严寒地区太阳能-土壤耦合热泵季节性土壤蓄热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能-土壤耦合热泵(Solar-Ground Coupled Heat Pump, SGCHP)系统在用于严寒地区供暖时,由于建筑物的热负荷很大,热泵从土壤中的取热量也很大,系统常年运行地下土壤温度场难以得到恢复,使得热泵的供暖性能系数(Coefficient of Performance, COP)逐年下降。为此本文提出利用系统中原有装置收集非采暖季节的太阳能并通过土壤换热器储存到自然的土壤中,冬季再利用热泵将热量提取出来为建筑物供暖。这种季节性的土壤蓄热,不仅可以恢复和提高土壤温度,而且还能将非采暖季节丰富的太阳能转移到冬季使用,有效的增加了太阳能作为可再生能源热利用的范围,具有很大的节能意义。
     为了系统准确的了解该蓄热过程的特性,本文首先建立了SGCHP供暖实验系统,监测了太阳能季节性土壤蓄热以及系统冬季供暖的性能,并对地下土壤温度场的变化作了较为系统的分析。与传统的SGCHP系统不同的是,增加了季节性土壤蓄热后,地下垂直U型埋管既是取热装置也是蓄热装置,具有双重功能,因此土壤换热器是蓄热系统中的一个关键部件,是研究该技术的核心和应用的基础。基于此,本文利用FLUENT建立了由多个垂直U型埋管组成的群井土壤换热器的三维非稳态传热模型,并通过FLUENT软件提供的扩展功能——用户自定义函数(User-Difined Function, UDF)编写太阳能集热器等其它设备模型程序动态加载到群井土壤换热器模型中,实现了对太阳能季节性土壤蓄热过程的动态仿真。此外,为研究地下土壤蓄、取热的热平衡问题,将蓄热系统仿真模型扩展到全年供暖系统仿真模型。通过模拟结果与实测数据的比较,验证了本文所建数学模型的可靠性和正确性。
     通过仿真模拟,从理论上分析了埋管间距、埋管深度、土壤换热器所在位置地表有无建筑以及土壤作为蓄热介质本身参数对土壤蓄热特性的影响,并分析了基于负荷特性下太阳能集热器的倾角、蓄热启动温度对土壤蓄热特性的影响。通过监测蓄热运行参数和土壤温度场的变化,对蓄热指标:蓄热温差、蓄热运行时间、月蓄热量和总蓄热量、蓄热能效比、蓄热功率、单位埋深蓄热量等进行了理论研究。
     最后,从蓄热后土壤的取热特性以及温变特性出发,主要包括土壤取热量、单位埋深取热量、蒸发器进出口温度、土壤温度场以及热泵、系统供暖和系统全年COP,探讨了整个供暖系统在常年运行条件下土壤的蓄热特性和取热特性的逐年变化以及二者的相互影响。并通过观察土壤温度场的逐年变化分析了土壤的热堆积效应和热平衡状况。研究结果表明,在运行控制条件不变的情况下,土壤温度逐年升高,蓄热效率逐年降低;系统运行的最初3年两者变化较快,随后趋势逐渐变缓;热泵COP逐年升高,但升高的幅度不大,基本维持在较高的水平。因此,在系统运行3年以后可适当减少蓄热量,使土壤热量达到平衡。该部分研究可为该系统的长期运行和推广提供指导。
     SGCHP系统结合季节性土壤蓄热,克服了太阳能热利用在季节性上不匹配的缺点,扩大了太阳能热利用的深度和广度。通过太阳能季节性土壤蓄热,热泵低温热源的温度得到了提升,从而有效地提高了热泵和供暖系统的COP,节能效果十分显著。在目前环境问题日益严重,国家大力发展低碳产业的大环境下,该系统必将会得到长足的发展和广泛的应用。本文所作的研究工作可以为今后季节性土壤蓄热SGCHP系统的应用提供理论基础和技术支持。
Because the heating load of buildings in the severe cold area is very large, when the solar-ground coupled heat pump (SGCHP) system is used for space heating, the heat pump extracts much heat from the soil, which makes the soil temperature field recover difficultly after several years of operations and the heating coefficient of performance (COP) of the heat pump decline annually. This paper presents a new idea of using the existing installations in the system to collect the solar energy in non-heating seasons and the heat is injected into the natural soil through the ground heat exchanger. In winter, the heat is extracted by the heat pump for the space heating of buildings. The seasonal soil heat storage not only can recover and promote the soil temperature, but also can transfer the abundant solar energy in non-heating seasons to winter, which effectively increases the thermal utilization extension of the solar energy as a renewable energy source and has great energy saving significance.
     To find out the characteristics of the heat storage process systematically and exactly, the experimental heating system of SGCHP was established first. Then, the performances of the solar seasonal soil heat storage and the system heating in winter were monitored. Moreover, the underground soil temperature field variations were analyzed systematically. What is different from the traditional SGCHP system is that the underground vertical U-tube is not only the heat extraction installation, but also the heat storage installation, which has dual function. Based on this, the three-dimensional unsteady-state mathematical model of the multi-well ground heat exchanger which was composed of a number of vertical U-tubes was established in this paper. Furthermore, the extension function of User-Defined Function (UDF), provided by FLUENT software, was used to compile the model programs of solar collector and other equipment. They were dynamically loaded into the model of the multi-well ground heat exchanger and then the dynamic simulation of the solar seasonal soil heat storage process was realized. In addition, to study the heat balance problem of the heat extraction and heat storage of the underground soil, the heat storage system simulation models were extended to the heating system simulation models. The reliability and validity of the mathematical models established in this paper were validated by comparison between the simulation results and the measured data.
     Through the simulation, the influences on the soil heat storage characteristics caused by the pipe spacing, the pipe depth, the ground heat exchanger position that has buildings or not on the ground surface and the parameters of the soil as the heat storage medium were analyzed theoretically. Also, the influences on the soil heat storage characteristics caused by the solar collectors titled angle and the heat storage start temperature based on the load characteristics were analyzed. Through monitoring the operating parameters and the soil temperature field, the heat storage indexes: heat storage temperature difference, heat storage operating time, monthly and total heat storage capacity, heat storage energy efficient ratio, heat storage power, heat storage capacity of unit depth, etc. were studied theoretically.
     At last, from the heat extraction and temperature variation characteristics of the soil after the heat storage, which mainly include the heat extraction capacity, the heat extraction capacity of unit depth, inlet and outlet temperature of the evaporator, soil temperature field and the heat pump’s COP, system heating COP and annual system’s COP, the yearly variations of the soil heat storage and heat extraction characteristics under the condition of the entire heating system operating year in year out as well as the interaction between each other were discussed. In addition, through the yearly variations of the soil temperature field, the heat accumulation effect and heat balance status were analyzed. The results show that, when the operation control conditions is not changed, the soil temperature increases year by year, while the heat storage efficiency decreases year by year. During the initial 3 years, the both vary rapidly, and then the variation trend turns smoothly. The COP of the heat pump increases year by year, but the margin is small, which basically maintains at a higher level. Therefore, after 3 years of running, the heat storage capacity can be reduced appropriately, to maked the soil heat balance. The research can provide guidance for the system long-term running and popularization.
     The combination of SGCHP and solar seasonal soil heat storage overcomes the shortcoming of solar thermal utilization that is not matching with the season and expands the depth and width of solar thermal utilization. Through the solar seasonal soil heat storage, the temperature of the heat pump low-temperature heat source is raised and the COPs of the heat pump and the heating system are effectively increased, which has very significant energy saving effect. Now, under the great environment of increasingly serious environmental problem and the country’s energetic development of the low-carbon industry, the system would certainly get considerable development and wide applications. The researches done in this paper can provide theoretical basis and technical support for the application of SGCHP system with solar seasonal soil heat storage in the future.
引文
1途逢祥.积极推进建筑节能实施可持续发展战略.建筑节能, 1996, (4): 17-22
    2 BP. BP世界能源统计2009. BP, 2009
    3王荣光,沈天行.可再生能源利用与建筑节能.机械工业出版社, 2004: 269-277
    4贠英伟,吴香国,范丰丽.我国建筑节能现状分析及对策.重庆科技学院学报(自然科学版). 2006, 8(1):62-65
    5 D. R. Dinse. Geothermal Systems for School. ASHRAE Journal. 1998, (5):36-40
    6江亿.我国建筑能耗趋势与节能重点.建设科技. 2006, (7):10-15
    7毕月虹,陈林根.天津地区太阳能、土壤热源的性能研究.太阳能学报. 2002, 23(1): 83-86
    8徐琳,张旭,张学庆.土壤热源热泵系统节能分析.煤气与热力. 2006, 26(3): 42-44
    9周恩泽,董华,涂爱民等.太阳能热泵地板辐射供暖系统的实验研究.流体机械. 2006, 34(4): 57-62
    10赵达,张欣艳,王畅等.太阳能-土壤源热泵空调系统研究.黑龙江八一农垦大学学报. 2006, 18(3): 89-93
    11周亚素,张旭,陈沛霖.土壤源热泵机组冬季供热性能的数值模拟与实验研究.东华大学学报(自然科学版). 2002, 28(1): 5-9
    12李传统.新能源与可再生能源技术.东南大学出版社, 2005: 6-7
    13方荣生,项立成,李亭寒.太阳能应用技术.中国农业机械出版社, 1985: 276-278
    14杨卫波,董华.土壤源热泵系统国内外研究状况及其发展前景.建筑热能通风空调. 2003, (3): 52-55
    15徐邦裕,陆亚俊,马最良.热泵.中国建筑工业出版社, 1988: 66-68
    16 H. L. von库伯, F斯泰姆莱.热泵的理论与实践.王子介译.中国建筑工业出版社, 1986: 28-39
    17 E. B. Penrod,K. V. Prasanna. Design of a Flat-Plate Collector for a Solar Earth Heat Pump. Solar Energy. 1962, 6(1): 9-22
    18 E. B. Penrod,K. V. Prasanna. Procedure for Designing Solar-Earth Heat Pump Heating. Piping & Air-Conditioning. 1969, 41(6): 97-100
    19 P. D. Metz. The Use of Ground Couple Tanks in Solar Assisted Heat Pump System. Transaction of ASME. Journal of Solar Energy Engineering. 1982, 104(4):366-372
    20 A. Ucar, M. Inalli. Thermal and Economical Analysis of a Central Solar Heating System with Underground Seasonal Storage in Turkey. Renewable Energy. 2005, 30(7): 1005-1019
    21 A. Ucar, M. Inalli. Exergoeconomic Analysis and Optimization of a Solar-assisted Heating System for Residential Buildings. Building and Environment. 2006, 41(11): 1551-1556
    22 R. Yumrutas, M.ünsal. Analysis of Solar Aided Heat Pump Systems with Seasonal Thermal Energy Storage in Surface Tanks. Energy. 2000, 25(12): 1231-1243
    23 R. Yumrutas, M.ünsal. A Computational Model of a Heat Pump System with a Hemispherical Surface Tank as the Ground Heat Source. Energy. 2000, 25(4): 371-388
    24 V. Trillat-Berdal, B. Souyri, G. Fraisse. Experimental Study of a Ground-Coupled Heat Pump Combined with Thermal Solar Collectors. Energy and Buildings. 2006,38(12): 1477-1484
    25 V. Trillat-Berdal, B. Souyri, G. Achard. Coupling of Geothermal Heat Pumps with Thermal Solar Collectors. Applied Thermal Engineering. 2007, 27(10): 1750-1755
    26 O. Ozgener, A. Hepbasli. Experimental Performance Analysis of a Solar Assisted Ground-source Heat Pump Greenhouse Heating System. Energy and Buildings. 2005,37(1):101-110
    27 O. Ozgener, A. Hepbasli. Experimental Investigation of the Performance of a Solar-assisted Ground-source Heat Pump System for Greenhouse Heating. International Journal of Energy Research. 2005, 29(3):217-231
    28 O. Ozgener, A. Hepbasli. Performance Analysis of a Solar Assisted Ground-source Heat Pump System for Greenhouse Heating: an Experimental Study. Building and Environment. 2005, 40(8):1040-1050
    29 O. Ozgener, A. Hepbasli. Exergoeconomic Analysis of a Solar Assisted Ground-source Heat Pump Greenhouse Heating System. Applied Thermal Engineering. 2005, 25(10):1459-1471
    30 O. Ozgener, A. Hepbasli. A Review on the Energy and Exergy Analysis of Solar Assisted Heat Pump Systems. Renewable and Sustainable Energy Reviews. 2007, 11(3):482-496
    31 O. Ozgener, A. Hepbasli. A Parametrical Study on the Energetic and Exergetic Assessment of a Solar-assisted Vertical Ground-source Heat Pump System used for Heating a Greenhouse. Building and Environment. 2007, 42(1):11-24
    32 O. Ozgener, A. Hepbasli, L. Ozgener. A Parametric Study on the Exergoeconomic Assessment of a Vertical Ground-coupled (Geothermal) Heat Pump System. Building and Environment. 2007, 42(3):1503-1509
    33 O. Ozgener, A. Hepbasli. Modeling and Performance Evaluation of Ground Source (Geothermal) Heat Pump Systems. Energy and Buildings. 2007, 39:66-75
    34毕月虹,陈林根.太阳能-土壤热源热泵的性能研究.太阳能学报. 2000, 21 (2): 214-219
    35 Y. H. Bi, T. W. Guo, L. Zhang. Solar and Ground Source Heat-pump System. Applied Energy. 2004, 78(2): 231-245
    36 Y. H. Kuang, R. Z. Wang, L. Q. Yu. Experimental Study on Solar Assisted Heat Pump System for Heat Supply. Energy Conversion & management. 2003, 44(7): 1089-1098
    37旷玉辉,王如竹,于立强.太阳能热泵供暖系统的实验研究.太阳能学报. 2002,23(4): 408-413
    38杨卫波,施明恒,董华.太阳能土壤源热泵系统联合供暖运行模式的探讨.暖通空调. 2005, 35(8): 25-31
    39胡松涛,张莉,王刚.太阳能-地源热泵与地板辐射空调系统联合运行方式探讨.暖通空调. 2005, 35(3): 41-44
    40余延顺,廉乐明.寒冷地区太阳能-土壤源热泵系统运行方式的探讨.太阳能学报. 2003, 24(1): 111-115
    41余延顺,马最良,廉乐明.太阳能热泵系统运行工况的模拟研究.流体机械. 2004, 32(5): 65-69
    42王芳,郑茂余,李忠建等.相变材料在太阳能-地源热泵系统中的应用.太阳能学报. 2006, 27(12): 1231-1234
    43韩宗伟,郑茂余,孔凡红.严寒地区太阳能-季节性土壤蓄热热泵供暖系统的模拟研究.太阳能学报. 2008, 29(5): 574-580
    44韩宗伟,郑茂余,刘威等.严寒地区太阳能-土壤源热泵相变蓄热供暖系统.太阳能学报. 2006, 27(12): 1214-1218
    45 T. Schmidt, D. Mangold, H. Müller-Steinhagen. Central Solar Heating Plants with Seasonal Storage in Germany. Solar Energy. 2004, 76(1-3): 165-174
    46崔海亭,杨锋.蓄热技术及其应用.化学工业出版社, 2004
    47 P. D. Lund, M. B. Ostman. Numerical Model for Seasonal Storage of Solar Heat in the Ground by Vertical Pipes. Solar energy. 1985, 34(4-5): 351-366
    48 L. Mazzarella, E. Pedrocchi. Monitoring a Solar-assisted Heat Pump with Seasonal Ground Coupled Storage: Analysis of the First Results. Proceedings of the First European Symposium on Air Conditioning and Refrigeration, Brussels, 1986: 199-09
    49 G. J. van den Brink, C. J. Hoogendoorn. Ground Water Flow Heat Losses for Seasonal Heat Storage in the Soil. Solar energy. 1983, 30(4): 367-371
    50 M. Reuss, M. Beck, J. P. Müller. Design of a Seasonal Thermal Energy Storage in the Ground. Solar Energy. 1997, 59(4-6): 247-257
    51 B. Nordell, G. Hellstr?m. High Temperature Solar Heated Seasonal Storage System for Low Temperature Heating of Buildings. Solar energy. 2000, 69(6): 511-523
    52 R. Yumrutas, O. Kaska. Experimental Investigation of Thermal Performance of a Solar Assisted Heat Hump System with an Energy Storage. International Journal of Energy Research. 2004, 28:163-175
    53 R. Yumrutas, M. Kunduz, T. Ayhan. Investigation of Thermal Performance of a Ground Coupled Heat Pump System with a Cylindrical Energy Storage Tank. International Journal of Energy Research. 2003, 27(11):1051-1066
    54 V. Badescu. Model of a Thermal Energy Storage Device Integrated into a Solar Assisted Heat Pump System for Space Heating. Energy Convers Manage. 2003, 44(10):1589-1604
    55 V. Badescu. First and Second Law Analysis of a Solar Assisted Heat Pump Based Heating System. Energy Convers Manage. 2003, 43(18): 2539-2552
    56 V. Badescu. Model of a Solar-assisted Heat-Pump System for Space Heating Integrating a Thermal Energy Storage Unit. Energy Build. 2002, 34(7): 715-726
    57 P. Olszewski. The Possibility of Using the Ground as a Seasonal Heat Storage-The Numerical Study. Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, Charlotte, 2004: 437-441
    58 A. Ucar, M. Inalli. Thermal and Economic Comparisons of Solar Heating Systems with Seasonal Storage Used in Building Heating. Renewable Energy. 2008, 33(12): 2532-2539
    59 A. Ucar, M. Inalli. A Finite Element Model of Solar Heating System withUnderground Storage. International Journal of Thermal Sciences. 2008, 47(12): 1639-1646
    60马文麒,李申生.太阳池和池下土壤的跨季度蓄热.太阳能学报. 1984, 5(4): 358-367
    61 M. Y. Zheng, D. M. Wang, Y. S. Zhi. The Study of Heating and Cooling Technique with Solar Energy in Severe Cold Area. Energy and the Environment - Proceedings of the International Conference on Energy and the Environment, Shanghai, 2003:186-191
    62 M. Y. Zheng, Y. S. Zhi, Y. Lin. Study of Heating and Cooling System with Solar Heat Soil Storage in Severe Cold Area. Proceedings of the 2003 4th International Symposium on Heating, Ventilating and Air Conditioning, Beijing, 2003: 1123-1128
    63林媛.太阳能土壤源热泵蓄热过程中的数值模拟.合肥工业大学学报(自然科学版). 2005, 28(6):650-654
    64韩敏霞.太阳能土壤跨季节蓄热-地源热泵组合理论与实验研究.天津大学硕士学位论文. 2007
    65崔俊奎,赵军,李新国等.跨季节蓄热地源热泵地下蓄热特性的理论研究.太阳能学报. 2008, 29(8): 920-926
    66赵军,陈雁,李新国.基于跨季节地下蓄热系统的模拟对热储利用模式的优化.华北电力大学学报. 2007, 34(2): 74-77
    67赵军,曲航,崔俊奎等.跨季节蓄热太阳能集中供热系统的仿真分析.太阳能学报. 2008, 29(2): 214-219
    68罗苏瑜.土壤蓄热与土壤源热泵集成系统的数值模拟.节能. 2007, (6):12-15
    69姜益强,齐琦,姚杨等.太阳能季节性相变蓄热热泵系统在哈尔滨应用的模拟研究.暖通空调. 2007, 37(3): 15-20
    70杨卫波,施明恒,陈振乾.太阳能-U形埋管土壤蓄热特性数值模拟与实验验证.东南大学学报(自然科学版). 2008, 38(4): 651-656
    71刘宪英,胡鸣明,魏唐棣.地热源热泵地下埋管换热器传热模型的综述.重庆建筑大学学报. 1999, 21(4): 106-111
    72 C. Yavuzturk. Modeling of Vertical Ground Loop Heat Exchangers for Ground Source Heat Pump Systems. Oklahoma State University Ph.D dissertation. 1999
    73 L. R. Ingersoll, H. J. Plass. Theory of the Ground Pipe Heat Source for the Heat Pump. Heating, Piping & Air Conditioning. 1948, (6): 119-122
    74 L. R. Ingersoll, O. J. Zobel, A. C. Ingersoll. Heat Conduction with Engineering,Geological and Other Applications. NewYork: McGraw-Hill, 1954: l-56
    75 J. E. Bose, J. D. Parker. Ground Coupled Heat Pump Research. ASHRAE Transactions.1983, 89(2): 375 -390
    76 J. E. Bose. Closed-loop Ground-coupled Heat Pump Design Manual. Engineering Technology Extension Oklahoma State University, 1984: 20-60
    77 H. S. Carsluw, J. C. Jueger. Conductiion of Heat in Solids. Oxford: Clurernore Press, 1947: 260-265
    78 H. S. Carsluw, J. C. Jueger. Conductiion of Heat in Solids. 2nd edition. Oxford: Oxford University Press, 1959: 260-265
    79 J. D. Deerrnam, S. P. Kuvunuugh. Simulation of Vertical U-tube Ground-coupled Heat Pump Systems using Cylindrical Heat Source Solution. ASHRAE Transactions. 1997, 103(1): 287-295
    80 V. C. Mei, V. D. Baxter. Performance of a Ground-Coupled Heat Pump with Multiple Dissimilar U-tube Coils in Series. ASHRAE Transactions. 1986, 92: 22-25
    81中华人民共和国建设部.地源热泵系统工程技术规程. GB 50366-2005.中国建筑工业出版社, 2005
    82 R. L. D. Cane. Modeling of GSHP Performance. ASHRAE Transactions, 1991
    83 V. C. Mei, C. J. Emerson. New Approach for Analysis of Ground Coil Design for Applied Heat PumP Systems. ASHRAE Transactions. 1985, 91:1216-1224
    84 V. C. Mei, S. K. Fischer. A Theoretical and Experimental Analysis of Vertical Concentric-tube Ground-coupled Heat Exchangers. Oak Ridge National Laboratory/CON153, 1984
    85 V. C. Mei. Horizontal Ground Coil Heat Exchanger Theoretical and Experimental Analysis. Oak Ridge National Laboratory/CON193, 1986
    86 P. D. Metz. A Simple Computer Program to Model 3-Dimensional Underground Heat Flow with Realistic Boundary Conditions. ASME Transactions. 1983, 105
    87 J. W. Andrews, P. D. Metz, J. H. Saunders. A Refined Computer Program for the Transient Simulation of Ground Coupled Heat Pump Systems. BNL-34818, 1984
    88 J. W. Andrews. Optimized Ground Heat Pump Design. BNL-38869, 1985
    89 T. K. Lei. Development of a Computational Model for a Ground-Coupled Heat Exchanger. ASHRAE Transactions. 1993, 99(1): 149-159
    90 N. K. Muraya. Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Heat Exchangers. Texas A&M University Ph.D. Dissertation. 1994
    91 N. K. Muraya, D. L. O'Neal, W. M. Heffington. Thermal Interference of Adjacent Legs in a Vertical U-Tube Heat Exchanger for a Ground-Coupled Heat Pump. ASHRAE Transactions. 1996, 102(2): 12-21
    92 S. P. Rottmayer, W. A. Beckman, J. W. Mitchell. Simulation of a Single Vertical U-Tube Ground Heat Exchanger in an Infinite Medium. ASHRAE Transactions. 1997,103(2): 651-659
    93 S. P. Rottmayer, W. A. Beckman, J. W. Mitchell. Simulation of a Single Vertical U-Tube Ground Heat Exchanger in an Infinite Medium. ASHRAE Transactions. 1997,103(2): 651-659
    94 C. Yavuzturk, J. D. Spitler, S. J. Tees. A Transient Two-dimensional Finite Volume Model for the Simulation of Vertical U-tube Ground Heat Exchangers. ASHRAE Transactions. 1999, 105(2): 465-474
    95 P. Eskilson. Thermal Analysis of Heat Extraction Boreholes. Doctor Thesis of University of Lund. 1987
    96 G. Hellstrom. Ground Heat Storage, Thermal Analysis of Duct Storage Systems. Doctor Thesis of University of Lund. 1991
    97 J. D. Spitler, X. B. Liu, S. J. Tees, et al. Simulation and Design Ground Source Heat Pump Systems. Journal of Shandong Institute of Architecture and Engineering. 2003,18(1): 1-10
    98 N. R. Diao, Q. Y. Li, Z. H. Fang. Inprovement on Modelling of Transfer in Vertical Ground Heat Exchangers. International Journal of HVAC&R Research. 2004, 10(4):459-470
    99 H. Y. Zeng, N. R. Diao, Z. H. Fang. Heat Transfer Analysis of Boreholes in Vertical Ground Heat Exchangers. International Journal of Heat and Mass Transfer. 2003,46(23): 4467-4481
    100 N. R. Diao, Q. Y. Li, Z. H. Fang. Heat Transfer in Ground Heat Exchangers with Groundwater Advection. International Journal of Thermal Sciences. 2004, 43(12): 1203-1211
    101 H. Y. Zeng, N. R. Diao, Z. H. Fang. A Finite Line-source Model for Boreholes in Geothermal Heat Exchangers. Heat Transfer-Asian Research. 2002, 31(7): 558-567
    102赵琴,王靖. FLUENT在暖通空调领域中的应用.制冷与空调. 2003, (1): 15-18
    103 M. De Paepe, N. Willems. 3D unstructured modelling technique for ground-coupled air heat exchanger. Clima 2000/Napoli World Congress, Napoli, 2001: 8-15
    104 M. H. Sharqawy, E. M. Mokheimer, H. M. Badr. Effective Pipe-to-Borehole Thermal Resistance for Vertical Ground Heat Exchangers. Geothermics. 2009, 38(2): 271-277
    105 S. H. Li, W. H. Yang, X. S. Zhang. Soil Temperature Distribution around a U-tube Heat Exchanger in a Multi-function Ground Source Heat Pump System. Applied Thermal Engineering. 2009, 29(17-18): 3679-3686
    106 A.-M. Gustafsson, L. Westerlund, G. Hellstr?m. CFD-modelling of Natural Convection in a Groundwater-filled Borehole Heat Exchanger. Applied Thermal Engineering. 2010, 30(6-7): 683-691
    107罗苏瑜.土壤蓄能与土壤源热泵集成系统地埋管换热特性研究.中南大学硕士学位论文. 2007
    108刁乃仁,方肇洪.地埋管地源热泵技术.高等教育出版社, 2006:86, 94~95,119
    109 M. Piechowski. Heat and Mass Transfer Model of a Ground Heat Exchanger: Validation and Sensitivity Analysis. International Journal of Energy Research. 1998, 22(11): 965-979
    110 M. Pi11er, E. Nobile, J. Thomas. DNS Study of Turbulent Ttransport at Low Prandtl Numbers in a Channel Flow. Journal of Fluid Mechanics. 2002, (458): 419-441
    111 J. G. Wissink. DNS of Separating Low Reynolds Number Flow in a Turbine Cascade with Incoming Wakes. International Journal of Heat and Fluid Flow. 2003, 24(4): 626-635
    112 P. Rollet-Miet, D. Laurence, J. Ferziger. LES and RANS of Turbulent Flow in Tube Bundles. International Journal of Heat and Flow. 1999, 20(3): 241-254
    113黄克智,薛明德,陆明万.张量分析.第2版.清华大学出版社, 2003: 23-32
    114 FLUENT Inc. FLUENT User’s Guide. FLUENT Inc, 2003
    115王福军.计算流体动力学分析-CFD软件原理与应用.清华大学出版社, 2004:11,99-110
    116陶文铨.数值传热学.第2版.西安交通大学出版社, 2001: 90-92
    117 S. V.帕坦卡.传热与流体的数值计算.张政译.科学出版社, 1988:149
    118 P. Chow, M. Cross, K. Pericleous. A Natural Extension of the Conventional Finite Volume Method into Polygonal Unstructured Meshes for CFD Application. Applied Mathematical Modelling. 1996, 20(2): 170-183
    119陶文铨.计算传热学的近代进展.科学出版社, 2000: 159~176
    120葛新石,龚堡,陆维德等.太阳能工程-原理与应用.学术期刊出版社, 1988: 230-232
    121杨世铭,陶文铨.传热学.第三版.高等教育出版社, 1998: 333-335
    122 FLUENT Inc. Fluent 6.2 UDF Manual. FLUENT Inc, 2005
    123於仲义.土壤源热泵垂直地埋管换热器传热特性研究.华中科技大学博士论文. 2008: 56-30
    124中华人民共和国住房和城乡建设部.太阳能供热采暖工程技术规范. GB 50495-2009.北京科文图书业信息技术有限公司, 2009
    125 H. Hanibuchi, S. Hokoi. Basic Study on Radiative and Convective Heat Exchange in a Room with Floor Heating. ASHRAE Transactions. 1998, 104(1): 1098-1105
    126中华人民共和国建设部.地面辐射供暖技术规程. JGJ 142-2004.中国建筑工业出版社, 2004
    127王潇.低温地面辐射供暖系统调节的研究.哈尔滨工业大学硕士论文. 2006:11-12
    128王荣光,沈天行.可再生能源利用与建筑节能.机械工业出版社, 2004: 511, 531

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700