华北春玉米土壤N_2O减排措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国氮肥施用过量,利用率低,使农田土壤成为重要的N_2O排放源。为提高氮肥利用率,减少农田N_2O排放,本试验研究了九种肥料处理对山西榆次春玉米2007~2010年生长季内土壤N_2O排放的影响,并结合作物产量探索减少N_2O排放的措施。手动静态箱法测定频率低,易漏掉N_2O排放峰。为提高测量质量,本研究利用自动观测系统进行连续观测。利用试验数据校正、验证水氮管理模型(WNMM)并增加包膜肥料N_2O排放模块,寻找合适的管理措施。
     主要的研究结果如下:
     1、2007~2009年开展了传统施肥(T)和优化减氮(O)施肥对比研究。结果得出O处理在减少氮肥施用量64%的情况下,年均N_2O减排48%,且并未减产。土壤水分和土壤铵态氮含量是N_2O的主要驱动因子。沟施追肥要避开强降雨和立即灌溉,是减少N_2O排放的主要措施。N_2O吸收现象主要发生在玉米生长后期,土壤矿态氮含量小于46.4 mg kg~(-1)时。
     2、2009年开展了不同氮磷肥对N_2O排放影响的研究,设有空白(CK)、尿素(U)、尿素加磷肥(NP)和硝酸磷肥(NOP)四个处理。结果得出各处理N_2O排放系数分别为U:0.55%,NP:0.4%,NOP:0.27%。尿素加磷肥较单施尿素有助于减少农田N_2O排放,硝酸磷肥较尿素可以显著减少N_2O排放。与U和NP处理相比,NOP处理可减少农民肥料投入15%和30%,降低N_2O排放42%和26%,且未减产。
     3、2009年开展了不同缓/控释肥对N_2O排放影响的研究,设有不施肥(CK)、尿素(U)、硫包衣尿素(SCU)、硝化抑制剂双氰胺DCD+尿素(UDD)和DCD+碳酸氢铵(ADD)五个处理。结果得出各处理N_2O的排放系数为0.15%~0.55%,小于IPCC推荐的1%;硫包衣肥料N_2O减排效果最好,且产量极显著高于其它各施肥处理(P<0.01)。硝化抑制剂DCD对土壤硝化作用有较高的抑制作用,显著减少了N_2O排放。
     4、根据T和O处理3年的试验数据,校正和验证了水氮管理模型(WNMM)。结果得出校正、验证后WNMM模型可以模拟春玉米土壤N_2O排放和土壤水分、温度和矿态氮的变化。利用验证后的WNMM模型模拟了891种水肥管理情景,得出普通肥料最佳管理措施为:基肥为硝酸磷肥(73.75kg N hm~(-2)),追肥为尿素(129.92 kg N hm~(-2)),播种前和追肥后各灌溉一次,每次灌溉量为100mm。
     5、基于硫包膜处理下两年(2009~2010)的试验数据和验证后的WNMM模型增加了包膜控释肥模块。结果表明,只有S型曲线法与所有评价指标均显著相关(P<0.05)。综合比较SCU、BMPs、T和O处理得出,硫包衣处理较其它三个处理分别减排N_2O(21.8%~46.8%)、增产(-0.48%~22.2%)、增收(1.8%~28.3%),因此硫包衣肥料是减少春玉米N_2O排放的最佳选择。
Excessive nitrogen fertilizer application results in the lower nitrogen fertilizer use efficiency and cropland becomes an important source of N_2O emission. In order to increase the nitrogen fertilizer use efficiency, reduce the N_2O emissions, a field experiment was undertaken during spring maize growing season from 2007 to 2010 at Yuci, Shanxi Province, in North China, to investigate the effects of nine fertilizer treatments on N_2O emissions from spring maize soil, the responses of grain yield, in addition to N_2O emissions, were examined to explore feasible strategies to reduce N_2O emission. Low frequence of the manual measurement by static chamber may miss the N_2O peak emissions. During this research an automated measurement system was taken to improve the quality of N_2O monitoring. Based on the obersvered data to calibration and validation the Water and Nitrogen Management Model (WNMM) and add a mode to simulation the N_2O emission from sulfure coated urea to get the suitable option.
     The main results are as follows:
     1. Compared the effect of Traditional (T) to Optimal of nitrogen reduction treatments (O) on N_2O emission from 2007 to 2009. The results showed that the Optimal of nitrogen reduction treatment was a better choice, compare to Traditional treatment, produced the same yield of grain, and significantly reduced N_2O emissions by 48% on average every year, while reduce nitrogen fertilizer input by 64%. The WFPS and soil NH4+ content were identified as the major environmental factors controlling N_2O emissions from the soil every year. Banding with fertilizer should not during periods of heavy rainfalls and no irrigation immediately were devised as the feasible strategies to reduce N_2O emissions from spring maize in North China. N_2O uptake occurred mainly during the late stage of spring maize growth when the soil mineral N content was less than 46.4 mg kg~(-1) soil.
     2. Study the effect of different nitrogen and phosphorus fertilizers on nitrous oxide emissions from spring-maize field in 2009. Four fertilization management practices were selected, viz. zero fertilizer as control treatment (CK), urea treatment (U), urea and phosphorus treatment (NP), nitric phosphate treatment (NOP). The results indicated that the emission factors of each treatment were U(0.55%),NP(0.4%) and NOP(0.27%) respectively. Compared to urea treatment not only urea and phosphorus could reduce the N_2O emissions, but also the nitric phosphate treatment could significantly reducing the N_2O emissions. NOP treatment was a better management practice in the sense that, when compared to U and NP treatments, it reduced not only N_2O emission by 42% and 26% separately, but also farmers’expenditure on fertilizers by 15% and 30%, while maintaining crop yield.
     3. Study the effect of different slow/control release nitrogen fertilizers on nitrous oxide emissions from spring maize field in 2009. Five fertilization management practices were selected, viz. (1) zero fertilizer application as control (CK), (2) urea (U), (3) sulfur-coated urea (SCU),(4) nitrate inhibitor dicyandiamide (DCD) with urea (UDD) and (5) DCD with ammonium bicarbonate (ADD), The results indicated that the N_2O emission factor (EF) of every fertilizer treatment was between 0.15%~0.55%, lower than 1% which was suggested by the Intergovernmental Panel on Climate Change (IPCC). The sulfur-coated urea was most effective in reducing N_2O emissions, and the yield obtained under SCU was significantly higher than other four treatments (P<0.01). Nitrate inhibitor DCD was effective in reducing soil nitrification, which could significantly reduce N_2O emissions.
     4 Calibration and validation WNMM model and determining the BMPs based on the T and O treatments. The results indicated that the calibrated and validated WNMM model satisfactorily simulated soil mineral N contents, soil water content, soil temperature and N_2O emissions from the spring maize soil, compared with the field observations during calibration and validation. Results showed that the BMPs under normal fertilizer type were using nitric phosphate (73.75kg N hm~(-2)) as basal fertilizer and urea (129.92 kg N hm~(-2)) as banding with fertilizer, with irrigation of 100mm twice (one before tillage and one after banding with fertilizer).
     5. Add the SCU mode based on the field observed data under SCU treatment from 2009 to 2010 and the calibrated and validated WNMM model. The results showed that the S curve method was the best choice for the SCU mode, which had a significant relationship with all of the assessment index (P<0.05). Compared the performance of the four treatments (SCU, BMPs, T and O) under history 59 years weather data, and the results showed that the SCU performed better than BMPs, T and O treatments, which reduce N_2O emission from 21.8%~46.8%, increased yield from -0.48%~22.2% and net return from 1.8%~28.3%. So the sulfur coated urea was the best choice for the spring maize field in North China.
引文
1.蔡延江,王连峰,温丽燕等.培养实验研究长期不同施肥制度下中层黑土氧化亚氮的排放特征.农业环境科学学报,2008,27(2):617~621.
    2.陈利军,史奕,李荣华等.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N_2O排放的影响.应用生态学报,1995,6(4):368~372.
    3.陈文新.土壤环境微生物学.北京:北京出版社,1989:133~151.
    4.陈欣,沈善敏,张璐等.N、P供给对作物排放N_2O的影响研究初报.应用生态学报,1995,6(1):104~105.
    5.崔振岭.华北平原冬小麦/夏玉米轮作体系优化氮肥管理—从田块到区域尺度[博士学位论文].北京:中国农业大学,2005.
    6.戴平安,聂军,郑圣先等.不同土壤肥力条件下水稻控释氮肥效应及其氮素利用的研究.土壤通报,2003,34(2):115~119.
    7.丁洪,王跃思,秦胜金等.控释肥对土壤氮素反硝化损失和N_2O排放的影响.农业环境科学学报,2010,29(5):1015~1019.
    8.董玉红,欧阳竹,李运生等.肥料施用及环境因子对农田土壤CO2和N_2O排放的影响.农业环境科学学报,2005,24(5):913~918.
    9.段路路,张民,刘刚等.热缩性包膜尿素微观结构特征及其养分释放机理研究.植物营养与肥料学报,2009,15(5):1170~1178.
    10.冯元琦.建议推广适用于大田作物的缓释/控释肥料.磷肥与复肥,2004,19(3):3~4.
    11.高志岭.冬小麦/夏玉米轮作体系农田土壤N_2O排放和CH_4吸收特征[博士学位论文].北京:中国农业大学,2004.
    12.高志岭,陈新平,张福锁等.农田土壤N_2O排放的连续自动测定方法.植物营养与肥料学报,2005,64(1):64~70.
    13.国家发展和改革委员会.中华人民共和国气候变化初始国家信息通报.北京:中国计划出版社,2004.
    14.侯爱新,陈冠雄, O. V. Cleemput.不同种类氮肥对土壤释放N_2O的影响.应用生态学报.1998,9(2):176~180.
    15.黄斌,陈冠雄,O. V. Cleemput.长效碳酸氢铵对土壤硝化-反硝化过程NO与N_2O排放的影响.应用生态学报,2000,11(1):73~78.
    16.黄国宏,陈冠雄,张志明等.玉米田N_2O排放及减排措施研究.环境科学学报,1998,18(4): 334~349.
    17.黄国宏.土壤含水量与N_2O产生途径研究.应用生态学报,1999,10(1):34~39.
    18.黄树辉,蒋文伟,吕军等.氮肥和磷肥对稻田N_2O排放的影响.中国环境科学,2005,25(5):540~543.
    19.黄耀,蒋静艳,宗良纲等.种植密度和降水对冬小麦田N_2O排放的影响.环境科学,2001,22(6):20~23.
    20.纪雄辉,郑圣先,聂军等.稻田土壤上控释氮肥的氮素利用率与硝态氮的淋溶损失.土壤通报,2007,38(3):467~471.
    21.李春越,白红英,党廷辉等.农田土壤磷酸酶活性与土壤N_2O排放通量的相关性.中国环境科学,2007,27(2):231~234.
    22.李方敏,樊小林,刘芳等.控释肥料对稻田氧化亚氮排放的影响.应用生态学报,2004,15(11):2170~2174.
    23.李方敏,樊小林,汪强.离子交换树脂膜吸附控释肥钾素养分的动力学特征.中国农业科学,2005,38:2283~2289.
    24.李克让.土地利用变化和温室气体净排放于陆地生态系统碳循环.北京:气象出版社,2002.
    25.李敏,叶舒娅,刘枫等.包膜控释尿素用量试验对花生产量和氮肥利用率的影响.中国农学通报,2010,26(4):170~173.
    26.梁东丽,同延安, E. T. Ove等.干湿交替对旱地土壤N_2O气态损失的影响.干旱地区农业研究,2002,20(2):28~31,48.
    27.梁巍,张颖,岳进等.长效氮肥施用对黑土水旱田CH_4和N_2O排放的影响.生态学杂志,2004 ,23 (3) :44~48.
    28.刘运通,万运帆,林而达等.施肥与灌溉对春玉米土壤N_2O排放通量的影响.农业环境科学学报,2008,27(3):997~1002.
    29.龙继锐,马国辉,周静等.缓释尿素对超级杂交稻Y两优1号生长发育及氮肥利用率的影响.杂交水稻,2007,22 (6):48~51.
    30.卢碗芳,陈苇,王德仁.大粒尿素肥效及增产机理的研究初报.中国农学通报,1991,7(3):40~42.
    31.马胜亮,王宜伦,韩燕来等.包膜氮肥养分释放研究.河南农业大学学报,2005,39(2):158~160.
    32.全国土壤普查办公室.中国土壤.北京:中国农业出版社,1998.
    33.任祖淦,唐福钦.缓效氮肥的增产效应研究.土壤通报,1997,28(1):22~24.
    34.孙克刚,胡颖,和爱玲等.控释尿素对小麦增产效果与提高氮肥利用率的研究.磷肥与复肥,2009,24(5):84~85.
    35.孙克君,毛小云,卢其明等.几种控释肥减少氨挥发的效果及影响因素研究.应用生态学报,2004,15(12):2347~2350.
    36.孙其专.不同地力水平下控释尿素对夏玉米产量的影响[硕士论文].山东:山东农业大学,2006.
    37.孙艳丽,陆佩玲,李俊等.华北平原冬小麦/夏玉米轮作田土壤N_2O通量特征及影响因素.中国农业气象,2008,29(1):1~5.
    38.万运帆,李玉娥,林而达等.静态箱法测定旱地农田温室气体时密闭时间的研究.中国农业气象,2006,27(2):122~124.
    39.王红飞,王正辉.缓/控释肥料的新进展及特性评价.广东化工,2005,(8):86~90.
    40.王继红,刘景双,于君宝等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报,2004,18(1):35~38.
    41.王立刚,李虎,邱建军.黄淮海平原典型农田土壤N_2O的排放特征.中国农业科学,2008,41(4):1248~1254.
    42.王丽艳,荆瑞勇.改性尿素对土壤N_2O排放的影响.贵州农业科学,2008,36(1):108~109.
    43.王智平,曾江海,张玉铭.农田土壤N_2O排放的影响因素.农业环境保护,1994,13(1):40~42.
    44.肖俊夫,刘战东,刘小飞等.中国春玉米主产区灌溉问题分析与研究.节水灌溉,2010,4:1~3.
    45.谢佳贵,尹彩侠,张路等.春玉米控释氮肥施用技术研究.玉米科学,2009,17(5):145~147,163.
    46.谢建昌.世界肥料使用的现状与前景.植物营养与肥料学报,1998,4(4):321~330.
    47.谢军飞,李玉娥.土壤温度对北京旱地农田N_2O排放的影响.中国农业气象,2005,26(1):7~10.
    48.徐华,邢光熹,蔡祖聪等.土壤水分状况和质地对稻田N_2O排放的影响.土壤学报,2000,37(4):499~505.
    49.徐文彬,洪业汤,陈旭晖等.贵州省旱田土壤N_2O释放及其环境影响因素.环境科学,2000,21(1):7~11.
    50.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告第一报:概念区分与评价标准.磷肥与复肥,2000a,15(3):1~6.
    51.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告第二报:世界缓释/控制释放肥料生产、消费现状.磷肥与复肥,2000b,15(4):5~7.
    52.杨兰芳,祖聪.施氮和玉米生长对土壤氧化亚氮排放的影响.应用生态学报,2005,16(1):100~104.
    53.叶欣,李俊,王迎红等.华北平原典型农田土壤氧化亚氮的排放特征.农业环境科学学报,2005,24(6):1186~1191.
    54.喻建刚,樊小林,李宁等.Richards方程在描述包膜控释肥料氮素释放特征中的运用.中国农业科学,2006,39(9): 1853~1858.
    55.张福锁,王激清,张卫峰等.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):917~926.
    56.张福锁,朱兆良.主要农田生态系统氮素行为与氮肥高校利用的基础研究.北京:科学出版社,2010.
    57.张浩,王正银.缓释/控释肥料研究进展.黑龙江农业科学,2002,(5):18~20.
    58.张丽莉,武志杰,陈利军等.包膜与氢醌结合对尿素释放及水解的影响.生态环境学报,2009,18(3):1112~1117.
    59.张庆富,张民,宗晓庆等.控释肥硫膜对棕壤酸碱平衡体系的影响.水土保持学报,2010,24(2):184~191.
    60.张树清.我国缓/控释肥料现状与存在问题分析.中国农业信息,2008,(11):32~36.
    61.张鑫,张海楼,娄春荣.包膜尿素对玉米产量及其性状的影响.农业科技与装备, 2009,4:19~21.
    62.张秀君,徐慧,陈冠雄.影响森林土壤N_2O排放和CH_4吸收的主要因素.环境科学,2002,23(5):8~12.
    63.张志明,李继云,冯元琦等.长效碳酸氢铵理化特性及增产机理的研究.中国科学(B辑),1996,26(5):452~459.
    64.赵斌.不同控释复合肥对夏玉米产量和品质影响的生理机制[硕士论文].山东:山东农业大学,2007.
    65.郑圣先,聂军,熊金英等.控释肥料提高氮素利用率的作用及对水稻效应的研究.植物营养与肥料学报.2001,7(1):11~16.
    66.郑圣先,刘德林,聂军等.控释氮肥在淹水稻田土壤上的去向及利用率.植物营养与肥料学报,2004,10(2):137~142.
    67.郑循华,王明星,王跃思等.稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响.应用生态学报,1996,7(3):273~279.
    68.郑循华,王明星,王跃思等.华东稻麦轮作生态系统的N_2O排放研究.应用生态学报,1997a,8(5):495~496.
    69.郑循华,王明星,王跃思等.温度对农田N_2O产生与排放的影响.环境科学,1997b,18(5):1~5.
    70.中国科学院和中国工程院院士专家组.我国化肥面临的突出问题及建议.北京:中国科学院文件,科发学部字(1997)0228号,1997.
    71.中国气象科学数据共享服务网[EB/OL],2011.取自http://cdc.cma.gov.cn/index.jsp
    72.中国土壤学会.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    73.中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社,2009.
    74.周礼恺,徐星凯,陈利军等.氢醌和双氰胺对种稻土壤N_2O和CH_4排放的影响.应用生态学报,1999,10(2):189~192.
    75.周再兴,郑循华,王明星等.华东稻麦轮作农田CH_4、N_2O和NO排放特征.气候与环境研究,2007,12(6):751~760.
    76.朱兆良,文启孝.中国土壤氮素.江苏:科学技术出版社,1992.
    77.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1~6.
    78.邹建文,黄耀,宗良纲等.稻田CO2,CH_4和N_2O排放及其影响因素.环境科学学报,2003a,23 (6):758~764.
    79.邹建文,黄耀,宗良纲等.不同种类有机肥对稻田CH_4和N_2O排放的综合影响.环境科学,2003b,24(4):7~12.
    80. Addiscott T. M., Whitmore A. P. Simulation of solute leaching in soils of different permeabilities. Soil Use Manage, 1991, 7: 94~102.
    81. Adviento-Borbe M. A. A., Haddix M. L., Binder D. L., et al. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biology, 2007, 13: 1972~1988.
    82. Akiyama H., Tsuruta H., Watanabe T. N_2O and NO emissions from soils after the application of different chemical fertilizers. Chemosphere-Global Change Science, 2000, 2: 313~320.
    83. Arah J. R. M., Smith K. A. Measurement of nitrous-oxide emissions from fertilized grassland using closed chambers. Journal of Geophysical Research-Atmospheres, 1994, 99: 16599~16607.
    84. Arah J. R. M., Smith K. A. Steady-state denitrification in aggregated soils: a mathematical model. European Journal of Soil Science, 1989, 40: 139~149.
    85. Aulakh M. S., Doran D. T., Walters A. R., et al. Crop residue type and placement effects on denitrification and mineralization. Soil Science Society of America journal, 1991, 55: 1020~1025.
    86. Barnard R., Leadley P. W., Hungate B. A. Global change, nitrification, and denitrification: a review. Global Biogeochemical Cycles, 2005, 19, GB1007, doi: 10.1029/2004GB002282.
    87. Barton L., Kiese R., Gatter D., et al. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change Biology, 2008, 14: 177~192.
    88. Barton L., Murphy D.V., Kiese R., et al. Soil nitrous oxide and methane fluxes are low from a bioenergy crop (canola) grown in a semi-arid climate. Global change biology. Bioenergy, 2010, 2: 1~15.
    89. Beauchamp E. G. Nitrous oxide emission from agricultural soils. Canadian Journal of Soil Science, 1997, 77: 113~123.
    90. Berntsen J., Petersen B. M., Olesen J. E., et al. Simulation of residual effects and nitrate leaching after incorporation of different ley types. European journal of agronomy, 2005, 29: 290~304.
    91. Blackmer A. M., Bremner J. M. Potential of soil as a sink for atmospheric nitrous oxide. Geophysical research letters, 1976, 3(12): 739~742.
    92. Boeckx P., Xu X., Cleemput O. V. Mitigation of N_2O and CH_4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone. Nutrient Cycling Agroecosystems, 2005, 72: 41~49.
    93. Bouwman A. F. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in agroecosystems, 1996, 46: 53~70.
    94. Bouwman A. F., Boumans L. J. M., Batjes N. H. Modeling global annual N_2O and NO emissions from fertilized fields. Glob Biogeochemical Cycles, 2002, 16: 1080~1088.
    95. Bouwman A. F., Fung E., Mathews E., et al. Global analysis of the potential for N_2O production in natural soils. Glob Biogeochemical Cycles, 1993, 7(3): 557~597.
    96. Bremner J. M. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 1997, 49: 7~16.
    97. Bremner J. M. Sources of nitrous oxide in soils. Nutrient cycling in agroecosystems, 1997, 49: 7~16.
    98. Breuer L., Papen H., Butterbach-Bahl K. N_2O emission from tropical forest soils of Australia.Journal of Geophysical Research-Atmospheres, 2000, 105: 26353~26367.
    99. Bronson K. F., Neue H. U., Abao E. B. J. Automated Chamber Measurements of Methane and Nitrous Oxide Flux in a Flooded Rice Soil: II. Fallow Period Emissions. Soil Science Society of America journal, 1997, 61: 988~993.
    100. Brown L., Syed B., Jarvis S. C., et al. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmospheric Environment, 2002, 36: 917~928.
    101. Butterbach-Bahl K., Gasche R., Huber C., et al. Impact of N-input by wet deposition on N-trace gas fluxes and CH_4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmospheric Environment, 1998, 32: 559~564.
    102. Butterbach-Bahla K., Gaschea R., Breuer L., et al. Fluxes of NO and N_2O from temperate forest type, N deposition and of liming on the NO and N_2O emission. Nutrient Cycling in Agroecosystems, 1997, 48: 79~90.
    103. Cai Z., Sawamoto T., Li C., et al. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Glob Biogeochemical Cycles, 2003, 17(4): 1107~1116.
    104. Chapuis-Lardy L., Wrage N., Metay A., et al. Soils, a sink for N_2O? A review. Global Change Biology, 2007, 13: 1~17.
    105. Chatskikh D., Olesen J., Berntsen J., et al. Simulation of effects of soils, climate and management on N_2O emission from grasslands. Biogeochemistry, 2005, 76: 395~419.
    106. Chen D., Freney J. R., Mosier A. R., et al. Reducing denitrification loss with nitrification inhibitors following presowing applications of fertilizer nitrogen to irrigated cotton fields. Australian Journal of Experimental Agriculture, 1994, 34: 75~83.
    107. Chen D., Li Y., Kelly K., et al. Simulation of N_2O emission from an irrigated dairy pasture treated with urea and urine in Southeastern Australia. Agriculture, Ecosystems and Environment, 2010, 136: 333~342.
    108. Cheng W. G., Sudo S., Tsuruta H., et al. Temporal and spatial variations in N_2O emissions from a Chinese cabbage field as a function of type of fertilizer and application. Nutrient Cycling Agroecosystems, 2006, 74: 147~155.
    109. Choudhary M. A., Akramkhanov A., Saggar S. Nitrous oxide emissions from a New Zealand cropped soil: tillage effects, spatial and seasonal variability. Agriculture, Ecosystems & Environment, 2002, (93): 33~43.
    110. Conen F., Dobbie K. E., Smith K. A. Predicting N_2O emissions from agricultural land through related soil parameters. Global Change Biology, 2000, 6: 417~426.
    111. Conrad R., Seiler W., Bunse G. Factors influencing the loss of fertilizer nitrogen into the atmosphere as N_2O. Journal of Geophysical Research, 1983, 88: 6709~6718.
    112. Crutzen P. J. The influence of nitrogen oxides on the atmospheric ozone content. Quarterly journal of the Royal Meteorological Society, 1970, 96: 320~325.
    113. Dalsgaard T., Dezwart J., Robertson L. A., et a1. Nitrification, denitrification and growth in artificial Tkiosphaera pantotropha biofilms as measured with a combined microsensor for oxygen and nitrous oxide. FEMS Microbial Ecology, 1995, 17: 137~147.
    114. Dambreville C., Hallet S., Nguyen C. et al. Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. Fems Microbiology Ecology, 2006, 56 (1): 119~131.
    115. Daniel R. S., Ali M. S. Gregory W. M. Effect of soil water content on denitrification daring cover crop decomposition. Soil Science, 2000, 165(4): 365~371.
    116. Daum D., Schenk M. K. Influence of nutrient solution pH on N_2O and N2 emissions from a soilless culture system. Plant and Soil, 1998, 203: 279~287.
    117. Davidson E. A., Keller M., Erickson H. E., et al. Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience, 2000, 50(8): 667~680.
    118. Davidson E. A., Swank W. T. Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Applied Environmental Microbiology, 1986, 52: 1287~1292.
    119. Davidson E. A. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: Microbial production and consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halo-Methanes, Washington, D.C., 1991: 219~235.
    120. Davidson E. A. Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In: Oremland, R.S., (Ed.), Biogeochemistry of global change, radiatively active trace gases, Chapman & Hall, New York, 1993: 369~383.
    121. De Boer W. Kowalchuk G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil biology & biochemistry, 2001, 33: 853~866.
    122. Del Grosso S. J., Ojima D. S., Parton W. J., et al. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies from cropped soils. Global and Planetary Change, 2009, 67: 44~50.
    123. Del Grosso S. J., Parton W. J., Mosier A. R., et al. DAYCENT National-scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of environmental quality, 2006, 35: 1451~1460.
    124. Del Grosso S. J., Parton W. J., Mosier A.R., et al. General model for N_2O and N2 gas emissions from soils due to denitrification. Global Biogeochemical Cycles, 2000, 14(4): 1045~1060.
    125. del Prado A., Merino P., Estavillo J. M., et al. N_2O and NO emissions from different N sources under a range of soil water contents. Nutrient cycling in agroecosystems, 2006, 74: 229~243.
    126. Di H. J., Cameron C., Sherlock R. R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use Manage, 2007, 23: 1~9.
    127. Dobbie K. E., Smith K. A. The effects of temperature, water filled pore space and land use onN_2O emissions from an imperfectly drained gleysol. European Journal of Soil Science, 2001, 52: 667~673.
    128. Dobbie K. E., McTaggart I. P., Smith K. A. Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons; key driving variables; and mean emission factors. Journal of geophysical research, 1999, 104: 26891~26899.
    129. Dobbie K. E., Smith K. A. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Global Change Biology, 2003, 9: 204~218.
    130. Dorland S. Beauchamp E. Denitrification and ammonification at low soil temperatures. Soil Science, 1991, 71: 293~303.
    131. Drury C. F., Reynolds W. D., Tan, C. S., et al. Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil Science Society of America Journal, 2006, 70(2): 570~581.
    132. Edwards A. C., Cresser M. S. Freezing and its effect on chemical and biological properties of soil. Advances in Soil Science, 1992, 18: 59~79.
    133. Eichner M. J. Nitrous oxide emissions from fertilized Soil: summary of available data. Journal of Environmental Quality, 1990, 19(4): 272~280.
    134. Engel T. H., Priesack E. Expert N, a building block system of nitrogen models as a resource for advice, research, water management and policy. In: Eijsackers H. J. P. Hamers T. Integrated Soil and Sediment Research: A basis of proper production, Kluwer Academic Publishers, 1993: 503~507.
    135. Environment Canada. National Inventory Report, Greenhouse Gas Sources and Sinks in Canada. Retrieved from http://www.ec.gc.ca, 2007.
    136. FAO (Food and Agriculture Organization), FAOSTAT database collections, 2011. Retrieved from www. apps.fao.org.
    137. Firestone, M. K., Davidson E. A. Microbiological basis of NO and N_2O production and consumption in soil. In: Andreae, M. O., Schimel D. S., Robertson G. P. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Chichester, 1989: 7~21.
    138. Flessa H., Dorsch P. Beese F. Seasonal variation of N_2O and CH_4 fluxes in differently managed arable soils in southern Germany, Journal of Geophysical Research, 1995, 100: 23115~23123.
    139. Flessa H., Ruser R., Schilling R., et al. N_2O and CH_4 fluxes in potato fields: automated measurement, management effects and temporal variation. Geoderma, 2002, 105: 307~325.
    140. Focht D. D. The effect of temperature, pH, and aeration on the production of nitrous oxide and gaseous nitrogen: a zero order kinetic model. Soil Science, 1974, 118: 173~179.
    141. Frolking S. E., Mosier A. R., Ojima D. S., et al. Comparison of N_2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutrient cycling in agroecosystems, 1998, 52: 77~105.
    142. Fujinuma R., Balster N. J., Norman J. M. An improved model of nitrogen release for surface-applied controlled-release fertilizer. Soil Science Society of America journal, 2009, 73: 2043~2050.
    143. Gabrielle B., Laville P., Henault C., et al. Simulation of nitrous oxide emissions from wheat-cropped soils using CERE. Nutrient Cycling in Agroecosystems, 2006, 74: 133~146.
    144. Gandeza A.T., Shoji S., Yamada I. Simulation of crop response to polyolefin-coated urea: I. Field dissolution. Soil Science Society of America journal, 1991, 55: 1462~1467.
    145. Garrido F., Hénault C., Gaillard H., et al. N_2O and NO emissions by agricultural soils with low hydric potentials. Soil biology & biochemistry, 2002, 34: 559~575.
    146. Giltrap D. L., Singh J., Saggar S., et al. A preliminary study to model the effects of a nitrification inhibitor on nitrous oxide emissions from urine-amended pasture. Agriculture, Ecosystems & Environment, 2010, 136: 310~317.
    147. Glatzel S., Stahr K. Methane and nitrous oxide exchange in differently fertilized grassland in southern Germany. Plant and Soil, 2001, 231: 21~35.
    148. Godwin D. C., Jones A. Nitrogen dynamics in soil-plant systems. In: Hanks R. J., Ritchie J. T. Modeling plant and soil systems. Agronomy 31. Madison, American Society of Agronomy, USA, 1991: 287~322.
    149. Goodroad L. L., Keeney D. R. Nitrous-oxide production in aerobic soils under varying ph, temperature and water-content. Soil Biology & Biochemistry, 1984, 16: 39~43.
    150. Granli T., B?ckman O. C. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences, 1994, 12: 7~127.
    151. Grant R. F. A review of the Canadian ecosystem model ecosys. In: Hansen S., Shaffer M. J., Ma L. Modeling carbon and nitrogen dynamics for soil management. Florida, CRC Press, 2001: 175~264.
    152. Grant R. F. Mathematical modeling of nitrous oxide evolution during nitrification. Soil biology & biochemistry, 1995, 27: 1117~1125.
    153. Grant R. F., Nyborg M., Laidlaw J. Evolution of nitrous oxide from soil: I. Model development. Soil Science, 1993a, 156: 259~265.
    154. Grant R. F., Nyborg M., Laidlaw J. Evolution of nitrous oxide from soil: II. Experimental results and model testing. Soil Science, 1993b, 156: 266~277.
    155. Grant R. F., Pattey E. Mathematical modeling of nitrous oxide emissions from an agricultural field during spring thaw. Global Biogeochemical Cycles, 1999, 13: 679~694.
    156. Grant R. F., Pattey E. Modelling variability in N_2O emissions from fertilized agricultural fields. Soil biology & biochemistry, 2003, 35: 225~243.
    157. Gregorich E.G., Rochette P., Hopkins D.W., et al. Tillage-induced environmental conditions in soil and substrate limitation determine biogenic gas production. Soil Biology & Biochemistry, 2006, (38): 2614~2628.
    158. Hadi A., Jumadi O., Inubushi K., et al. Mitigation options for N_2O emission from a corn fieldin Kalimantan, Indonesia. Soil Science and Plant Nutrition, 2008, 54: 644~649.
    159. Halvorson A. D., Del Grosso S. J., Reule C. A. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems. Journal of environmental quality, 2008, 37: 1337~1344.
    160. Hansen S., Jensen H. E., Nielsen N. E., et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Nutrient cycling in agroecosystems, 1991, 27: 245~259.
    161. Henault C., Bizouard F., Laville P., et al. Predicting in situ soil N_2O emissions using NOE algorithm and soil database. Global Change Biology, 2005, 11: 115~127.
    162. Henault C., Devis X., Page S., et al. Nitrous oxide emissions under different soil and land management conditions. Biology and fertility of soils, 1998, 26: 199~207.
    163. Henault C., Germon J. C. NEMIS: a predictive model of denitrification on the field scale. European journal of soil science, 2000, 51: 257~270.
    164. Hou A., Tsuruta H. Nitrous oxide and nitric oxide fluxes from an upland field in Japan: effect of urea type, placement, and crop residues. Nutrient Cycling Agroecosystems, 2003, 65: 191~200.
    165. Hutchinson G. L., Mosier A. R. Improved soil cover method for field measurement of nitrous-oxide fluxes. Soil Science Society of America Journal, 1981, 45: 311~316.
    166. Hutson J. L., Wagenet R. J. LEACHM: leaching estimation and chemistry model: a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 3.0. Department of Soil, Crop, and Atmospheric Sciences, Cornell University, Ithaca, New York, 1992.
    167. IFA-International Fertilizer Industry Association, 2009. Retrieved from http://www.fertilizer.org/ifa/ Home-Page/STATISTICS/FUBC (Accessed April 13 2010).
    168. IPCC. Climate 1995: Economic and social dimensions of climate change. Contribution of working groupⅢto the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 1996.
    169. IPCC. Climate Change: The science of climate change.Contribution of working groupⅠto second assessment report of the Intergovernmental Panel on Climate Change, 1995, 15.
    170. IPCC. Greenhouse gas emissions from agricultural soils. In: Greenhouse Gas Inventory Reference Manual Revised 1996, IPCC Guidelines for national greenhouse gas inventories. IPCC/OECD/IGES, Bracknell, UK, 1997.
    171. IPCC. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IGES, Tokyo, 2000.
    172. IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K., et al. Published: IGES, Japan, 2006.
    173. IPCC. Agriculture. In: Climate Change 2007: Mitigation, Contribution of Working GroupⅢto the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge: Cambridge University Press, 2007: 499~532.
    174. Jarrell W. M., Boersma L. Model for the Release of Urea by Granules of Sulfur-Coated Urea Applied to Soil1. Journal of Soil Science Society of America Journal, 1979, 43: 1044~1050.
    175. Jiang J. Y., Hu Z. H., Sun W. J., et al. Nitrous oxide emissions from Chinese cropland fertilized with a range of slow-release nitrogen compounds. Agriculture, Ecosystems and Environment, 2010, 35: 216~225.
    176. Johnsson H., Bergstrom L., Jansson P.E., et al. Simulated nitrogen dynamics and losses in a layered agricultural soil. Agriculture, Ecosystem & Environment, 1987, 18: 333~356.
    177. Ju X. T., Xing G. X., Chen X. P., et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 3041~3046.
    178. Ju X. T., Lu X., Gao Z. L., et al. Processes and factors controlling N_2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environment Pollution, 2011, 159: 1007~1016.
    179. Jumadi O., Hala Y., Muis A., et al. Influences of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes in a corn (Zea mays L.) field in Indonesia. Microbes Environment, 2008, 23 (1): 29~34.
    180. Kaharabata S. K., Drury C. F., Priesack E., et al. Comparing measured and Expert-N predicted N_2O emissions form conventional till and no till corn treatments. Nutrient cycling in agroecosystems, 2003, 66: 107~118.
    181. Katrien O., Roel M., Eric G., et al. Determinants of annual fluxes of CO2 and N_2O in long-term no-tillage and conventional tillage systems in northern France. Soil & Tillage Research, 2007, (95): 133~148.
    182. Keller M., Reiners, W. A. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochemical Cycles, 1994, 8: 399~409.
    183. FAO/IFA. Kluwer. Academic Publishers, Dordrecht, N. Global estimates of gaseous emissions of NH3, NO and N_2O from agricultural land. Food and Agriculture Organization of the United Nations (FAO)/ International Fertilizer Industry Association (IFA), Rome. 2001. Available from http://www.fertilizer.org/ifa
    184. Knowles R. Denitrification. Microbiology Reviews, l982, 46: 43~70.
    185. Langeveld C. A., Leffelaar P. A. Approaches in field scale modelling of nitrous oxide emission from grassland soils. In: Diekkruger B., Heinemeyer O., Nieder R. et al. Transactions of the 9th Nitrogen Workshop, Braunschweig, Germany, 9~12. Technische Universitat Braunsweig and FAL Volkenrode, Braunschweig, 1996: 153~156.
    186. Leffelaar P. A., Wessel W. W. Denitrification in a homogeneous closed system: experiment and simulation. Soil Science, 1988, 146: 335~349.
    187. Li C. S. Impact of agricultural practices on soil C storage and N_2O emissions in 6 states in the US. In: Lai R. Advances in soil science: soil management and greenhouse effect. CRC, Boca Raton, FL, USA, 1995: 101~112.
    188. Li C. S. Modeling trace gas emissions from agricultural ecosystems. Nutrient cycling in agroecosystems, 2000, 58: 259~276.
    189. Li C. S., Frolking S., Frolking T. A. A model of nitrous oxide evolution from soil driven by rainfall event: Model structure and sensitivity. Journal of Geophysical Research, 1992a, 97(D9): 9759~9776.
    190. Li C. S., Frolking S., Frolking T. A. A model of nitrous oxide evolution from soil driven by rainfall events: II. Model applications. Journal of geophysical research, 1992b, 97: 9777~9783.
    191. Li C. S., Narayanan V., Harris R. Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochemical Cycles, 1996, 10: 297~306.
    192. Li H., Qiu J. J., Wang, L. G., et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agriculture, ecosystems & environment, 2010, 135: 24~33.
    193. Li Y., Chen D. L., Zhang Y .M., Ding H. Comparison of three modeling approaches for simulating denitrification and nitrous oxide emissions from loam-textured arable soils. Global biogeochemical cycles, 2005, 19(3): 1~15.
    194. Li Y., Chen D. L., Barker-Reid F., et al. Simulation of N_2O emissions from rain-fed wheat and the impact of climate variation in southeastern Australia. Plant and Soil, 2008, 309: 239~251.
    195. Li Y., White R., Chen D. L., et al. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecological Modelling, 2007, 203: 395~423.
    196. Linn D. M., Doran J. W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils, Soil Science Society of America journal, 1984, 48: 1267~1272.
    197. Liu C. Y., Zheng X. H., Zhou Z. X., et al. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant and Soil, 2010, DOI 10.1007/s11104-009-0278-5.
    198. Liu X., Arvin R. M., Ardell D. H., et al. Dinitrogen and N_2O emissions in arable soils: Effect of tillage, N source and soil moisture. Soil Biology & Biochemistry, 2007, (39): 2362 ~ 2370.
    199. Liu Y. T., Li Y. E., Wan Y. F., et al. Nitrous Oxide Emissions from Irrigated and Fertilized Spring Maize in Semi-Arid Northern China. Agriculture, Ecosystem & Environment, 2011, doi:10.1016/j.agee.2011.03.002.
    200. Loftfield N., Flessa H., Augustion J., et al. Automated Gas Chromatographic system for Rapid Analysis of the Atmospheric Trance Gases Methane, Carbon Dioxide, and Nitrous Oxide.Journal of environmental quality, 1997, 26: 560~564.
    201. Ludwig J., Meixner F. X., Vogel B., et al. Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling study. Biogeochemistry, 2001, 52: 225~257.
    202. Lunt O. R., Oertli J. J. Controlled release of fertilizer minerals by incapsulating membranes: II. Efficiency of recovery, influence of soil moisture, mode of application, and other consideration related to use. Soil Science Society of America Proceedings, 1962, 26: 584~587.
    203. Ma B. L., Wu T. Y., Tremblay N., et al. Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer. Global Change Biology, 2010, 16: 156~170.
    204. Mahmood T., Ali R., Malik K. A., et al. Nitrous oxide emissions from an irrigated sandy-clay loam cropped to maize and wheat. Biology and fertility of soils, 1998, 27: 189~196.
    205. Maljanen M., Liikanen A., Silvola J., et al. Nitrous oxide emissions from boreal organic soil under different land-use. Soil Biology & Biochemistry, 2003, 35: 1~12.
    206. Matthews E. Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochemical Cycles, 1994, 8: 411~439.
    207. McConnaughey P. K., Bouldin D. R. Transient microsite models of denitrification: I. Model development. Soil Science Society of America journal, 1985, 49: 886~891.
    208. McSwiney C. P., Robertson G. P. Nonlinear response of N_2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biology, 2005, 11: 1712~1719.
    209. McTaggart I. P., Clayton H., Parker J., et al. Nitrous oxide emissions from grassland and spring barley, following N fertilizer application with and without nitrification inhibitors. Biology and Fertility of Soils, 1997, 25: 261~268.
    210. Mehran M., Tanji K. K. Computer modeling of nitrogen transformations in soils. Journal Environmental Quality, 1974, 3: 391~396.
    211. Molina J. A. E., Clapp C. E., Shaffer M. J., et al. NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration, and behaviour. Soil Science Society of America journal, 1983, 47: 85~91.
    212. Mosier A. R., Parton W. J., Hutchinson G. L. Modeling nitrous oxide evolution from cropped and native soils. Ecological Bulletins, 1983, 35: 229~241.
    213. Mosier A. R., Parton W. J. Denitrification in a shortgrass prairie: a modeling approach. In: Caldwell D. E., Brierley J. A., Brierley C. L., et al. Planetary ecology. van Nostrand Reinhold, Princeton, NJ, 1985: 441~460.
    214. Mosier A., Guenzi W., Schweizer E. Soil losses of dinitrogen and nitrous oxide from irrigated crops in northeastern Colorado. Soil Science Society of America Journal, 1986, 50: 344~348.
    215. Mosier A., Kroeze C., Nevison C., et al. Closing the global N_2O budget: nitrous oxide emissions through the agricultural nitrogen cycle-OECD/IPCC/IEA phase II development ofIPCC guidelines for national greenhouse gas inventory methodology. Nutrient Cycling in Agroecosystems, 1998, 52: 225~248.
    216. Nelson D. W., Bremner J. M. Gaseous products of nitrite decomposition in soils, Soil Biology Biochemical, 1970, 2: 203~215.
    217. Nicolardot B., Molina J. A. E. C and N fluxes between pools of soil organic matter: Model calibration with long-term incubation data. Soil biology biochemistry, 1994, 26: 245~251.
    218. Nommik N. Investigations on denitrification in soil. Acta Agriculturae Scandinavica, 1956, 6: 195~228.
    219. Odu C. T. I., Adeoye K. B. Heterotrophic nitrification in soils-a preliminary investigation. Soil biology & biochemistry, 1970, 2: 41~45.
    220. Olesen J. E., Petersen B. M., Berntsen J., et al. Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat. Field Crops Research, 2002, 74: 131~149.
    221. Parkin T., Kaspar T. Nitrous oxide emissions from corn-soybean systems in the Midwest. Journal of Environmental Quality, 2006, 35: 1496~1506.
    222. Parton W. J., Hartman M., Ojima D., et al. DAYCENT and its land surface submodel: description and testing. Global and Planetary Change, 1998, (19): 35~48.
    223. Parton W. J., Stewart J. W. B., Cole C. V. Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry, 1988a, 5: 109~131.
    224. Parton W. J., Mosier A. R., Schimel D. S. Rates and pathways of nitrous oxide production in a shortgrass steppe. Biogeochemistry, 1988b, 6: 45~58.
    225. Parton W. J., Holland E. A., Del Grosso S. J., et al. Generalized model for NOx and N_2O emissions from soils. Journal of geophysical research, 2001, 106: 17403~17419.
    226. Parton W. J., Mosier A. R., Ojima D. S., et al. Generalized model for N2 and N_2O production from nitrification and denitrification. Global Biogeochemical Cycles, 1996, 10: 401~412.
    227. Parton W. J., Schimel D. S., Cole C. V., et al. A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management, In: Quantitative Modeling of Soil-Forming Processes, 1994: 147~167.
    228. Pathak H., Li C. S. Wassmann R., et al. Simulation of nitrogen balance in rice-wheat systems of the Indo-Gangetic Plains. Soil Science Society of America journal, 2006, 70: 1612~1622.
    229. Plant. Effects of land use on regional nitrous oxide emissions in the humid tropics of Costa Rica. Extrapolating fluxes from field to regional scales. Wagenningen Agricultural University Dissertation, 1999, no. 2575.
    230. Poth M. Dinitrogen production from nitrite by a Nitrosomonas isolate. Applied and Environmental Microbiology, 1986, 52: 957~959.
    231. Poth M. Dinitrogen production from nitrite by a Nitrosomonas isolate. Applied and Environmental Microbiology, 1986, 52: 957~959.
    232. Poth M., Focht D. D. N-15 kinetic-analysis of N_2O production by nitrosomonas-europaea-anexamination of nitrifier denitrification. Applied and Environmental Microbiology, 1985, 49: 1134~1141.
    233. Potter C. S., Matson P. A., Vitousek P. M., et al. Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of geophysical research, 1996, 101: 1361~1377.
    234. Potter C. S., Riley R. H., Klooster S. A. Simulation modeling of nitrogen trace gas emissions along an age gradient of tropical forest soils. Ecological Modelling, 1997, 97: 179~196.
    235. Prather M. R., Derwent D., Erhalt P., et al. Other trace gases and atmospheric chemistry. In: Houghton J. T. et al. Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge, UK, 1995: 73~126.
    236. Priesack E., Achatz S., Stenger R. Parameterisation of soil nitrogen transport models by use of laboratory and field data. In: Shaffer M. J., Ma L., Hansen S. et al. Modeling carbon and nitrogen dynamics for soil management. CRC, Boca Raton, Florida, 2001: 461~484.
    237. Ramaswamy V., Boucher O., Haigh J., et al. Radiative forcing of climate change. In: Houghton J. T., Ding Y., Griggs D. J., et al. Climate change 2000: the scientific basis. Published for the Intergovernmental Panel on Climate Change by CUP, Cambridge, UK, 2001: 349~416.
    238. Riley W. J., Matson P. A. A mechanistic model (NLOSS) of biogenic nitrogen trace-gas effluxes from soil during nitrification and denitrification. American Geophysical Union (Special Session on Trace-Gas Emissions), 1998, Fall Meeting, December: 6~10.
    239. Riley W. J., Matson P. A. NLOSS: a mechanistic model of denitrified N_2O and N2 evolution from soil. Soil Science, 2000, 165 (3): 237~249.
    240. Ritchie J. T. Wheat phasic development. In: Hanks R. J., Ritchie J. T. Modeling plant and soil systems. Agronomy Monograph 31. ASA-CSSA-SSSA, Madison, WI, 1991: 31~54.
    241. Robertson G. P., Grace P. R. Greenhouse gas fluxes in tropical agriculture: the need for a full-cost accounting of global warming potentials. Environment, Development and Sustainability, 2003, 6: 51~63.
    242. Robertson G. P., Groffman P. M. Nitrogen Transformations. In: Soil Microbiology, Ecology, and Biochemistry (ed. Paul E A, 3rd edition), Elsevier, Amsterdam, 2007: 341~364.
    243. Robertson G. P., Paul E. A., Harwood R. R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 2000, 289: 1922~1925.
    244. Rosenkranz P., Brüggemann N., Papen H., et al. N_2O, NO and CH_4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences Discussions, 2005, 2: 673~702.
    245. Rover M., Heinemeyer O., Kaiser E. A. Microbal induced nitrous oxide emissions from an arable soil during winter. Soil biology & biochemistry, 1998, 30(14): 1859~1865.
    246. Ruser R., Flessa H., Russow R., et al. Emission of N_2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting. Soil Biology & Biochemistry, 2006, 38(2): 263~274.
    247. Ryden J. C. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. Journal of Soil Science, 1983, 34: 355~365.
    248. Ryden J. C. N_2O exchange between a grassland soil and the atmosphere. Nature, 1981, 292: 235~237.
    249. Saggar S., Andrew R. M., Tate K. R., et al. Modelling nitrous oxide emissions from dairy-grazed pastures. Nutrient cycling in agroecosystems, 2004, 68: 243~255.
    250. Schmidt I., van Spanning R. J. M., Jetten M. S. M. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology, 2004, 150: 4107~4114.
    251. Sehy U., Ruser R., Munch J. C. Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agriculture Ecosystems & Environment, 2003, 99(1-3): 97~111.
    252. Seiichi N., Takuji S., Hiroko A., et al. Continuous, Automated Nitrous Oxide Measurements from Paddy Soils Converted to Upland Crops. Soil Science Society of America journal, 2005, 69: 1977~1986.
    253. Shaviv A., Ranban S., Zaidel E. Modeling controlled nutrient release from a population of polymer coated fertilizers: statistically based model for diffusion release. Environment Science Technology, 2003, 37: 2257~2261.
    254. Shoji S., Delgado J., Mosier A., et al. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Communications in Soil Science and Plant Analysis, 2001, 32 (7-8): 1051~1070.
    255. Simojoki A., Jaakkola A. Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emissions in a loamy clay. European Journal of Soil Science, 2000, 51(3): 413~424.
    256. Simunek J., Huang K., van Genuchten M. T. The HYDRUS code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 6.0, Research Report No.144, U. S. Salinity Laboratory, USDA, ARS, Riverside, CA. 1998.
    257. Smith K. A. A model of the extent of anaerobic zones in aggregated soils and its potential application to estimates of denitrification. Journal of soil science, 1980, 31: 263~277.
    258. Smith K. A., Ball T., Conen F., et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 2003, 54: 779~791.
    259. Smith W. N., Grant B., Desjardins R. L., et al. Estimates of the interannual variations of N_2O emissions from agricultural soils in Canada. Nutrient cycling in agroecosystems, 2004, 68:37~45.
    260. Snyder C. S., Bruulsema T. W., Jensen T. L., et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agricultural, Ecosystem & Environment, 2009, 133: 247~266.
    261. Song, C. C., Zhang, J. B. Effects of soil moisture, temperature, and nitrogen fertilization on soil respiration and nitrous oxide emission during maize growth period in northeast China, Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 2009, 59(2): 97~106.
    262. Stehfest E., Müller C. Simulation of N_2O emissions from a urine-affected pasture in New Zealand with the ecosystem model DayCent. Journal of geophysical research, 2004, 109: D03109.
    263. Stenger R., Priesack E., Barkle G., et al. Expert-N, A tool for simulating nitrogen and carbon dynamics in the soil-plant-atmosphere system. In: Tomer M., Robinson M., Gielen G. et al. NZ land treatment collective, Proceedings of technical session 20: modelling of land treatment systems. New Plymouth, 1999.
    264. Tanji K. K. Modeling of the soil nitrogen cycle. Agronomy, 1982, 22: 721~772.
    265. Teepe R., Brumme R., Beese F. Nitrous oxide emissions from frozen soils under agricultural fallow and forest land. Soil biology & biochemistry, 2000, 32: 1807~1810.
    266. Teepe R., Brumme R., Beese F. Nitrous oxide emissions from soil during freezing and thawing periods. Soil biology & biochemistry, 2001, 33: 1269~1275.
    267. USEPA U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990~2005. EPA 430-R-07-002. April 15, 2002. Washington DC. 2007.
    268. van Laar H. H., Goudriaan J., van Keulen H. Simulation of crop growth for potential and water-limited production situations, as applied to spring wheat. Simulation Reports. 1992
    269. Velthof G. L., Oenema O. Nitrous oxide fluxes from grassland in the Netherlands, II, Effects of soil type, nitrogen fertilizer application and grazing. European journal of soil science, 1995, 46: 541~549.
    270. Verchot L. V., Davidson E. A., Cattanio J. H., et al. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochemical. Cycles, 1999, 13: 31~46.
    271. Wagner-Riddle C., Furon A., McLaughlin N. L., et al. Intensive measurement of nitrous oxide emissions from a corn-soybean-wheat rotation under two contrasting management systems over 5 years. Global Change Biology, 2007, 13: 1722~1736.
    272. Wang Y. P., Meyer C. P., Galbally I. E., et al. Comparisons of field measurements of carbon dioxide and nitrogen oxide fluxes with model simulations for a legume pasture in southeast Australia. Journal of geophysical research, 1997, 102 (D23): 28013~28024.
    273. Webster E. A., Hopkins D. W. Contributions from different microbial processes to N_2O emission from soil under different moisture regimes. Biology and fertility of soils, l996, 22: 331~335.
    274. Williams E. J., Hutchinson G. L., Tehsenfeld F. C. NOx and N_2O emission from soil. Global Biogeochemical Cycles, 1992, 6: 351~388.
    275. Wood P. M. Nitrification as a bacterial energy source. In: Prosser J. I. Nitrification. IRL Press Oxford, 1986: 39~62.
    276. Wrage N., Velthof G. L., vail Beusichem M. L., et a1. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology Biochemical, 2001, 33: 1723~1732.
    277. Xing G. X. N_2O emission from cropland in China. Nutrient Cycling in Agroecosystems, 1998, 52: 249~254.
    278. Xu C., Shaffer M. J., Al-kaisi M. Simulating the impact of management practices on nitrous oxide emissions. Soil Science Society of America journal, 1998, 62: 736~742.
    279. Xu R., Wang M., Wang Y. Using a modified DNDC model to estimate N_2O fluxes from a semi-arid grassland in China. Soil biology & biochemistry, 2003, 35: 615~620.
    280. Yienger J. J., Levy H. Empirical model of global soil biogenic NOx emissions. Journal of geophysical research, 1995, 100(11): 447~464.
    281. Zhang Y., Li C., Zhou X., et al. A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecological Modelling, 2002, 151: 75~108.
    282. Zheng X. H., Han S. H., Huang Y., et al. Re-quantifying the emission factors based on field measurements and estimating the direct N_2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18, GB2018. doi:10.1029/2003GB002167.
    283. Zheng X. H., Huang Y., Wang Y. S., et al. Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Chang Biology, 2003, 9: 219~227.
    284. Zheng X. H., Wang M. X., Wang Y. S., et al. Comparison of Manual and Automatic Methods for Measurement of Methane Emission from Rice Paddy Fields. Advances in Atmospheric Sciences, 1998, 15(4): 569~579.
    285. Zheng X. H., Wang M. X., Wang Y. S., et al. Impacts of soil moisture on nitrous oxides emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere-Global Change Science, 2000, 2: 207~224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700