~(134)Cs与Cu污染土壤植物修复的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中重金属和放射性核素污染日趋严重,植物修复技术以其成本低、环境友好等特点成为污染土壤治理行之有效的方法之一,引起了国内外学者的高度重视。超积累植物是植物修复技术的关键,筛选和发现超积累植物是植物修复技术的难点所在。提高超积累植物对无机物的吸收能力、增加其地上部生物量、加速其生长速率,进而提高植物修复的效率是又一个值得研究的问题。针对上述问题,本论文研究了苋科植物、蕨类植物、印度芥菜和向日葵对Cu和/或~(134)Cs的忍耐、吸收、运输和积累的特点;同时,研究了土壤中施加添加剂和提高CO_2气体浓度对植物吸收~(134)Cs和/或Cu的影响,旨在探索~(134)Cs和/或Cu污染土壤高效植物修复的技术。主要研究结果归纳如下:
     1.选用富钾植物集中的苋科植物——籽粒苋、苋菜、青葙、千日红、千日白和寿昌苋,水培42天后,进行3种不同~(134)Cs活度处理(2.775×10~5 Bq盆~(-1)、5.55×10~5 Bq盆~(-1)、1.11×10~6 Bq盆~(-1)),1周后收获并分析植物各部位的~(134)Cs比活度。结果表明,6种苋科植物均表现出对~(134)Cs具有较强的吸收和积累能力,而且~(134)Cs主要积累在植物的地上部。同种植物地上部的~(134)Cs比活度与溶液中~(134)Cs活度有关,~(134)Cs活度越高,植物中~(134)Cs比活度越大。籽粒苋地上部的烘干重显著高于其他5种苋科植物,因此尽管其地上部~(134)Cs比活度相对较低,但是其地上部从~(134)Cs水溶液中去除的~(134)Cs总量在6种植物中最大,表现出很高的~(134)Cs去除率。苋菜和青葙地上部具有较高的~(134)Cs积累量、转移能力和较大的生物量,也表现出在~(134)Cs污染土壤植物修复技术中潜在的利用价值。
     2.在水培实验的基础上,将对~(134)Cs去除能力较强的籽粒苋和苋菜播种在不同~(134)Cs污染(5.55×10~5 Bq盆~~(-1)、1.11×10~6 Bq盆~(-1)和1.665×10~6 Bq盆~(-1))的土壤中,发芽并生长共49天后测定植物地上部~(134)Cs的比活度。结果表明,籽粒苋和苋菜地上部~(134)Cs比活度随着土壤中~(134)Cs比活度的增加而增加,两种植物对~(134)Cs均表现出较高的富集能力,是~(134)Cs污染土壤植物修复较好的材料。实验同时研究了26种化学添加剂对土壤中~(134)Cs的解吸能力。在供试的26种添加剂中,(NH_4)_2SO_4溶液对土壤中~(134)Cs具有最强的解吸能力。土壤中施加0.4 molL~(-1)的(NH_4)_2SO_4溶液减少了苋菜地上部对~(134)Cs的总去除量,但对籽粒苋地上部~(134)Cs总去除量无显著性影响。说明在土壤中施加(NH_4)_2SO_4对不同的植物去除污染土
Soil pollution by heavy metals and radionuclides has been a problem in our society and the situation is deteriorating with increasing human activities. Phytoremediation, with the advantage of low cost and environmental friendliness, is one of the important techniques in removing inorganic contaminants from soils. Screening of hyperaccumulators, plants that accumulate high levels of heavy metals, is prerequisite for the technique. It is also critical for effective phytoremediation to explore ways to increase the content of contaminants in the hyperaccumulators by means of, for example, promotion of uptake, growth and hence biomass, especially of shoots. The present research was focused on the investigation of capability of plants from Amaranthaceae and Pteridophyte in removing radiocesium 134 and/or copper from soils respectively. Both field and greenhouse studies were carried out in order to characterize the tolerance, uptake, translocation and accumulation of these two inorganic contaminants in the two respective families of plants. Furthermore, we examined the effect of soil amendment and elevated CO_2 concentration on the uptake of ~(134)Cs and Cu by plants so as to make phytoremediation more effective. Major results are generalized as follows:1. Six species of plants from the Amaranthaceae — Amaranthus cruentus L., Amaranthus tricolor L., Amanranthns paniculatus L, Celosia argentea L., Gomphrea globasa L. and Gomphrea globosa cv. Alba — previously known to be capable of hyper-accumulating potassium, were grown in nutrient solution for 42 days before treatment with ~(134)Cs at 3 different levels of radiaoactivities (2.775×10~5 Bq/pot, 5.55 × 10~5 Bq/pot and 1.11 × 10~6 Bq/pot). Plants were harvested 7 days after treatment and different plant parts analyzed for ~(134)Cs specific activities. All six plant species exhibited comparatively high ability in ~(134)Cs uptake and accumulation. Most of ~(134)Cs were found to accumulate in shoots and the shoot ~(134)Cs specific activity was positively correlated with the ~(134)Cs activity in nutrient solution. Amaranthus cruentus L., with the highest shoot biomass but a lower activity of ~(134)Cs among the six species, resulted in the highest removal rate in terms of total activities of ~(134)Cs in shoots. In addition, both Amaranthus tricolor L and Celosia argentea L. displayed high values of Bioconcentration Factor (BF; the ratio of heavy metal content in plant to that in medium) in leaves, therefore they could also be valuable for use in phytoremediation of ~(134)Cs- contaminated soils.2. A. tricolor and A. cruentus, which were shown to remove ~(134)Cs from solution
    efficiently, were sown in soil contaminated artificially with 3 levels of 134Cs activities (5.55 × 10~5 Bq/pot and 1.11 × 10~6 Bq/pot and 1.665 × 10~6 Bq/pot). Plants were harvested 49 days after sowing and analyzed for 134Cs specific activities. In accordance with hydroponics, plants grown in soils with increasing Cs activities showed increasing 134Cs activities in shoots. Experiments were also carried out to determine the effect of 26 chemicals on 134Cs desorption from soil. (NH4)2SO4 was found to have the highest efficiency to enhance the desorption of 134Cs. (NH4)2SO4 application reduced the biomass production of both species and caused a decrease of the total 134Cs removal by A. tricolor shoot but had no significant effect on the total 134Cs removal by A. cruentus shoot, implicating that (NH4)2SO4 might play quite different roles in different plant species with respect to 134Cs removal by shoots.3. Field study revealed that Petridium revolution was one of the predominant plant species grown vigorously on the copper mining spoils in Yunnan province. The soils where P. revolution was growing contained 201-7554 mg kg-1 of Cu, whereas the above ground part of P. revolutum 30~567 mg kg-1, and the remaining parts of P. revolutum accumulated 36~1723 mg kg-1 of Cu. The BFs of P. revolutum fronds varied from 0.03~2.96, and those of the underground part varied from 0.06~3.67. The Translocation
引文
1. Ager FJ, Ynsa MD, Dominguez-Solis JR, et al. 2002. Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 189: 494~498
    2. Ager FJ, Ynsa MD, Dominguez-Solis JR, et al. 2003. Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 210: 401~406
    3. Anderson CWN, Brooks RR, Stewart RB, et al. 1998. Harvesting a crop of gold in plants, Nature, 395(69702): 553~554
    4. Baker AJM, Brooks RR and Pease AJ. 1983. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaire. Plant and Soil, 73: 377~385
    5. Baker AJM. 1989. Terrestrial higher plants which hyperaeeumulate metallic elements-a review of their distribution. Ecology and Phytochemistry. Biorecovery, 1: 81~126
    6. Baryla A, Laborde C, Montillet JL, et al. 2000. Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Envrionmental Pollution, 109: 131~135
    7. Blarney FPC, Joyee DC, Wdwards DG, et al. 1984. Role of trichomes in sunflower tolerance to manganese toxicity. Plant and Soil, 90: 171~180
    8. Blaylock MJ, Salt DE, Dushenkov S, et al. 1997. Enhanced accumulation of Pb in Indian Mustard by soil applied chelating agents. Environmental Science Technology, 31: 860~865
    9. Bradley R, Butt AJ and Read DJ. 1981. Mycoohizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 292 (23) : 335~337
    10. Broadley MR and Willey NJ. 1997. Differences in root uptake of radioeaesium by 30 plant taxa. Environmental Pollution, 97: 11~15
    11. Brooks RR, Crooks HM. 1980. Studies on uptake of heavy metals by the Scandinavian Kisplanten Lychnis Alpina and Silene Dioica. Plant and Soil, 54: 491~496
    12. Brooks RR, Morrison RS and Reeves RD. 1978. Copper and cobalt in African species of Aeolanthus Mart. (Plectranthinae, Labiatae). Plant and Soil, 50: 503~507
    13. Brown SL, Chancy RL, Angle et al. 1994. Phytoremediation potential of Thlarpi caerulescens and 19 Bladder campion for zinc and cadmium contaminated soil. Journal of Environmental Quality, 23: 1151~1157
    14. Camus JM, Jenny AC and Thomas BA. 1991. A world of ferns. Cromell Road, London: Natural History Museum Publications
    15. Cao DX, Ma LQ and Shiralipour A. 2003. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. . Environmental Pollution, 126: 157~167
    16. Chander K, Brookes PC. 1991. Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loams oil and silty loam UK soil. Soil Biology and Biochemistry, 23: 927~932
    17. Chen EL, Chen YA, Chen LM et al. 2002, Effect of copper on peroxidase activity and lignin content in Raphnus Sativus. Plant Physiology and Biochemistry, 40: 439~444
    18. Chen RX, Smith BW and Winefordner JD. 2004. Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectroscopy Analytica Chimica Acta, 504: 199~207
    19. Clark MJ and Smith FB. 1988. Wet and dry deposition of Chemobyl releases. Nature, 332: 245~249
    20. Clemens S, Palmgren MG and Kramer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7 (7) : 309~315
    21. Cotrufo MF. 1995. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environmental Pollution, 89 (1) : 81~87
    22. Crane, MF. 1990. Index of Species Information: Fern or Fern Ally List, FEIS
    23. Cremer A, Elsen A, Valcke E, Wanters J, Sandalls J, Gandern SL. 1990. The sensitivity of upland soil to aquatic ecosystems.Vol. 1, 1~496. A. A. Balkema, Rotterdam (for CEC)
    24. Czuba M and Hutchinson TC. 1980. Copper and lead levels in crops and soils of the Holland Mars Area-Ontario. Journal of Environmental Quality, 9 (4) : 566~574
    25. Davydchuk V. 1997. Ecosystem remediation in radioactively polluted areas: the Chemobyl experience, Ecological Engineering, 8, 325~336
    26. De la Fuente JM. 1997. Aluminum tolerance in transgnie plant by alteration of citrate synthesis. Science, 276: 1566~1568
    27. De Vos CHR, Schat H, De Waal MAM et al. 1991. Increased resistance to copper-induced damadge of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiologia Plantarum, 82: 523~528
    28. Delhaize E, Jackson PJ, Lujan LD, et al. 1989. Poly(γ-glutamylcysteinyl)glycine Synthesis in Darura innoxia and Bingding with Cadmium. Plant Physiology, 89: 700~706
    29. Diaz G, Azcon-Aguilar C, and Honrubia M. 1996. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil, 180: 241~249
    30. Drissner J, Rmann W B, Enslin F, et al. 1998. Availability of Caesium mdionuclides to plants—classification of soils and role of Mycorrhiza. Journal of Environmental Radioactivity, 41 (1) : 19~32
    31. Drrah PR. 1996. Rhizodeposition under ambient and elevated CO_2 levels. Plant and Soil, 165: 55~65
    32. Duckart EC, Waldron LJ, and Donner HE. 1992. Selenium uptake and volatilization from plants growing in soil. Soil Science, 53: 94~99
    33. Dushenkov S, Mikheev A, Proktmevsk A, et al. 1999. Phytoremediation of mdiocesium contaminated soil in the vicinity of Chemobyl, Ukraine. Environmental Science Technology. 33: 469~475
    34. Ebbs SD, Lasat MM, Brady D J, et al. 1997. Phytoextration of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26: 1424~1430
    35. Ehlken S and Kirchner G. 2002. Environmental processes affecting plant root uptake of radioactive trace dements and variability of transfer factor data: a review. Journal of Environmental Radioactivity, 58: 97~112
    36. Elliott HA and Brown GA. 1989. Comparative evaluation of NTA and EDTA for extractive decontamination of Pb polluted soils. Water air soil pollution, 45: 361~369
    37. Entry JA and Watrud LS. 1998. Potential remediation of ~(137)Cs and ~(90)Sr contaminated soil by accumulation in Alamo switchgrass. Water, Air and Soil Pollution, 104 (3~4) : 339~352
    38. Entry JA, Rygiewicz PT and Emmingham WH. 1993. Accumulation of Cesium 137and strontium 90 in Ponderosa and Monterey pine seedlings. Journal of Environmental Quality, 22: 742~745
    39. Fawaris Bh and Johanson KJ. 1995. Sorption of ~(137)Cs from undisturbed forest soil in a zeolite trap. The Science of the Total Environment. 172: 251~256
    40. Field JG, Belden RD, Serne RJ, et al. 1993. 100 area Hanford soil washing treatability tests. "Meeting the Challenge" Environmental Remediation Conference, October 24-28, August Georgia. Vol. 1, 377~381. US Department of Energy, Office of Environmental Restoration, Washington, DC
    41. Fomi C, Chen J, Tancioni L and Caiola MG. 2001. Evaluation of the fern azolla for growth, nitrogen and phosphoms removal from wastewate. Water Research, 35 (6) : 1592~1598
    42. Francesconi K, Visoottiviseth P and Sridokchan W. 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. The Science of the Total Environment, 284: 27~35
    43. Gombert D. 1993. Soil washing evaluation by sequential extraction for test reactor area warm waste pond. "Meeting the Challenge" Environmental Remediation Conference, October 24~28, August Georgia. Vol. 2, 371-376. US Department of Energy, Office of Environmental Restoration, Washington, DC
    44. Grichko V P, Filby B and Glick BR. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. Journal of Biotechnology, 81: 45~53
    45. Grill E, Winnacker EL and Zenk MH. 1985. Phytochelatins: the principle heavy metal complexing peptide of higher plants. Science, 230: 674~676
    46. Gupta M. 1991. Ferns and environmental pollution: a review, Indian Fern Journal, 8: 41~51
    47. Gupta M, Devi S. 1995. Uptake and toxicity of cadmium in aquatic ferns. Journal Environmental Biology, 16 (2) : 131~136
    48. Harmens H, Hartog PRD, Bookum WMT, et al. 1993. Increased Zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiology. 103: 1305~1309
    49. Ho YB and Tai KM. 1985. Potential use of a roadside fern (Pteris vittata) to biomonitor Pb and other aerial metal deposition. Bulltion of Environmental Contamnants Toxicology, 35: 430~438
    50. Hoof NALM, Koevoets PLM, Hakvoort HWJ, et al. 2001. Enhanced ATP-depondent copper efflux across the root cell plasma membrane in copper tolerant Silene vulgaris. Physiologia Plantarum, 113: 225~232
    51. Howden R, Andersen CR, Goldsbrough PB, et al. 1995. A Cdmium-sensitive, glut athione-deficient mutant of Arabidopsis thaliana. Plant Physiology, 107: 1067~1073
    52. Huang JW, Chen JJ, Berti WR, et al. 1997. Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraetion. Environmental Science and Technology, 31: 800~805
    53. Ichihashi H, Morita H and Tatsukawa R. 1992. Rare earth dements (REEs) in naturally grown plants in relation to their variation in soil. Environmental Pollution, 76: 157~162
    54. Idso KE and Idso SB. 1994. Plant responses to atmospheric CO_2 enrichment in the face of environmental constraints: a review of the past 10 years'reseach. Agricultural and Forest Meteorology, 69: 153~203
    55. Idso SB, Allen SG, Anderson MG, et al. 1989. Atmospheric CO_2 enrichment enhances survival of Azolla at high temperature. Envrionmental Experimental Botany, 29: 337~341
    56. Ineson P, Cotrufo MF, Boi R, et al. 1996. Qualition of soil carbon inputs under elevated CO_2: C3 plants in a C4 soil. Plant and Soil, 187: 345~350
    57. Jain SK, Vasudevan P and Jha NK. 1990. Azolla pinnata R. Br. and Lemna Minor L. for removal of lead and zinc from polluted water. Water Research, 24: 177~183
    58. Johnson GN, Rumsey FJ, Headley AD, et al. 2000. Adaptations to extreme low light in the fern Trichomanes speciosum. New Phytologist, 148 (3) : 423~431
    59. Kaplan DI, Knox AS, Hinton TG, et al. 2001. Proof-of-Concept of the Phytoimmobilization Technology for TNX Outfall Delta: Final Report, March 19
    60. Karenlampi S, Schat H, Vangrousveld J, et al. 2000. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environmental Pollution, 107: 225~231
    61. Kaur R, Yadav BL. 1986. Mechanism of drought endurance of some Rajasthan India ferns. Indian Fern Journal, 2 (1-2) : 90~92
    62. Kaye GWC, Laby TH. 1995. Tables of Physical and Chemical Constants(16th edition). Longman Group Limited. England.
    63. Kersten WJ, Brools RR, Reeves RD et al. 1980. Nature of nickel complexes in Psychotria Douarrel and other nickel-accumilating plants. Phytochemistry, 19: 1963~1965
    64. Kimball BA, Manuey JR, Nakayoma FS et al. 1993. Effect of increasing atmospheric CO_2 on vegetation. Vegetation. 103: 65~75
    65. Kneer R and Zwnk MH. 1992. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry, 31 (8) : 2263~2667
    66. Korobova E, Ermakov A and Linnik V. 1998. ~(137)Cs and ~(90)Sr mobility in soils and transfer in soil-plant systems in the Novozybkov district affected by the Chernobyl accident. Applied Geochemistry, 13: 803~814
    67. Kramer U, Cotter-Howells JD, Charnock JM, et al. 1996. Free histidine as ametal chelator in plants that accumulate nickel. Nature, 379: 635~638
    68. Kramer U, Pickering IJ, Prince RC, et al. 2000. Subcellular localization and speciation of nickel in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiology, 122: 1343~1353
    69. Kramer U, Smith RD, Wenzel WW, et al. 1997. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Physiologia Plantarum, 115: 1641~1650
    70. Krotz RM, Evangelou BP, and Wanger GJ. 1989. Relationships between Cadmium, Zinc, Cd-Peptide and organic acid in Tobacco suspension cells. Plant Physiology, 91: 780~787
    71. Kruyts N and Delvaux B. 2002. Soil organic horizons as a major source for radiocesium biorecycling in forest ecosystems. Journal of Environmental Radioactivity, 58, 175~190
    72. Kubota H, Sato K, Yamio T, et al. 2000. Phytochelatin homologs induced in hairy roots of horseradish. Phytochemistry, 53: 239~245
    73. Kumar PBAN, Sushenkov V, Motto H, et al. 1995. Phytoextraction-the use of plants to remove heavy metals from soils. Environmental Science and Technology, 29: 1272~1238
    74. Lasat MM, Baker AJM, and Kochian LV. 1996. Physiological Characterization of Root Zn~(2+) Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species of Thlaspi. Plant Physiology, 112: 1715~1722
    75. Lasat MM, Fuhrmann M, Ebbs SD, et al. 1998. Phytoremediation of aradiocesium-contaminatd soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. Journal of Environmental quality. 33:469~475
    76. Lasat MM, Wendell AN and Kochian LV. 1997. Potential for phytoectration of ~(137)Cs from a contaminated soil, Plant and Soil, 195: 99~106
    77. Lembrechts J. 1993. A review of literature on the effectiveness of chemical amendments in reducing the soil to plant transfer of radiostrontium and radiocesium. Science of Total Environment. 137: 81~98
    78. Leopold DG, Schmidt J and Neumann D. 1999. Phytochelatins and heavy metal tolerance. Phytochemistry, 50: 1323~1328
    79. Lolkema PC, Donker MH, Schouten AJ, et al. 1984. The possible role of metallothioneins in copper tolerance of Silene cucubalus. Planta, 162:174~179
    80. Lombi E, Zhao FJ? Fuhrmann M, et al. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist, 156: 195~203
    81. Lopez-Bucio J, Nieto-Jacobo MF, Ramirez-Rodriguez V, et al. 2000. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science, 160:1~13
    82. Luxmoore RJ, O'neill EG, Ells JM, et al. 1986. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. Journal of Environmental Quality, 15(3): 244~251
    83. Ma JF, Ryan PR, and Delhaize E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6(6): 1360~1385
    84. Ma LQ, Komar KM, Tu C, et al. 2001. Discovery of an efficacious Arsenic hyperaccumulating fern plant. Nature, 409(2): 579
    85. MacFarlane GR and Burchett, MD. 1999. Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Forsk.) Vierh. Environmental and Experimental Botany ,41(2): 167~175
    86. Mahara V. 1993. Storage and migration of fallout strontium-90 and cesium-137 for over 40 years in surface soil of Nagasaki. Journal of Environmental Quality, 22: 722~730
    87. Mascher R, Lippmann B, Holzinger S, et al. 2002. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Science, 163: 961~969
    88. Meharg A A. 2003. Variation in arsenic accumulation-hyperaccumulation in ferns and their allies. New Phytologist, , 157: 35~31
    89. Mejare M and Bulow L. 2001. Metal binding proterins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, 19: 67~73
    90. Muller HD, Oort FV, Gelie B, et al. 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter, Environmental Pollution, 109, 231~238
    91. Navari-Izzo F, Quartacci MF, Pinzino C, et al. 1998. Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper. Physiologia Plantarum, 104: 630~638
    92. Negri MC, Hinchman RR. 2000. The use of plants for the treatment of radionuclides. In Raskin I and Ensley B (eds.) Phytoremediation of toxic metals using plants to dean up the environment. John Willey & Sons, Inc. 107~132
    93. Nelson DW and Sommers LE. 1982. Total carbon, organic carbon, and organic matters. In: page AL(ed) Methods of soils analysis, part 2. Chemical and microbiological properties, 2nd edn. Madison: American Society of Agronomy Inc. 539~580
    94. Neumann D and Nieden U. 2001. Silicon and heavy metal tolerance of higher plants, Phytochemistry, 56: 685~692
    95. Nishizono H, Ichikawa H and Ishii F. 1987b. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil, 101: 15~20
    96. Nishizono H, Minemura H and Suzuki S. 1988. An inducible copper-thiolate in the fern, Athyrium yokoscense: involvement in. copper tolerance of the fern. Plant Cell Physiology, 29 (8) : 1345~1351
    97. Nishizono H, Suzuki S, and Ishii F. 1987a. Accumulation of heavy metals in the metal tolerant fern, Athyrium yokoscense, Growing on Environments. Plant and Soil, 102: 65
    98. Norby RJ, O'neill EG and Hood WG. 1987. Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedings grown under CO_2 enrichment. 3: 203~210
    99. Oliver MJ, Tuba Z and Mishler BD. 2000. The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 151 (1) : 85~100
    100. Ouzounidou G. 1994. Root growth and pigment composition in relationship to element uptake in Silene Compacta plants treated with copper. Journal of Plant Nutrition, 17 (6) : 933~943
    101. Paasikallio A. 1984. The effect of time on the availability of ~(90)Sr and ~(137)Cs tO plants from Finnish soils. Ann. Agric. Fenn. , 23: 109~120
    102. Page CN. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119: 1~33
    103. Pence NS, Larsen PB, Ebbs SD, et al. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thluspi caerulescens. Proceedings of the National Academy of Sciences of U. S. A. 94: 11079~11084
    104. Peter RW. 1999. Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials. 66: 151~210
    105. Pilon-Smits EAH, Souza MPde, Hong G, et al. 1999. Wetlands and aquatic processes selenium volatilization and accumulation by twenty aquatic plant species. Journal of Environmental Quality, 28: 1011~1018
    106. Polette LA, Gardea-Torresdey JL, Chianelli RR, et al. 1998. XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentate(Creosote bush). Microchemical Journal, 65: 227~236
    107. Rattray EA, Paterson E and Killham K. 1995. Characterization of the dynamics of C partitioning within Lolium perenne and to the rhizosphere microbial biomass using ~(14)C pulse chase. Biol Fert Soils, 19: 280~286
    108. Rauser W E. 1995. Phytochelatins and Related Peprides. Plant Physiology, 109, 1141~1149
    109. Reeves RD, Baker AJM and Brooks RR. 1995. Abnormal accumulation of trace metals by plants. Mining Environl Manag, 9: 4~8
    110. Regina VL and George JW. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves, implication of a transport function for cadmium-binding peptides, Plant Physiology, 92: 1086~1093
    111. Roca MC, Vallejo VR, Roig M, et al. 1997. Prediction of cesium-134 and strontium-85 crop uptake based on soil properties. Journal of Environmental Quality. 26: 1354~1362
    112. Rogers HH and Brett GR. 1994. Plant responses to atmospheric CO_2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution. 83: 155~189
    113. Romkens P, Bouwman L, Japenga J, et al. 2002. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 116: 109~121
    114. Rugh CL, Senecoff JF, Meagher RB, et al. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology, 16: 925~928
    115. Salt DE, Blaylock M and Kumar NPA. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13: 468~474
    116. Salt DE, Prince RC, Backer AJM, et al. 1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environmental Science Thchnology, 33: 713~717
    117. Salt DE, Prince RC, Pickering IJ, et al. 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109: 1427~1433
    118. Sanchez AL, Horrill AD, Singleton DL, et al. 1996. Radionuelides around nuclear sites in England and Wales. Science of the Total Environment, 181: 51~63
    119. Sawidis T. 1988. Uptake of radionuclides by plants after the Chernobyl accidient. Environmental Pollution, 50: 317~324
    120. Schat H, and Kalff MMA. 1992. Are phytochelatins involved in differental metal tolerance or do they merely reflect metal-imposed strain?. Plant Physiology, 99: 1475~1480
    121. Scheller HV, Huang B, Hatch E, et al. 1987. Phytochelatin sythesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiology, 85: 1031~1035
    122. Sda M, Garty J, Telor E. 1989. The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytololgy , 112 (1) : 7~12
    123. Sen AK, Mondal NG. 1987. Salvinia Natans—as the. scavenger of Hg(Ⅱ). Water, air, and soil pollution, 34: 439~446
    124. Sen AK, Mondal NG. 1990. Removal and uptake of copper (Ⅱ) by Salvinia Natans from waste water. Water, air, and soil pollution, 49: 1~6
    125. Simon L. 1998. Cadmium accumulation and distribution in sunflower plant. Journal of Plant Nutrition, 21: 341~352
    126. Skarlou, V, Nobeli C, Anoussis J, et al. 1999. Transfer factors of ~(134)Cs for olive and orange. trees grown on differents soils. Journal of Environmental Radioactivity. 45: 139~147
    127. Slavik D, Alexander M, Alexei P, et al. 1999. Phytoremediation of radioeesium-contaminated soil in thevicinity of chemobyl, ukraine. Environmental Science and Technology, 33: 469~475
    128. Somova LA and Pechurkin NS. 2001. Functional, regulatory and indicator features of microorganisms in man made ecosystems. Advances in Space Research, 27 (9) : 1563~1570
    129. Song WJ, Sohn EJ, Martinoia E et al. 2003. Engineering tolerance and accumulation of lead cadmium in transgenic plants. Nature Biotechnology, 21: 914~919
    130. Speiser DM, Abrahanmson SL, Banuelos G, et al. 1992. Brassica juncea produces a phytochelatin-Cadmium-sulfide complex. Plant Physiology, 99: 817~821
    131. Srivastav RK, Gupta SK, Nigam KDP, et al. 1994. Treatment of chromium and nickel in wastewater by using aquatic plants. Water Research, 26: 1631~1638
    132. Stephan UW and Scholz G. 1993. Nicotianamine: mediator of transport of iron and heavy metals in the phloem. Physiologia Plantarum. 88: 522~529
    133. Strandberg M, Johansson M. 1998. ~(134)Cs in heather seed plants grown with and without mycorrhiza. Journal of Environmental Radioactivity, 40 (2) : 175~184
    134. Tang SR and Fang YH. 2001. Copper accumulation by Polygonum microcephalum D. Don and Rumex hastatus D. Don from copper mining spoils in Yunnan Province, P. R. China. Environmental Geology, 40: 902~907
    135. Tang SR, Wilke BM and Huang CY. 1999. The Uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China. Plant and Soil, 209: 225~232
    136. Tang SR and Willey NJ. 2003. Uptake of ~(134)Cs by four species from the Asteraceae and two species from the Chenopodiaceae grown in two types of Chinese soil. Plant and Soil, 250 (1) : 75~81
    137. Toal ME, Copplestone D, Johnson MS, et al. 2002. Quantifying ~(137)Cs aggregated transfer coefficients in a semi-natural woodland ecosystem adjacent to a nuclear reprocessing facility. Journal of Environmental Radioactivity, 63 (1) : 85~103
    138. Toyoaki, Morishita and Boratynski JK. 1992. Accumulation of cadmium and other metals in organs of plants growing around metal smelters in Japan. Soil Sci Plant Nutrition, 38 (4) : 785
    139. Tu C and Ma LQ. 2002. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaceumulator ladder brake. Journal of Environmental Quality, 31 (2) : 641~647
    140. Tu C, Ma LQ and Bondada. 2002. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. Journal of Environmental Quality, 31 (5) : 1671~1675
    141. Tu S, Ma LQ, MacDonald GE, et al. 2004. Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environmental and Experimental Botany, 51: 121~131
    142. Tyler G and Olsen T. 2001. Concentration of 60 dements in the soil solution as related to the soil acidity. European Journal of Soil Science, 52: 151~165
    143. Tyson MJ, Shellield E and Callaghan TV. 1999a. Uptake, transport and seasonal recycling of ~(134)Cs applied experimentally to bracken (Pteridium aquilinum L. Kuhn). Journal of Environmental Radioactivity, 46: 1~14
    144. Tyson MJ, Shellield E and Callaghan TV. 1999b. Uptake, allocation, accumulation and ecological implications of ~(85)Sr in bracken (Pteridium aquilinum L. Kuhn). Journal of Environmental Radioactivity, 46: 15~25
    145. Valcke E, Elsen A and Cremers A. 1997. The use of zeolites as amendments in radiocaesiumand radiostronfium-contaminated soils: A soil-chemical approach. Part Ⅳ: A potted soil experiment to verify laboratory-based predictions. Zeolites. 18: 225~231
    146. Vance ED, Brookes PC and Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19: 703~707
    147. Vermaat JE, and Hanif MK. 1998. Performance of common Duckweed species (Lemnaceae) and the waterfern Azolla Filiculoides on different types of waste water, water research, 32 (9) : 2569~2576
    148. Vinit-Dunand F, Epron D and Alaoui-Sosse B. 2002. Effect of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science, 163: 53~58
    149. Visoottiviseth P, Francesconi K and Sridokchan W. 2002. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118: 453~461
    150. Vogeli-Lange R and Wagner GJ. 1990. Subcellular localization of cadmium and cadmium-binding peptides in Tobacco leaves, implication of a transport function for cadmium-binding peptides. Plant Physiology, 92: 1086~1093
    151. Walker DJ, Clementc R, Roig A, et al. 2003. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122: 303~312
    152. Wang J, Zhao Fj, Meharg AA, et al. 2002. Mechanisms of arsenic hyperaccumulation in Pteris vittata, uptake kinetics, interactions with phosphate and arsenic speciation. Plant Physiology, 130: 1552~1561.
    153. Watanabe T, Osald M, Yoshihara T, et al. 1998. Distrbution and chemical speciation of aluminium in the Al accumulator plant, Melastoma malabathrium L. . Plant and Soil, 201: 165~173
    154. Webb SM, Gaillard JF, Ma LQ, et al. 2003. XAS speciation of arsenic in a hyperaccumulating fern, Environment Science and Technology, 37 (4) : 754~760
    155. Wei ZG, Yin M and Zhang X. 2001. Rare earth, elements in naturally grown fern Dicranopteris linearis in relation to their variation in soil on South Jiangxi region(Southern China). Environmental Pollution, 114: 345~355
    156. Weissman Z, Berdicevsky I, Cavari B Z, et al. 2000. The high copper tolerance of Candida albicans is mediated by a P-type ATPase, Proceedings of the National Academy of Sciences of U. S. A. , 97: 3520~3525
    157. Wenzel WW and Jockwer F. 1999. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental Pollution, 104: 145~155
    158. Willey NJ and Martin MH. 1997. A comparison of stable cesium uptake by six grass species of contrasting growth strategy. Environmental Pollution, 95 (3) : 311~317
    159. Zaal BJ van der, Neuteboom LW, Pinas JE, et al. 1999. Overexpression of a novel Arabidopsis gene related to putative Zinc transporter genes from animals can lead to enhanced Zinc resistance and accumulation. Plant Physiology, 119: 1047~1055
    160. Zhang WH, Cai Y, Tu C, et al. 2002. Arsenic speciation and distribution in an arsenic hypemccumulating plant, Science of the Total Environment, 300: 167~177
    161. Zhao FJ, Dunham SJ and McGrath SP. 2002. Arsenic hyperaccumulation by different fern species. New Phytologist, 156 (1) : 27~31
    162. Zhao M and Duncan JR. 1998. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla. fliculoides. Process Biochemistry, 33 (3) : 249~255
    163. Zhao M and Duncan JR. 1999. Removal and recovery of zinc from solution and electroplating effluent using Azolla. liculoides. Water Research, 33: 1516~1522
    164. Zhu YL, Pilon-Smits EA, Tanm AS et al. 1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by over expression γ-glutamyl cysteine synthetase. Plant Physiology, 121: 1169~1177
    165. Zoe G, Cardon. 1996. Influence of rihzodeposition under elevated CO_2 on plant nutrition and soil organic matter. Plant and Soil, 187: 277~288
    166.陈传群,徐寅良,孙志明.1990.小麦对~(134)Cs吸收的研究.环境科学,11(6):10~14
    167.陈方明,陆琦,曹李靖等.2004.天然沸石的加工技术及其在水处理中的应用.安全与环境工程,11(1):19~23
    168.陈建勋,王晓峰.2002.植物生理学实验指导.华南理工大学出版社.广州
    169.陈晶中,陈杰,谢学俭等.2003.土壤污染及其环境效应.土壤,35(4):298~303
    170.陈平平.2002.大气二氧化碳浓度升高对植物的影响.生物学通报,37(3):20~23
    171.陈同斌,黄泽春,黄宇营等.2003.砷超富集植物中元素的微区分布及其与砷富集的关系.科学通报,48(11):1163~1169
    172.陈同斌,韦朝阳,黄泽春等.2002.砷超积累植物蜈蚣草及其对砷的富集特征.科学通报,47(3):207~210
    173.陈雄,任红旭.2000.CO_2浓度升高对干旱胁迫下小麦光合作用和抗氧化酶活性的影响.应用生态学报,11(6):881~884
    174.丛艳国,魏立华.2002.土壤环境重金属污染物来源的现状分析现代化农业.现代化农业,270(1):18~20
    175.范仲学,徐世明.1995.植物吸收环境中~(137)Cs的研究概况.核农学通报,16(5):247~249
    176.郜红建,蒋新,常江等.2004.根分泌物在污染土壤生物修复中的作用.生态学杂志,23(4):135~139
    177.戈峰,刘向辉,江炳缜.2002.蚯蚓对金属元素的富集作用分析.农业环境保护,21(1):16~18
    178.郭建平,高素华,白月明.1999.CO_2浓度倍增对春小麦不同品系影响的试验研究.资源科学,21(6):25~28
    179.韩怀芬,蒲凤莲,裘娟萍.2003.生物法修复铬污染土壤的研究.能源环境保护,17(2):7~10
    180.洪法水,魏正贵,陶冶.1999天然植物铁芒萁体内稀土元素的分布及其叶绿素镧的结构表征.植物学报,41(8):851~854
    181.黄艺,陈有键,陶澍.2000a.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.应用生态学报,11(3):431~434
    182.黄艺,陶澍,陈有键等.2000b.外生菌根对欧洲赤松苗(Pinus sylvestris)Cu、Zn积累和分配的影响.环境科学,21(2):1~6
    183.黄艺,陈有键,陶澍.2002.污染条件下VAM玉米元素积累和分布与根际重金属形态变化的关系.应用生态学报,13(7):859~862
    184.黄智明.2000.家庭养花.广州:广东科技出版社
    185.姜理英,杨肖娥,石伟勇等.2003.植物修复技术中有关土壤重金属活化机制的研究进展.土壤通报,34(2):154~157
    186.姜理英,石伟勇,杨肖娥等.2002.铜矿区超积累Cu植物的研究.应用生态学报,13(7):906~908
    187.蒋高明.1995.全球大气二氧化碳浓度升高对植物的影响.植物学通报.12(4):1~7
    188.蒋先军,骆永明,赵其国.2002.重金属污染土壤的植物修复研究Ⅲ.金属富集植物Brassica Juncea对锌镉的吸收和积累.土壤学报,39(5):664~670
    189.李凡庆,毛振伟,朱育新等.铁芒萁植物体中稀土元素含量分布的研究[J].稀土,1992,13 (5):16-19
    190.李酉开.1989.土壤农业化学常规分析方法.北京:科学出版社,141~142
    191.廖敏,黄昌勇,谢正苗.1998.施加石灰降低不同母质土壤中镉毒性机理研究.农业环境保护,17(3):101~103
    192.林伟宏,张福所,白克智.1999.大气CO_2浓度升高对植物根际微生态系统的影响.科学通报,44(16):1690~1696
    193.刘家尧,衣艳君,白克智等.1996.CO_2/盐冲击对小麦幼苗呼吸酶活性的影响.植物学报.38(8):641~646
    194.刘家忠,龚明.1999.植物抗氧化系统研究进展.云南师范大学学报,19(6):1~11
    195.龙健,黄昌勇,滕应等.2003.矿区重金属污染对土壤环境质量微生物学指标的影响.农业环境科学学报,22(1):60~63
    196.龙新宪,杨肖娥,倪吾钟.2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报,13(6):757~762
    197.龙新宪,杨肖娥,叶正钱.2003.超积累植物的金属配位体及其在植物修复中的作用.植物生理学通讯.39(1):71~77
    198.骆永明.2000.强化植物修复的螯合诱导技术及其环境风险.土壤,2:57~61
    199.倪吾钟,马海燕,余慎等.2003.土壤.植物系统的铜污染及其生态健康效应.广东微量元素科学,10(1):1~5
    200.乔志香,金春姬,贾永刚等.2004.重金属污染土壤电动力学修复技术.环境污染治理技术与设备.5(6):80~84
    201.邱廷省,王俊峰,罗仙平.2003.四川有色金属.重金属污染土壤治理技术应用现状与展望,2:48~52
    202.渠荣遴,李德森,杜荣骞等.2003.低浓度含重金属废水的植物修复作用研究.现代仪器,32~34
    203.施晓东,常学秀.2003.重金属污染土壤的微生物响应.生态环境,12(4):498~499
    204.束文圣,杨开颜,张志权等.2001.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报,7(1):7~12
    205.宋凌云,胡文月,赵继贞等.2000.稀土元素镧对满江红鱼腥藻的生理影响.北京大学学报(自然科学版),36(6):783~788
    206.唐世荣,B.M.Wilke.1999.植物修复技术与农业生物环境工程.农业工程学报.15 (2):21~26
    207.唐世荣.2001.超积累植物在时空、科属内的分布特点及寻找方法.农村生态环境,17(4):56~60
    208.唐世荣.2002.土-水介质中低放核素污染物的生物修复.应用生态学报,13(2):243~246
    209.涂书新,郭智芬,孙锦荷.1999.富K植物籽粒苋根系分泌物及其矿物释K作用的研究.核农学报,13(5):305~311
    210.汪杏芬,李世仪,白克智等.1998.大气CO_2浓度倍增对植物根系表面积和泡囊—丛枝菌根侵染活力和强度的影响.科学通报,43(19):2083~2084
    211.王大力,林伟宏.1999b.CO_2浓度升高对水稻根系分泌物的影响——总有机碳、甲酸和乙酸含量变化.19(4):570~572
    212.王建龙.2003.微生物与铯的相互作用及其在放射性核素污染环境修复中的应用潜力. 核技术.26 (12):949~956
    213.王为民,王晨,李春俭等.2000.大气二氧化碳浓度升高对植物生长的影响.西北植物学报,20(4):676~683
    214.王校常,施卫明,曹志洪.2000.重金属的植物修复——绿色清洁的污染治理技术.核农学报,14 (5):315~320
    215.王修兰,徐师华.二氧化碳气候变化与农业.气象出版社,北京,14~16
    216.王修兰,徐师华,梁红.1998.CO_2浓度增加对C3、C4作物生育和产量影响的实验研究.中国农业科学,31(1):55~61
    217.王秀丽,徐建民,谢正苗等.2002.重金属铜和锌污染对土壤环境质量生物学指标的影响.浙江大学学报(农业与生命科学版),28(2):190~194
    218.王一华,傅荣恕.2003.中国生物修复的应用及进展.山东师范大学学报(自然科学版),18(2):79~84
    219.王义琴,张慧娟,杨奠安等.1998.大气CO_2浓度倍增对植物幼苗根系生长影响的分形分析.科学通报,43(16):1736~1738
    220.韦朝阳,陈同斌,黄泽春等.2002.大叶井口边草——一种新发现的富集砷的植物.生态学报,22(5):777~778
    221.吴龙华,骆永明,卢蓉晖等.2000.铜污染土壤修复的有机调控研究Ⅱ.根际土壤铜的有机活化效应.土壤,32(2):67~70
    222.吴兆洪,秦仁昌.1991.中国蕨类科属志.科学出版社,北京,6
    223.夏立江,华珞,李向东.1998.重金属污染生物修复机制及研究进展.核农学报,12(1):59~64
    224.行恭.1991.有趣的蕨类植物.植物杂志.18(2):7
    225.徐德应.1994.大气CO_2增长和气候变化对森林德影响研究进展.世界林业研究.2:26~32
    226.徐寅良,陈凯旋,陈传群.2000.生物对~(137)Cs的吸收和富集.环境污染与防治,22(3):14~16
    227.曾长立,王晓明,张福锁等.2001.浅析C3植物和C4植物对大气中CO_2浓度升高条件下的反应.江汉大学学报,18(3):6~14
    228.曾而康,李南翔.1986.农用化肥的放射性能.农业环境保护(中国农业环保协会),1:27~29
    229.曾而康.1982.燃煤电厂对环境的放射性污染.辐射防护,2(4):268~271
    230.张磊,宋凤斌,王晓波.2004.中国城市土壤重金属污染研究现状及对策.生态环境,13(2):258~260
    231.张小枝,罗上庚,扬群等.1998.满江红鱼腥藻吸附低度浓度铀的研究,核化学与放射 化学,20(20):114~118
    232.张玉秀,柴团耀,Burkard G.1999.植物耐重金属机理研究进展.植物学报,41(5):453~457
    233.张智勇,王玉琦,孙景信.2000.稀土超积累植物铁芒萁中稀土元素的赋存状态.稀土,21(3):42~45
    234.赵继贞,施定基,张昀.1997.满江红鱼腥藻富集三价金离子(Au3+)机理的研究.科学通报,42(20):2205~2208
    235.赵丽红,杨宝玉,吴礼树等.2004.重金属污染的转基因植物修复——原理与应用.中国生物工程杂志,6:68~73
    236.赵志强,牛军峰,全燮.环境中有害金属植物修复的生理机制及进展.环境科学研究,13(5):54~57
    237.郑喜珅,鲁安怀,高翔等.2002.土壤中重金属污染现状与防治方法.土壤与环境.11(1):79~84
    238.周东美,郝秀珍,薛艳等.2004.污染土壤的修复技术研究进展.生态环境,13(2):234~242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700