabstractions.Nearly identical actual evapotranspiration and groundwater recharge values wereobtained from the simulation results of both models.The goodness of fit between the observedand simulated groundwater levels is also equally good for both models.It is recalled that bothmodels share the same boundary conditions.Hence it can be concluded that the water balancecalculation is depending more on the top boundary conditions than on the complex soil waterflow in the unsaturated zone.In general the actual evapotranspiration for forest is lower than forgrass and heather.On the contrary,recharge values below forest is almost the same as grass andheath lands.This shows that in forested areas,evaporation of intercepted rainfall contributessignifcantly to the total loss of water due to evapotranspiration causing recharge to be small.Theclose agreement between the simulated results of the two models also indicates that the simpleEARTH model is equally suitable as the more complex MIKESHE model at least for thecondition of the Skjern catchment.
     Comparing the hydrology response of groundwater in Skjern catchment and theNorth China plain
     a.Different climatic conditionsDenmark is warm climate,of which mean annual precipitation is 700-800 mm.The greatestrainfall comes between September and November.The Hebei plain is a semi-arid to semi-humidarea with a monsoon-dominated climate.Mean annual precipitation is only 500-800 mm.ofwhich more than 80% occurs in the months of June through September.The groundwaterrecharge of Skjern catchment mainly concentrated from September to November,while of theNorth China Plain mainly from June to September if not considering the effect of irrigation.
     b.Different groundwater depth
     When water table is shallow,Infiltration reaches groundwater relatively quickly,so thatmost of the individual rainfalls correspond to isolated infiltration recharge events with very smalltime-lags,the peak time-lag is about one or two days.
     As the depth to groundwater increases,the correspondence between rainfall and rechargedecreases;the recharge events produced by individual rainfalls merge into one single annualprocess although a few peaks of recharge correspond to large rainfall events or concentratedrainfall clusters.
     When water table is deep,Infiltrated water takes a long time to reach groundwater table sothe peak time lags here are 18 to 35 days even longer.
     c.Different land use considering crop rotationIn spring barley,winter wheat,maize and grass,the average annual actual evaportranspiration ofspring barley is the smallest one about 384.8mm,and its average annual groundwater recharge isthe biggest one about 255.1 mm in 4 types of crops.The groundwater recharge of maize is higherthan winter wheat in Skjern catchment and the North China Plain.
     d.Different irrigation methodIn Skjern catchment,the annual irrigation is about 60 mm.The groundwater recharge fromirrigation is a small part occupied in total rainfall and irrigation.In the North China Plain,theannual irrigation is about 300-450 mm.
     The simulation results show that groundwater recharge decreased significantly and thatrecharge caused by irrigation in the Hebei Plain accounted for 27-49% of the total precipitationand irrigation.Irrigation-induced recharge at Luquan was largest among the five sites (49% ofthe total precipitation and irrigation).Recharge caused by irrigation in the piedmont plain wasfound to be slightly larger than that in the alluvial and lacustrine plain
     Innovations
     1.The hydrological response of four unsaturated conceptual models is compared incatchment scale.The applicability of these models are analyzed which enrich theexperience of distributed hydrological models.
     2.Based on high resolution DEM and soil database,Distributed hydrological models ofSkjern catchment established which coupling the surface water and groundwater.Pedo-transfer-functions (PTFs) have been used to derive soil hydraulic parameters incatchment scale which is benefit for describing soil heterogeneity in Skjern catchment.
     3.Combine the results of Denmark and China,the effect of different climatic conditionsand land use on hydrological response was analyzed.
引文
[1]Anderson,M.R and Woessner.W.W.1992.The role of the post-audit in model validation.Adv.Wat.Resour.15,167-173.
    [2]Abbott M.B.1979 Computational Hydraulics elements of the theory of free surface flows,Pitman Publishing limited.
    [3]AbbottM.B.,Bathurst.J.C.Cunge.J.A.,O'Connell.P.E.and RasmussenJ.1986a:An introduction to the European Hydrological System--Systeme Hydrologique European,‘SHE’,1:history and philosophy of a physically-based distributed modelling system,J.Hydrol..87.45-59.
    [4]AbbottM.B..Bathurst.J.C,Cunge.J.A..O'Connell.P.E.and RasmussenJ.1986b:An introduction to the European Hydrological System--Systeme Hydrologique European.'SHE',2:structure of a physically-based distributed modelling system,J.Hydrol.,87.61-77.
    [5]Amit Goyal,Shailaja Mandapuram,Bozena Michniak,Laurent Simon.2007.Application of orthogonal collocation and regression techniques for recovering parameters of a two-pathway transdermal drug-delivery model.Computers and Chemical Engineering (31):107-120
    [6]Athavale R.N.,Rangarajan R.,1988.Natural recharge measurements in the hard-rock regions of semi-arid India using tritium injection-a review.In:Simmers I.(ed.),Estimation of natural groundwater recharge.D.Reidel Publishing Company,Dordrecht,the Netherlands.Pp 175-195.
    [7]Aryall,S.K.,0'Loughlin.E.M.and Mein,R.G 2000a.A process based approach to study the similarity of catchment behaviour:Part 1.Landscape saturation-Theoretical derivation.Water Resour.Res.
    [8]Athavale R.N.,Murti C.S..Chand R.,1980.Estimation of recharge to the phreatic aquifers of the Lower Maner Basin.India,by using the tritium injection method.Journal of Hydrology 45,185-202.
    [9]Anderson,M.R and Woessner,W.W.1992 The role of the post-audit in model validation.Adv.Wat.Resour.15.167-173.
    [10]Andersen and H.E.L.M.svendsen 1997:Suspended sediment and total phosphorous in a major Danish river:methods and estimation of the effects of a coming major restoration.Aquatic Conserv.Mar.Freshw.Ecosyst.Vol.7.265-276
    [11]Allen.R.G,Pereira.L.S..Raes D.,Smith M.,1998.Crop evapotranspiration.Guidelines for computing crop water requirements.Irrigation and Drainage Paper No.56,FAO,Rome.
    [12]Alves,I..Pereira.L.S..2000..Modelling surface resistance from climatic variables.Agric.Water Manag.42.371-385.
    [13]Alves.I.,Perrier,A.,Pereira,L.S.,1998.Aerodynamic and surface resistances of complete cover crops:how good is the “big leaf? Trans.ASAE 41 (2),345-351.
    [14]Bates,B.C and Campbell,E.P.2000.A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling.Water Resour.Res.,182-187.
    [15]Brian Morse,Faye Hicks.2005.Advances in river ice hydrology 1999-2003.HYDROLOGICAL PROCESSES(19):247-263
    [16]Brice Mourier.Christian Walter.Philippe Merot.2007.Soil distribution in valleys according to stream order.Catena (72):395-404
    [17]B.Decharme,H.Douville.2006.Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations.Clim Dyn(27):695-713
    [18]Bates,B.C,CChhaarrlleess.S.P..Summnner,N.R.and FFlleming.P.M.1994.Climate change and its hydrological implications for South Australia.Trans.R.Soc.South Aust..18(1):35-43.(44)
    [19]Bates,B.C,Rahman,A.,Mein,R.G.and Weinmann,RE.1998.Climatic and physical factors that influence the homogeneity of regional floods in south-eastern Australia.Water Resour.Res..34(12):3369-3381.
    [20]Berendrecht,W.,2004.State space modelling of groundwater fluctuations.PhD Thesis,Delft University.149pp.
    [21]Bonham-Carter.G F.1994.Geographic Information Systems for Geoscientists:Modelling with GIS.Pergamon.Oxford.
    [22]Burrough,P.A.1986 Principles of Geographic Information Systems for Land Resource assessment.Monographs on Soil and Resources Survey No.12.Oxford Science Publications,New York.
    [23]Brodnig,G.Mayer,V..2000.Bridging the gap:the role of spatial information technologies in the integration of traditional environmental knowledge and western science.Electron.J.Inf.Syst.Dev.Countries.1
    [24]Band.L.E.1986 Topographic partition of watersheds with digital elevation models.Wat.Resour.Res.22,15-24;
    [25]Burrough.P.A..McDonnell.R.A..1998.Principles of Geographic Information Systems.Oxford University Press,Oxford (GB).
    [26]Bouten.W..1992.Monitoring and modelling forest hydrological processes in support of acidification research.PhD thesis.Universteit van Amsterdam.
    [27]Beverly C,Bari M.Christy B.Hocking M.Smettem K 2005 Predicted salinity impacts from land use change:comparison between rapid assessment approaches and a detailed modeling framework.Aust.J Exp Agric 45(11):1453-1469
    [28]Beven KJ 1989 Changing ideas in hydrology:the case of physically based models.J Hydrol 105:157-172
    [29]Beven.K.J.,1995.Linking parameters across scales:sub-grid parameterisations and scale dependent hydrological models.Hydrol.Process.9.507-526.
    [30]Beven.K.J.,2000a.Uniqueness of place and the representation of hydrological processes,Hydrol.Earth System Sci.,4.203-213.
    [31]Beven.K.J.and Binley.A.M..1992.The future of distributed models:model calibration and uncertainty prediction.Hydrol.Proces.6.279-298.
    [32]Bl(?)schl,G.2001.Scaling in hydrology.Hydrol.Process.(HPToday).15.709-711.
    [33]Campbell.E.P.and Bates.B.C..2000.Regionalisation of rainfall-runoff model parameters using MCMC samples.Water Resour.Res.
    [34]C.Soulsby,D.Tetziaff,P.Rodgers,S.Dunn.S.Waldron.2006.Runoff processes,stream water residence times and controlling landscape characteristics in a mesoscale catchment:An initial evaluation.Journal of Hydrology (325):197-221
    [35]C.Soulsby,D.Tetzlaff,P.Rodgers,S.Dunn,S.Waldron.2006.Runoff processes,stream water residence times and controlling landscape characteristics in a mesoscale catchment:An initial evaluation.Journal of Hydrology (325),197-221
    [36]Campbel,E.P.,Fox,D.R.and Bates,B.C 1999.A Bayesian approach to parameter estimation and pooling in nonlinear flood event models.Water Resour.Res..35(1):211-220.
    [37]Chiew,F.H.S.,Wang,Q.J.,McMahon,T.A..BBaatteess.B.C.and Whetton,P.H.1996.Potential hydrological responses to climate change in Australia.IN:Regional Hydrological Response to Climate Change.(Eds.J.A.A.Jones,C.Liu,M-K.Woo and H.-T.Kung).Kluwer Academic Publishers,Dordrecht,The Netherlands,337-350.
    [38]Catchment Prediction-Process-based the advent of fast computers,the availability of remotely sensed data and efficie
    [39]Chand R.,Chandra S..Rao V.A.,Singh V.S..Jain S.C,2004.Estimation of natural recharge and its dependency on sub-surface geoelectric parameters.Journal of Hydrology 299,67~83.
    [40]Cheng,Y.,1993.Study on water requirement isoline of the main crop of China (In Chinese).Beijing.China Agricultural Scientech Press
    [41]Cooper,T.A.and Lockwood,J.G,1987.The influence of rainfall distribution in numerical simulation of evapotranspiration from multilayer model Pine canopy.Water resource Research,23:1645-1656.
    [42]Carr,R.S.,Punthakey.J.F.,Cooke,R..Storm.B.,1993.Large-scale catchment simulation using the MIKE-SHE model:1.Process simulation of an irrigation district.International Conference on Environmental Management.Wollongong.Australia,Balkema,Rotterdam,pp.467—472.
    [43]Cressie N 2003 Statistics for Spatial Data.Revised Edition,New York.John Wiley & Sons
    [44]Christensen,L.(1994):Udviklingen i transportvaner 1975-1993.I:Lahrmann,H.& Pedersen,L.H.(red.):Trafikdage pa AUC,29.-30.August 1994.Transportradet og Aalborg Universitet.Trafikforskningsgruppen.-Supplementsrapport s.135-145.
    [45]Carlsson.U.O.,Flodstrom,S.A..Engelhardt,R.,Gadeke,W..Koch,E.E.:Solid State Commun.49 (1984)711.
    [46]Croton,J.T.,Barry,D.A..2001.WEC-C:a distributed,deterministic catchment model a theory,formulation and testing.Environmental Modelling and Software 16 (7).583-599.
    [47]Cooley R L.1983.Some new procedures for numerical solution of variably saturated flow problems.Water Resour.Res.19:1271-1285.
    [48]Calder IR (1992)Hydrologic effects of land use change.In:Maidment DR (ed)Handbook of hydrology.McGraw-Hill.Inc.,New York
    [49]Davis.S.H..Ver tesy.R.A.and Sibberstein.R.P.1999.The sensitivity of a catchment model to soil hydraulic properties obtained by using different measurement techniques.Hydrological Processes,13:677-688.
    [50]Dawweess,W.R.and SShhoorrt,D.L.1995.Application of topology to the modelling of the surface hydrology of fluvial landscapes.Water Resour.Res.,30(4):1045-1055.
    [51]Dincer T..Al-Mugrin A..Zimmermann LL 1974.Study of the infiltration and recharge through the sand dunes in arid zones with special reference to stable isotopes and thermonuclear tritium.Journal of Hydrology 23,79-109.
    [52]Duan,Q.S.,Sorooshian.S.and Gupta,V.,1992.Effective and efficient global optimisation for conceptual rainfall-runoff models.Water Resour.Res.,28.1015-1031.
    [53]De Vries.J.J.,1974.Groundwater flow systems and stream nets in the Netherlands.Ph.D Thesis.Vrije Universiteit,Amsterdam.226 pp.
    [54]Dolman.H..Moors.E..Elbers.J..Snyders.W.and Hamaker.P..2000.The role of forests in the hydrology of The Netherlands.Alterra Report.
    [55]Domenico,P.A.and Schwartz.F.W.,1998.Physical and Chemical Hydrogeology.John Wiley & Sons.Inc..New York.NY.506p.
    [56]D'Urso,G,2001.Simulation and management of on-demand irrigation systems:a combined agrohydrological and remote sensing approach.PhD dissertation,Wageningen University.
    [57]DHI (2008).MIKESHE User Manual Volume 2:Reference Guide.DHI Software 2008.DHI Water and Environment,Hoersholm,Denmark
    [58]Droogers,P,Allen.RG 2002.Estimating reference evapotranspiration under inaccurate data conditions.Irrig.Drain.Syst.16.33-45.
    [59]De Vries,J.J.,Simmers,I..2002.Groundwater recharge:an overview of processes and challenges.Hydrogeol.J 10.5-17.
    [60]Edson T.D..1998.Tracer studies and groundwater recharge assessment in the eastern fringe of the Botswana Kalahari.Printing & Publishing Company Botswana (Pty)Limited:Gaborone.Botswana.19-26.
    [61]Elhaddad A.Garcia LA.2008.Surface Energy Balance-Based Model for Estimating Evapotranspiration Taking into Account Spatial Variability in Weather.JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING-ASCE(134):681-689
    [62]Endale.DM,DS Fisher,and HH Schomberg.2006.Soil Water Regime in Space and Time in a Small Georgia Piedmont Catchment under Pasture.Soil Sci.Soc.Am.J.70:1-13.
    [63]E.Boegh,M.Thorsen.M.B.Butts.S.Hansen.J.S.Christiansen.P Abrahamsen,C.B.Hasager,N.O.Jensen.P.van der Keur.J.C.Refsgaard.K.Schelde,H.Soegaard.A.Thomsen 2004.1ncorporating remote sensing data in physically based distributed agro-hydrological modelling.Journal of Hydrology 287:279-299.
    [64]Ewen J,Parkin G 1996 Validation of catchment models for predicting land-use and climate change impacts.1.Method.J Hydrol 175:583-594
    [65]ESR1.1997.ARC Macro Language:Developing ARC/INFO Menus and Macros with AML.ISBN:1879102188.ESRI Press.Redlands.California.
    [66]Freer,J..Beven.K.J.and Ambroise.B.,1996.Bayesian estimation of uncertainty in runoff prediction and the value of data:an application of the GLUE approach.Water Resour.Res..32.2161-2173.
    [67]Feyen L.M,Vrugt JA.2008.Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization.HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES (53):293-308
    [68]Florian Pappenberger.Keith J.Beven.Marco Ratto.Patrick Matgen.2008.Multi-method global sensitivity analysis of flood inundation models.Advances in Water Resources (31):1-14
    [69]Frich,P.,Rosenarn,S.,Madsen,H.and Jensen,J.J..1997.Observed precipitation in Denmark,1961-90,Technical Report.97-8.Danish Meteorological Institute.Copenhagen.
    [70]Fohrer N.Haverkamp S.Eckhardt K.Frede HG.2001.Hydrologic response to land use changes on the catchment scale.Phys Chem Earth 26(7-8):577-582
    [71]Feddes,R.A.,Kabat,P.,Van Bakel.P.J.T.,Bronswijk,J.J.B.and Halbertsma.J.,1988.Modelling soil water dynamics in the unsaturated zone-State of the art.Journal of Hydrology,100(1-3):69-111.
    [72]G.M.Ochieng,F.A.O.Otieno.2009.Data-based mechanistic modelling of stochastic rainfall-flow processes by state dependent parameter estimation.Environmental Modelling & Software(24):279-284
    [73]Guillaume Lacombe,Bernard Cappelaere,Christian Leduc.2008.Hydrological impact of water and soil conservation works in the Merguellil catchment of central Tunisia.Journal of Hydrology (359):210-224
    [74]Gupta PK,Singh R,Raghuwanshi NS,Dutta S,Panigrahy S.2008.Effect of remotely sensed data on the performance of a distributed hydrological model:Case study.JOURNAL OF HYDROLOGIC ENGINEERING (13),939-947
    [75]Gehrels,J.C,1999.Groundwater level fluctuations.PhD Thesis,Faculty of Earth Sciences of the Vrije University,Amsterdam,269 pp.
    [76]Gold.CM.,1991.Problems with Handling Spatial Data-the Voronoi Approach.CISM Journal,v.45 no.I,pp.65-80.
    [77]Gottardi G,Venutelli M,1992,Moving finite element model for one dimensional infiltration in unsaturated soil.Water Resour.Res.28:3259-3267.
    [78]Grayson RB,Moore ID,McMahon TA.1992.,physically based hydrologic modeling,1.A terrain-based model for investigative purposes.Water Resour Res 28:2639-2658
    [79]Goodrich.D.C.,Lane.L.J.,Shillito,R.M..Miller,S.N.,Syed.K.H.and Woolhiser,D.A..1997.Linearity of basin response as a function of scale in a semiarid watershed.Water Resour.Res..33.2951-2965.
    [80]Gee GW,Hillel D.1988.Groundwater recharge in arid regions:Review and critique of estimation methods.Hydrological Processes 2.255-266.
    [81]H.AI Majou,A.Bruand,O.Duval,C.Le Bas & A.Vautier.2008.Prediction of soil water retention properties after stratification by combining texture,bulk density and the type of horizon.Soil Use and Management.(24),383-391
    [82]Hai rsine,P..Croke.J..Mathews.H.,Fogarty.P.and MMooc klleerr.S.2000.Modelling plumes of overland flow from roads and logging tracks.Forest Ecology and Management.
    [83]Haton,T.J..Dawes.W.R.and VertesyR.A.1995.The importance of landscape position in scaling SVAT models to catchment scale hydroecological prediction.IN:Space and Time ScaleVariability and Interdependencies for Various Hydrological Processes(Ed.R.A.Feddes),University Press.Cambridge.
    [84]Haton,T.,Nicol,P.B.,Hair sine,P.B.and Cres swell.H.P.1998.Models of catchment water quality and their ability to predict the consequences of changes in land use and management practices.IN:Farming Action Catchment Reaction-The effect of dryland farming on the natural environment (Eds.R.A.Hook and Williams),CSIRO Publishing.Melbourne.308-324.
    [85]Hall.R.L.,2002.Aerodynamic resistance of coppiced poplar.Agric.For.Meteorol.114.83-102.
    [86]Heywood I.,Cornelius S.and Carver S.1998.An Introduction to Geographical Information System.Longman,England.
    [87]Henriksen.H.J..Knudby,C.J.and Rasmussen,P.,1997.National Vandressource Model.Danmarks og Gronlands Geologiske Undersogelse.Rapport 139.
    [88]Henriksen HJ,Troldborg L,Nyegaard P,Sonnenborg TO,Refsgaard JC,Madsen B 2003.Methodology for construction,calibration and validation of a national hydrological model for Denmark.Journal of Hydrology 280:52-71
    [89]Hydrologic sciences.2009.Encyclopedia Britannica.
    [90]Huyakorn P S,Springer E P,Guvansen V,Wordsworth T D 1986 A three dimensional finite element model for simulating water flow in variably saturated porous media.Water Resour.Res.22:1790-1808.
    [91]Hills R G,Porro I,Hudson D B,Wierenga J P,1989,modeling one dimensional infiltration into very dry soils.1.Model development and evaluation.Water Resour.Res.25:1259-1269.
    [92]Hundecha Y,Ba'rdossy A.2004.Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model.J Hydrol 292:281-295
    [93]Im S.Brannan KM.Mostaghimi S.2003.Simulating hydrologic and water quality impacts on an urbanizing watershed.J Am Water Resour Assoc 39(6):1465-1479
    [94]Johnson,H.,Jansson.P.E.,1991.Water balance and soil moisture dynamics of field plots with barley and grass ley.Journal of Hydrology 129,149-173.
    [95]Joachim Post,Valentina Krysanova,Felicitas Suckow,Wilfried Mirschel.Jutta Rogasik.Ines Merbach.2007.Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso-to macro-scale river basins.Ecological modelling.(206),93-109
    [96]Jin M.,Simmers I.,and Zhang R.1998.Preliminary Estimation of Groundwater Recharge at Wangtong,Hebei,P.R.China.In:Brahana et al.Gambling with Groundwater:Physical.chemical and biological aspects of aquifer-stream relations.Las Vegas.Nevada.USA.407-412.
    [97]Jin.M..Simmers I..Zhang R.2000.Estimation of Groundwater Recharge at Wangtong,Hebei(Report).China University of Geosciences,Wuhan.China and Free University,Amsterdam.The Netherlands.
    [98]Jin.M.G,Zhang,R.Q.,Sun L.F.,GAO,Y.F.,1999.Temporal and spatial soil water management:a case study in the Heilonggang region,PR China.Agricultural Water Management.Elsevier.42:174-187.
    [99]Jyrkama.M.I.and Sykes.J.F.,2007.The impact of climate change on spatially varying groundwater recharge in the grand river watershed(Ontario).Journal of Hydrology.338(3-4):237-250.
    [100]Kendy E..Gerard-Marchant P.,Walter M.T.,Zhang Y.Q.,Liu C.M.,Steenhuis T.S.2003.A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain.Hydrol.Proc.17.2011-2031.
    [101]Kouwen.N.1988:WATFLOOD:a micro-computer based flood forecasting system based on real-time weather radar.Can.War.Res.J.,13-1,62-77.
    [102]K.Scipal,C.Scheffler.and W.Wagner.2005.Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing.Hydrology and Earth System Sciences Discussions(2),417-448
    [103]Kronvang B..Ruth Grant.Anker R.Lauble and Morten L.Pedersen.Quantifying Sediment and Nutrient Pathways within Danish Agricultural Catchments.National Environmental Research Institute
    [104]K.Havno,M.N.Madsen,and J.Dorge.1995.MIKE 11-a generalized river modeling package,In computer Models of Watershed Hydrology(ed.Singh.V.P).Water Resources Publications,Colorado,733-782
    [105]Kristensen.K.J.and S.E.Jensen,1975.A Model for estimating actual Evapotranspiration from Potential Evapotranspiration.Nordic Hydrology 6:170-188.
    [106]Kuczera G.Raper GP,Brah NS,Jayasuriya MD.1993.Modelling yield changes after strip thinning in a mountain ash catchment:an exercise in catchment model validation.J Hydrol 150:433-457
    [107]Liu Y.,Pereira L.S..Teieirab J.L.,1997.Update definition and computation of reference evapotranspiration comparison with former method.J.Hydraul.Eng.6,27-33.(In Chinese).
    [108]Liu Y,Pereira,L.S.2001.Calculation methods for reference evapotranspiration with limited weather data.J.Hydraul.Eng.3,11 — 17 (In Chinese).
    [109]Liu,CM.,Zhang,X.Y,Zhang,Y.Q.,2002.Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter.Agric.Forest Meteorol.111,109-120.
    [110]Lu X.,Jin M.and Wang B.2006.Discussion on the soil water characteristic curve of the agricultural ecosystem experiment station in Luancheng.Hebei China Rural Water and Hydropower 12,30-32(In Chinese).
    [111]L0rup JK,Refsgaard JC,Mazvimavi D.1998.Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modeling:case studies from Zimbabwe.J Hydrol 205:147-163
    [112]Monteith,J.L.,1965.Evaporation and the environment.Symp.Soc.Experimental Biology,No.19,206-234 pp.
    [113]Makoto Tani,2008,Analysis of runoff-storage relationships to evaluate the runoff-buffering potential of a sloping permeable domain.Journal of Hydrology.(360),132-146
    [114]M.P.Maneta,S.Schnabel,W.W.Wallender,S.Panday and V.Jetten.2008.Calibration of an evapotranspiration model to simulate soil water dynamics in a semiarid rangeland.HYDROLOGICAL PROCESSES.(22):4655-4669
    [115]Mahe G,Girard S,New M,Paturel JE.Cres A.Dezetter A,Dieulin C.Boyer JF,Rouche N.Servat E.2008.Comparing available rainfall gridded datasets for West Africa and the impact on rainfall-runoff modelling results,the case of Burkina-Faso.WATER RESEARCH COMMISSION (34):529-53
    [116]Maneta MP,Schnabel S,Wallender WW,Panday S,Jetten V.2008.Calibration of an evapotranspiration model to simulate soil water dynamics in a semiarid rangeland.HYDROLOGICAL PROCESSES.(22),4655-4669
    [117]McDonald,M.G,and Harbaugh,A.W.1988,A modular three-dimensional finite-difference groundwater flow model:U.S.Geological Survey Techniques of Water-Resources Investigations,Book 6,Chapter Al.
    [118]McVicar,T.R.,Jup,D.L.B.,Davies.P.J..DDyyccee.P.A.and Stau facher,M.(2000).The Use of Spatial Information Systems for Dryland Farming:Recent Applications in Australia.
    [119]IN:Soil Erosion and Dryland Farming (Eds.J.M.Laflen.J.Tian and C.Huang),CRC press.Boca Raton,Florida,USA,477-490.
    [120]Munro,R.K..Lyons,W.F.,Shao.Y.Wood.M.S.,Hood,L.M..Leslie,L.M.,1998.Modelling land surface-atmosphere interactions over the Australian continent with an emphasis on the role of soil moisture.Environmental Modelling and Software 13 (3e4),333-339.
    [121]Martz,L.W.and J.Garbrecht,1993.Automated extraction of drainage network and watershed data from digital elevation models.Water Resources Bulletin.American Water Resources Association,29(6):901-908.
    [122]Moore,I.D.,Burch,GJ.and Mackenzie,D.H.1988 Topographic effects on the distribution of surface soil water and the location of ephemeral gullies.Trans.Am.Soc.Agr.Engrs.31.1098-1107.
    [123]Martz.L.W.and J.Garbrecht.1993.Automated extraction of drainage network and watershed data from digital elevation models.Water Resources Bulletin.American Water Resources Association.29(6):901-908.
    [124]Morris.D.A.and A.I.Johnson.1967.Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S.Geological Survey.U.S.Geol.Surv.Water-Supply Paper 1839-D,42p.
    [125]Mogens H.Greve,Mette B.Greve,Peder K.Bher,Thomas Balstr.Henrik Breuning-Madsen & Lars Krogh.2007.Generating a Danish raster-based topsoil property map combining choropleth maps and point information.Danish journal of geography 107(2).1-12.
    [126]M.B.Abbott,and F.Ionescu,1967,On Numerical Computation of nearly-horizontal Flows,J.Hyd.Res.,Vol.5,pp.97-117.
    [127]Nash JE,Sutcliffe JV.1970.River flow forecasting through conceptual models.Part l:a discussion of principles.Journal of Hydrology 10:282-290.
    [128]Neuman S R 1973.Saturated-unsaturated seepage by finite elements.J.Hydraul..Am.Soc.Civil Eng.99(HY12):2233-2250.
    [129]Narasimhan T N,Witherspoon P A.1977.Numerical model for saturated-unsaturated flow in deformable porous media.1.Theory.Water.Resour.Res.13:657-664.
    [130]Ni G..Li X..Cong Z.,Sun F.and Liu Y.2006.Temporal and spatial characteristics of reference evapotranspiration in China.Transactions of the Chinese Society of Agricultural Engineering 5.3-8(In Chinese).
    [131]Post,D.A.and Jakeman,A.J.1996.Relationships between physical descriptors and hydrologic response characteristics in small Australian mountain ash catchments.Hydrological Processes,10:877-892.
    [132]Post,D.A.and Jakeman.A.J.1999.Predicting the daily streamflow ofungauged catchments in S.E.Australia by regionalising the parameters of a lumped conceptual rainfall-runoff model.Ecological Modelling,123:91-104.
    [133]Post.D.A.and Jones.J.A.2000.Hydrologic regimes of forested.mountainous,headwater basins in New Hampshire,North Carolina,Oregon and Puerto Rico.Advances in Water Resources
    [134]Post,D.A.,Jakeman.A.J..Littlewood,l.G..Whitehead,RG.and Jayasuriya,M.D.A.1996.Modelling land cover induced variations in hydrologic response.Picaninny Creek.Victoria.Ecological.Modelling.86:177-182.
    [135]Post.D.A.,,Jones.J.A.and Grant.G.E.1998.An improved methodology for predicting the daily hydrologic response of ungauged catchments.Environ.Model.& Software,13:395-403.
    [136]Paul J.A.Withers,Barbro UIen.Christian Stamm.and Marianne Bechmann.2003.Incidental phosphorus losses — are they significant and can they be predicted?J.Plant Nutr.Soil Sci.(166),459-468
    [137]Peter J.Albersen,Harold E.D.Houba,Michiel A.Keyzer.2003.Pricing a raindrop in a process-based model:general methodology and a case study of the Upper-Zambezi.Physics and Chemistry of the Earth.(28),183-192
    [138]Pereira FA,Qiu Y,Zhou G,Tsai MJ,and Tsai SY.1999.The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development.Genes Dev.13(8),1037-49.
    [139]Refsgaard JC.1997.Parameterisation,calibration and validation of distributed hydrological models.J Hydrol 198:69-97
    [140]R.Barthel,S.Janisch,N.Schwarz,A.Trifkovic.D.Nickel,C.Schulz,W.Mauser.2008.An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain.Environmental Modelling & Software (23)1095-1121
    [141]Roberta-Serena Blasone,Henrik Madsen,Dan Rosbjerg.2007.Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling.Journal of Hydrology (353),18-32
    [142]Rebecca L.Rowe,Nathaniel R.Street,Gail Taylor.2007.Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK.Renewable and Sustainable Energy Reviews (13)271-290
    [143]Roberta-Serena Blasone,Henrik Madsen.Dan Rosbjerg.2008.Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling.Journal of Hydrology (353).18-32
    []44]Rutter,A.J.,Kershaw,K.A.,Robins,P.C.and Morton,A.J.,1971.A predictive model of rainfall interception in forests,Derivation of the model from observations in a plantation of Corsican pine.Agricultural Meteorology.9:367-384.
    [145]Refsgaard,J.C.,Storm,B.,1995.Mike She.In:Singh.V.P.(Ed.).Computer Models of Watershed Hydrology.Water Resources Publication,pp.809-846.
    [146]Roosmalen,L.,van.Christensen.B.S.B.,Sonnenbrog,TO.,2007.Regional differences in climate change impacts on groundwater and stream discharge in Denmark.Vadous Zone.Management J 6.554-571.
    [147]Romano,N.,Brunone,B.and Santini,A.,1998.Numerical analysis of one-dimensional unsaturated flow in layered soils.Advances in Water Resources.21(4):315-324.
    [148]Rangarajan R.,Athavale R.N..2000.Annual replenishable groundwater potential of India:an estimate based on injected tritium studies.Journal of Hydrology 234,38-53.
    [149]Roberts,S.and Zopou.C.2000.Robust and efficient solution of the 2D shallow water equations with domains containing dry beds.Journal of the Australian Mathematical Society.Series B.
    [150]Rahman,A..Bates.B.C.,Mein,R.Gand Weinmann,P.E.1999.Regional flood estimation for ungauged basins in south-east Australia.Aust.J.Water Resour..3(2):199-207.
    [151]Siriwardena L,Finlayson BL,McMahon TA.2006.the impact of land use change on catchment hydrology in large catchments:the Comet River,central Queensland,Australia.J Hydrol 326:199-214
    [152]Schaap,M.G.Leij,F.J.,van Genuchten.M.T.,1999.Bootstap-neural network approach to predict soil hydraulic parameters.In:van Genuchten,M.Th.Leij,F.J.,Wu,L.(Eds.),Proceedings of the International Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media:Riverside.California,22-24 October 1997.pp.1237-1250.
    [153]Simunek,J.,Huang,K.,van Genuchten,M.Th..1998.The HYDRUS Code.Research Report No.144.US Salinity Laboratory Agricultural Research Service.USDA,Riverside,California.
    [I54]Scharling,M.Kern-Larsen,C.2002.Klimagrid Danmark,Nedbor og fordampning 1990-2000.Beregningsresultater til belysning af vandbalancen i Danmark,Danish Meteorological Institute.Technical Report 02-03,pp.16.
    [155]SaIama,R.B..Ye.L.and Broun.J.1996.Comparative study of methods of preparing hydraulic-head surfaces and the introduction of automated hydrogeological-GIS techniques.J.Hydrol.,185:115-136.(1)
    [156]Simpson,H.J..Cane,M.A..Lin.S.K..Herc zeg.A.L.and Zebiak.S.E.1993b.Forecasting annual discharge of River Murray.Australia from a geophysical model of ENSO.J.CIimate.6:386-390.(11)
    [157]Sivapalan,M.,Bates,B.C and Larsen,J.E.1997.A generalized nonlinear diffusion wave equation:Theoretical development and application.J.Hydrol..192:1-16.
    [158]Sumner.N.R.,Fleming,P.M.and Bates,B.C.1997.Calibration of a modified SFB model for 25 Australian catchments using simulated annealing.J.Hydrol.,197:166-188.(44)
    [159]Salama R.,Haton,T.J.and Dawes,W.1999.Predicting land use impacts on regional scale groundwater recharge and discharge.J.Environ.Qual.,28:446-460.
    [160]S.H.R.Sadeghi.T.Mizuyama.S.Miyata,T.Gomi,K.Kosugi,T.Fukushima,S.Mizugaki,Y.Onda.2008.Determinant factors of sediment graphs and rating loops in a reforested watershed.Journal of Hydrology(356),271-282
    [161]Scanlon,B.R.,R.W.Healy.and R G.Cook.2002.Choosing appropriate techniques for quantifying groundwater recharge.Hydrogeology J.10,18-39.
    [162]Schaap,M.G.,Leij,F.J.,van Genuchten.M.Th,1998.Neural network analysis for hierarchical prediction of soil hydraulic properties.Soil Sci.Soc.Am.J.62.847-855.
    [163](?)im(?)nek,J.,M.T.van Genuchten,and M.(?)ejna.2005.The HYDRUS-1D software package for simulating the one-dimensional movement of water,heat,and multiple solutes in variably-saturated media,Version 3.0,HYDRUS Software Series 1,Department of Environmental Sciences.University of California.Riverside,CA,270 p.
    [164]Shao,M.A.,Huang,M.B.,Zhang.L.and Li,Y.S.2000.Simulation of field-scale water balance in the Loess Plateau of China using WAVES.Agricultural Water Management.
    [165]Silberstein.R.P..Vertesy,R.A.,Morris.J.and Feikema.and RM.1999a.Modelling the effects of soil moisture and solute conditions on long-term tree growth and water use:A case study from the Shepparton Irrigation Area,Australia.Agric.Water Management.39:285-315.
    [166]Silberst ein,R.P.,Sivapalan.M.and Wyllie.A.1999b.On the validation of a coupled water and energy balance model at small catchment scales.J.Hydrol,220(3-4):149-168.
    [167]Silberst eeiinn,R.P.,M.Sivapalan.N.R..Viney.A..Held and Haton.T.J.1999c.Energy balance of a natural jarrah(Eucalyptus marginata)forest.Modelling and validation.Agric.For.Meteorol.
    [168]Sivapalan.M..Ruprecht,J.K.and Viney.N.R.1996a.Water and salt balance modelling to predict the effects of land use changes in forested catchments.l.Small catchment water balance model.Hydrological Processes.10:393-411.
    [169]Sivapalan,M.,Viney.N.R.and Ruprecht.J.K.1996b.Water and salt balance modelling to predict the effects of land use changes in forested catchments.2.Coupled model of water and salt balances.Hydrological Processes.10:413-428.
    [170]Simmers,l.H..J.M.H.Kruseman.RGand Rushton K.R..1997.Recharge of Phreatic Aquifers in(Semi-)Arid Areas.Faculty of Earth Sciences.Free University.Amsterdam.277 pp.
    [171]Sukhija B.S.,Reddy D.V..Nagabhushanam R,Hussain Syed.Giri V.Y..Patil D.J.,1996.Environmental and injected tracers methodology to estimate direct precipitation recharge to a confined aquifer.Journal of Hydrology 177,77-97.
    [172]Svendsen L.M & Hansen H.O.1997.Skjern River:Review of present knowledge on the physical. chemical and biological conditions in the lower part of the river system,National Environmental Research Institute and National Forest and Nature Agency
    [173]Spear,R.C.,Grieb,T.M.and Shang.N.,1994.Parameter uncertainty and interaction in complex environmental models,Water Resour.Res.,30,3159-3170.
    [174]Tarboton,D.G,1997,“A New Method for the Determination of Flow Directions and contributing Areas in Grid Digital Elevation Models,” Water Resources Research,33(2):309-319.
    [175]T.Diomede,A.Amengual.C.Marsigli,A.Martin,R.Romero,P.Papetti and T.Paccagnella.2006.A meteo-hydrological model intercomparison as tool to quantify forecast uncertainty at medium-sized basin scale.Geophysical Research (8).26-35
    [176]Taylor,S.A.,and Ashcroft,GM..1972.Physical Edaphology,Freeman and Co.,San Francisco,California,434-435
    [177]Thanapakpawin P,Richey J,Thomas D,Rodda S.Campbell B,Logsdon M.2007.Effects of landuse change on the hydrologic regime of the Mae Chaem river basin,NW Thailand.J Hydrol 334:215-230
    [178]Thomas,J.F.and Bates,B.C.2000.Responses to the variability and increasing uncertainty of climate in AustraIia.IN:Risk.Reliability,Uncertainty and Robustness of Water Resources Systems.(Eds.J.J.Bogardi and Z.W.Kundzewicz),Cambridge Univ.Press,Cambridge.
    [179]Thyer,M..Kuczera.Gand Bates,B.C 1999.Probabilistic optimization for conceptual rainfall runoff models:A comparison of the shuffled complex evolution and simulated annealing algorithms.Water Resour.Res..35(3):767-773.
    [180]Verstraeten G Van Rompaey A.Poeson J.2003.Evaluating the impact of watershed management scenarios on changes in sediment delivery to rivers.Hydrobiology.494:153-158
    [181]Ver tesy,R.A..Haton,T.J..Benyon,R.J.and Dawes.W.R.1996.Long term growth and water balance predictions from a mountain ash(Eucalyptus regnans)forestcatchment subject to clearfelling and regeneration.Tree Physiology,16:221-232.
    [182]Viney,N.R.and Sivapalan.M.2000.Modelling catchment processes in theSwan-Avon River Basin.Hydrological Processes.
    [183]Van der LeeJ.and Gehrels.J.C..1997.Modelling of groundwater recharge of a fractured dolomite aquifer under semi-arid conditions.In:I.Simmers(ed),Recharge of phreatic aquifers in(semi-)arid areas.UNESCO/IAH Int.Contr.to Hydrogeology.Balkema.Rotterdam,pp.129-144.
    [184]Van der Lee,J.and Gehrels.J.C..1990.Modelling Aquifer Recharge:Introduction to the Lumped Parameter Model EARTH,Free University of Amsterdam.
    [185]Van Dam.J.C.,Malik,R.S..2003.Water Productivity of Irrigated Crops in Sirsa District,India:Integration of Remote Sensing,Crop and Soil Models and Geographical Information Systems (WATPRO final report).Wageningen UR,Wageningen.
    [186]Van Genuchten,M.T.1980.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Sci.Soc.Am.J..44.892-898.
    [187]Van Genuchten,M.Th..and D.R.Nielsen..1985.On describing and predicting the hydraulic properties of unsaturated soils.Ann.Geophysicae.3.615-628.
    [188]Van Genuchten.M.Th..F.J.Leij,and S.R.Yates.1991.The RETC code for quantifying the hydraulic functions of unsaturated soils.Report No.EPA/600/2-91/065.R.S.Kerr Environmental Research Laboratory,U.S.Environmental Protection Agency,Ada,OK.85 p.
    [189]Verhoef.A.,1995.Surface energy balance of shrub vegetation in the Sahel.Ph.D.Thesis.Wageningen Agricultural University.the Netherlands.247 p.
    [190]Wang,H.X.,ZZhhang,L.,Dawweess.W.R.and Liu,C.M.2000.1mproving water use efficiency of irrigated crops in the North China Plain-measurements and modelling,Agricultural Water Management.
    [191]Wood W.W..Sanford W.E.,1995.Chemical and isotopic methods for quantifying ground-water recharge in a regional,semiarid environment.Ground Water 33,458-468.
    [192]Wegehenkel M.2002.Estimating of the impact of land use changes using the conceptual hydrological model THESEUS-a case study.Phys Chem Earth 27:631-640
    [193]Wang B.,Jin M.,Nimmo J.R.,Yang L.,Wang W.2008.Estimating Groundwater Recharge in Hebei Plain,China under varying land use practices using tritium and bromide tracers.J.Hydrol.356(1-2),209-222.
    [194]Wesseling J.G.,1991.Meerjarige simulates van groundwateronttrekking voor verschillende bodemprofielen,grondwatertrappen en gewassen met her model SWATRE.Report 152,Winand Starring Centre.Wageningen.
    [195]W.W.Immerzeel.P.Droogers,S.M.de Jong,M,F.P.Bierkens.2009,Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing.Remote Sensing of Environment(113),40-49
    [196]Yeliz Yukselen,Abidin Kaya.2008.Suitability of the methylene blue test for surface area,cation exchange capacity and swell potential determination of clayey soils.Engineering Geology(102)38-45
    [197]Yang,Y.,Watanabe,M.,Zhang,X.,Hao,X.,Zhang,J.,2006.Estimation of groundwater use by crop production simulated by DSSAT-wheat and DSSAT-maize models in the piedmont region of the North China Plain.Hydrol.Process.20,2787-2802.
    [198]Zhang,L.,Dawes,W.R..Walk er.G.R.2000.The response of mean annual evapotranspiration to vegetation changes at catchment scale.Water Resour.Res.
    [199]Zhang X.,2002.Index system for irrigation scheduling of winter wheat and maize in the Piedmont of mountain Taihang.Transactions of the Chinese Society of Agricultural Engineering.6,35-39.(In Chinese).
    [200]Zuazo V H D,Martinez J R F,Raya AM.2004.Impact of vegetation cover on runoff and soil erosion at hillslope scale in Lanjaron,Spain.Environmentalist.24:39-48
    [201]Zimmermann U.,Munnich K.O..Roether W.,1967.Downward movement of soil moisture traced by means of hydrogen isotopes.Geophys Monogr Am Geophys Union 11,28-36.
    [202]Zimmermann U.,Munnich K.O.,Roether W.,Schubach K,,Siegel O.,1966.Tracers determine movement of soil moisture and evapotranspiration.Science 152.346-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700