重庆地区复合式地源热泵系统的应用及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,经济的快速发展和人们生活水平的提高,公共建筑和住宅的供热和空调已经成为普遍的需求。空调系统能耗问题日益突出,城市建筑的快速发展给地源热泵系统这种节能空调新技术的使用带来了巨大的发展潜力。在建筑的空调冷负荷比热负荷大得多的地区,采用地源热泵空调系统,地埋管排入土壤中的热量和从土壤中提取的热量不平衡,长期作用会使土壤温度升高,热泵夏季进水温度升高从而降低系统性能,增加了系统的能耗。因此可在冷负荷占优势建筑中采用辅助冷却的复合式地源热泵系统,根据建筑热负荷设计地埋管换热器,减少地下换热器的长度,降低了系统的初投资,并通过辅助冷却设备来消除土壤中的不平衡热量,改善了系统性能。
     本文首先建立了地源热泵系统以及各个部件的传热数学模型,并对系统模拟计算步骤进行了阐述,分析系统各个部分内在的耦合关系。采用实测数据与模拟计算结果进行比较,验证了传热模型的正确性以及可行性。
     基于重庆地区某复合式地源热泵示范工程,采用传统型地源热泵系统和传统冷机联合地源热泵的复合式系统分别进行研究。根据DeST能耗模拟软件计算出的全年逐时空调冷热负荷和建立的数学模型,采用不同的控制策略,对传统型和复合式地源热泵系统进行了7年的模拟计算,研究了地源热泵系统初始运行时间点对系统能耗、地埋管换热器钻孔壁温度和进出口水温的影响。对冷负荷占优的建筑采用传统地源热泵系统进行研究,说明了采用复合式地源热泵对节省系统初投资和维持地下土壤热平衡的重要性。为传统冷机联合地源热泵的复合式系统制定了两种控制策略,并与不采用控制策略的运行方式相比,说明在这种复合式地源热泵系统中采用一定的控制手段,维持地下土壤的温度和系统节能性,仍然是很有必要的。在不同控制策略设定值下,分析了复合式系统的运行能耗以及钻孔壁温度两个重要参数,通过对不同控制策略设定值和运行方式下的模拟计算结果进行比较,得出了最佳的控制策略设定值,为实际工程应用提供了运行控制方法和指导。
Along with the acceleration of urbanization in our country, the requirement of heating ventilation and air condition (HVAC) of public and residential buildings has become popular demand with the increasing development of economy and the improvement of people's living standard. However, the traditional heating and cooling system is insufficient for reducing energy consumption. Therefore, renewable technology such as Ground Source Heat Pump (GSHP) with imponderable potential accelerate the building energy saving. While GSHP system is applied in building that is cooling-dominated, especially located in hot-climate areas. The annual accumulated air-conditioning system cooling load is much greater than heating load. Ground temperature will be changed due to imbalance heating and cooling load after long-term circulation. On the other hand, ground heat exchangers operating energy consumption increase as well as system performance reduction will be effected as a result. Towards this background, composite ground source heat pump system with auxiliary cooling function can play an important role in improving existing HVAC system efficiency and reducing the initial cost of the system considerably.
     In this paper, heat transfer mathematical model has been established to identify the relationship inside heat pump model. Secondly, in order to evaluate the accuracy and feasibility, this analytic model has been validated by field measurement data.
     Based on a composite ground source heat pump demonstration project in the city of Chongqing, traditional GSHP system and Composite ground source heat pump system are adopted for contrastive research. The entire year cooling and heating load is calculated via DeST (Designer’s Simulation Toolkit) software. Compare traditional GSHP system with Composite GSHP system, analog computation is conducted for 7 years simulative time, analyzing the impact of initial operating time on system performance, ground heat exchangers and water temperature. The initial investment and maintain cost saving by using Composite GSHP system is effective, especially in cooling load dominant area. Two kinds of control strategies are implementing in Composite GSHP system, the result indicate that underground soil temperature has been well maintained and the system energy-saving goal has been achieved. Under different control set point value, this paper analyzes two important parameters, system performance and drilling wall temperature, of the composite system. The best set point value of control strategy was proposed as the result of comparison, and gave rise to operational control method and guidance for practical engineering application.
引文
[1]徐伟,中国地源热泵发展研究报告(2008)[M].北京:中国建筑工业出版社,2008.
    [2]刘天齐,环境保护[M].北京:化学工业出版社,2000.
    [3]唐孝炎,面向21世纪的环境科学与可持续发展[M].北京:科学出版社,2000.
    [4]刁乃仁,方肇洪,地埋管地源热泵技术[M].北京:高等教育出版社,2006.
    [5]刁永飞,张小力,伍贻文.地源热泵的优越性及前景展望[J].能源研究与信息,2002,1.(18): 34-36.
    [6]张佩芳,袁寿其.地源热泵的特点及其在长江流域应用前景[J].流体机械,2003,31.(2): 9,50-52.
    [7]高青,于鸣.高效环保效能好的供热供冷装置—地源热泵的开发与利用[J].吉林工业大学自然科学学报,2001,31(2):96-102.
    [8]马最良,吕悦.地源热泵系统设计与应用[M].北京:机械工业出版社,2006.
    [9]寿青云,陈汝东.高效节能空调—地源热泵[J].节能,2001(1):41-45.
    [10]刘冬生,孙友宏.浅层地能利用新技术—地源热泵技术[J].岩土工程技术,2003(1):57-59.
    [11] Ingersoll L R,H.J Plass.Theory of the Ground Pipe Heat Source for the Heat Pump[J]. Heating Piping&Air Conditioning,1948,July:119-122.
    [12] H S Carslaw,J C Jaeger.Conduction of Heat in Solid[J].Seconded. Oxford University Press[J],Great Britain,1959:261-65.
    [13]张旭.土壤源热泵的实验及相关基础理论研究[J].现代空调,2001(3):75-87.
    [14]丁勇,刘宪英.地源热泵系统实验研究综述[J].现代空调,2001(3):11-32.
    [15] V C Mei,C J Emerson.New Approach for Analysis of Ground-Coil Design for Applied Heat Pump Systems[J].ASHRAE Trans,1985,91(2):1216-1224.
    [16] Stephen P Kavnaugh,Marita L Allan. Testing of thermally enhanced cement ground heat exchanger grouts[J]. ASHRAE Transaction,1999,105(1):446-449.
    [17] Charles P Remund. Borehole thermal resistance:Laboratory and field studies[J]. ASHRAE transaction,1999,105(1):439-445.
    [18] M T Sulatisky,G vander kamp.Ground-source heat pumps in the Canadian prairies[J]. ASHRAE Trans,1991,97(1):374-385.
    [19] D Deerman,S P Kavanaugh.Simulation of vertical U-tube ground coupled heat pump systems using the cylindrical heat source solution[J].ASHRAE trans,1991,97(1):287-295.
    [20] R L D Cane.A comparison of measured and predicted performance of a ground-source heat pump system in a large building[J].ASHRAE Trans.1995,101(2):1081-1087.
    [21] James E Bose.Geothermal Heat Pumps Introductory Guide[J].Oklahoma State University Ground Source Heat Pump Publications,1997.
    [22] Gu Y,ONeal D L.Development of an equivalent diameter expression for vertical U-tube in ground coupled heat pumps[J].ASHRAE Trans.1998,104(2):347-355.
    [23] D R Dinse.Geothermal system for school[J].ASHRAE Journal,1998,40(5):52-54.
    [24] Steve Kavanaugh,Ground-coupled heat pumps for commercial buildings[J].ASHRAE Journal, 1992,34(9):30-37.
    [25] Steve Kavanaugh.Ground source heat pumps[J].ASHRAE Journal,1998,40(10):31-35.
    [26] G Phetteplace,WSullivan,Performance of a hybrid ground-coupled heat pump system[J]. ASHRAE Transactions,1998,104(1b):763-770.
    [27] Yavuzturk C,Spitler J D,Rees S J A Transient Two-Dimensional Finite Volume Model for the Simulation of Vertical U-Tube Ground Heat Exchangers[J].ASHRAE Tans., 1999, 105 (2):465-474.
    [28] C Yavuzturk,JDSpitler,A short time step response factor model for vertical ground loop heat exchangers[J].ASHRAE Transactions,1999,105(2):475-485.
    [29] S P Kavanaugh,A design method for hybrid ground-source heat pumps [J], ASHRAE Transactions, 1999,104(2):691-698.
    [30]于立强.水-水活塞压缩式热泵机组的性能测试[J].暖通空调,1995,25(1):12-14.
    [31]于立强.垂直埋管地源热泵系统实验研究.全国暖通空调制冷学术年会论文集[M],北京:中国建筑工业出版社,2000,470-474.
    [32]王勇,付祥钊,曾淼等,地源热泵地下管群换热器设计施工问题[J],建筑热能通风空调, 2000,No.1:59-62.
    [33]魏唐棣,胡鸣明,丁勇等,地源热泵冬季供暖测试及传热模型[J].暖通空调,2000,30(1): 12-14.
    [34]刘宪英,丁勇,胡鸣明,浅埋竖管换热器地源热泵夏季供冷试验研究[J].暖通空调,2000, 30(4):1-4.
    [35]王勇、付祥钊,地源热泵的套管式地下换热器研究[J],重庆建筑大学学报,1997(5):13-17.
    [36]刘宪英、王勇、胡鸣明等,地源热泵地下垂直埋管换热器的试验研究[J],重庆建筑大学学报,1999,21(5):21-26.
    [37]刘宪英,地源热泵地下竖埋套管式换热器传热模型[M].全国暖通空调制冷学术年会学术文集,北京:中国建筑工业出版社,2000,153-156.
    [38]李元旦,张旭.土壤源热泵冬季工况启动特性的实验研究[J].暖通空调,2001,31(1):17-20.
    [39]李元旦、魏先勋,水平埋管换热器夏季瞬态工况的实验与数值模拟[J].湖南大学学报,1999(2):35-39.
    [40]魏先勋、李元旦,土壤源热泵的研究[J],湖南大学学报,2000,Vol.27,No.2:23-28.
    [41]高祖锟,用于供暖的土壤-水热泵系统[J],暖通空调,1995(4):9-12.
    [42]魏唐棣,地源热泵冬季供暖测试及传热模型[J].暖通空调,2000,30(1):24-29.
    [43] Hughes P J.Survey of water-source heat pump system configurations in current practice[J]. ASHRAE Transactions,1990,1021-1028.
    [44] ASHRAE 1995.Commercial/Institutional Ground-Source Heat Pump Engineering Manual[J]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta.
    [45] Kavanaugh,S.P.,and K.Rafferty.1997.Ground-source heat pumps:Design of geothermal systems for commercial and institutional buildings[J].Atlanta:American Society of Heating, Refrigerating and Air-Conditioning Engineers,Inc.
    [46] Cenk Yavuzturk,Jeffrey D.Spitler,Comparative study of operating and control strategies for Hybrid Ground-Source Heat Pump Systems using a short time step simulation model[J]. ASHRAE Transactions; 2000;106,Career and Education 192-195.
    [47] Bernier M A.Ground-coupled heat pump system simulation[J].ASHRAE Tans. 2001, 107(1): 605-616
    [48]王景刚,李芳,李恺渊,辅助冷却复合式地源热泵系统运行控制策略研究[J].暖通空调,2007,37(12):129-132.
    [49] Man Yi, Yang Hongxing , Fang Zhaohong, Study on hybrid ground-coupled heat pump systems[J]. Energy and Buildings,2008,40:2028-2036.
    [50]余跃进,陈正顺.南京地区混合式地源热泵系统可行性与初投资的探讨[J].流体机械,2008, 36(8):70-73.
    [51]张勇,王晏平,陈正顺.混合式地源热泵控制方法分析[J].建筑节能,2009,37(216):47-49.
    [52]马宏权,龙惟定.地埋管地源热泵系统的热平衡[J].暖通空调,2009,39(1):102-106.
    [53] Michel A B. Uncertainty in the design length calculation or vertical ground heat exchangers[J]. ASHRAE Trans, 2002, 108(1): 939-943.
    [54] ASHRAE 1995. Commercial/Institutional Ground-Source Heat Pump Engineering Manual [J]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta.
    [55] Bose J E, Parker J D and McQuiston F C. Design/data manual for closed- loop ground coupled heat pump systems [J]. Oklahoma State University for ASHRAE.1985.
    [56] Caneta Research Inc., Commercial/institutional ground source heat pump engineering manual [J]. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Atlanta, 1995.
    [57] Mei V C and Emerson C J. New approach for analysis of ground coil design for applied heat pump systems [J]. ASHRAE Transactions, 1985, Vol. 91, Part 2: 1216-1224.
    [58] Mei V C and Baxter V D. Performance of a ground-coupled hest pump with multiple dissimilar U-tube coils in series [J]. ASHRAE Transactions, 1986, Vol. 92, Part 2, 22-25.
    [59] Mei V C and Fischer S K. A theoretical and experimental analysis of vertical concentric-tube ground-coupled heat exchangers [M]. Oak Ridge National Laboratory/CON153, 1984.
    [60] Mei V C. Horizontal ground coil heat exchanger theoretical and experimental analysis [M]. Oak Ridge National Laboratory/CON193, 1986.
    [61]涂爱民.圆柱源理论用于地下U型盘管换热器的模拟研究[J].能源技术,2005,26(1):1-5.
    [62]曾和义,刁乃仁,方肇洪.地源热泵竖直埋管的有限长线热源模型[J].热能动力工程,2003,18(2):166-170.
    [63] Zeng H Y,Diao N R,Fang Z H. A finie line-source model for boreholes in geothermal heat exchangers[J],Heat Transfer-Asian Reserch,2002,31(7):558-567.
    [64]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器钻孔内的传热分析[J].太阳能学报,2004,25(3):399-405.
    [65]刁乃仁,曾和义,方肇洪.竖直U型管地热换热器的准三维传热模型[J].热能动力工程,2003,18(4):387-390.
    [66] Diao N R,Cui P and Fang Z H. The thermal resistance in a borehole of geothermal heat exchangers[J]. Proc. 12th International Heat Transfer Conference, Grenoble France, 2002.
    [67] N.P. Cheremisinoff. Cooling tower selection, design and practice[M]. An Arbor Science Publishers Ins, 1981.
    [68] A.K. Majumadar, A.K. Smhal, D.B. Spalding. Trans. ASME J Heat Transfer 1983, 105: 728-735.
    [69] Sutherland J.W. Analysis of mechanical draught counter flow air/water cooling towers [J]. Journal of Heat Transfer. 105,1.
    [70] Jaber, Webb. Design of cooling towers by the effectiveness, NTU method[R]. ASMEW inter Annual Meeting, Boston. MA.
    [71] Braun J.E. Methodologies for the design and control of centrol cooling plants [D]. University of Wisconsin Madison.
    [72]赵振国.冷却塔的一个新的热力计算方法——用一维方法作二维计算[J].水利学报, 2002,2: 8-16.
    [73]赵振国.冷却塔[M].北京:中国水利水电出版社, 1996.
    [74]中国建筑科学研究院.地源热泵系统工程技术规范GB50366-2009 [S].北京:中国建筑工业出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700