地源热泵埋管与土壤多年累积传热效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可再生能源逐步替代常规能源是世界发展的趋势,地源热泵技术可以利用浅层地热能资源满足建筑物空调、供暖等多种需求,是运用可再生能源的重要技术手段之一,同时发展地源热泵也是确保我国能源结构调整的需要。中国国土面积巨大,土壤构造和气候差异明显,在不同地气条件下应用地源热泵的技术措施多样,因此研究不同地气条件对地源热泵系统运行性能的影响有重要的意义。
     本文主要采用模块化动态系统模拟软件TRNSYS对常规地源热泵系统和带辅助散热源的地源热泵系统的运行性能和土壤传热特性进行了研究。首先建立了适用于运行工况变化范围大的精确的水-水热泵模型,并验证了该模型的准确性;然后针对不同气候条件下不同建筑类型的常规地源热泵系统进行了设计模拟,结果表明在寒冷地区和夏热冬冷地区经过合理设计的地源热泵系统能够保证系统长期正常运行;在夏热冬暖地区常规地源热泵系统则很难保证系统长期正常运行。通过对比在不同设计进水温度下常规系统的总能耗发现,总能耗并不会因为降低设计进水温度而显著减少。
     针对冷负荷占优的建筑,对采用冷却塔为辅助散热源的混合式地源热泵系统进行了模拟分析,提出了一种以冷却塔为主的控制策略,并与已有的控制策略进行了对比分析,结果表明,对于夏热冬冷地区的混合式系统宜通过基于设定温差和温度的控制策略控制系统的运行方式;对于夏热冬暖地区的混合式系统宜通过冷却塔为主的控制策略控制系统的运行方式;冷却塔环路应该与地埋管环路并联运行,并应使通过地埋管环路的水流量与总水流量的比例与地埋管换热器所承担的释热量比例相对应。
     最后,对制冷、制热和制热水的多功能地源热泵系统进行模拟,结果表明,应用多功能地源热泵系统可以明显改善地下土壤全年释热量与吸热量的不平衡性;多功能地源热泵系统与传统系统相比,运行一年的系统总能耗可以节省46%。根据不同的经济性参数,生命周期内的费用现值节约率变化范围在7%~40%,投资回收期变化范围在5~12年。
     本文所建立的模型可以很容易的推广应用在实际工程项目中去,所得结论对地源热泵系统的合理设计与能耗预测具有重要意义。
It is a trend of world development that renewable energy is gradually to replace conventional energy, and ground source heat pump (GSHP) technology, which meets buildings needs of air-conditioning, heating etc. by utilizing shallow geothermal resource, is an important means of the use of renewable energy; meanwhile, developing GSHP is also the requirement of China's energy construction adjustment. China's land area is huge, and soil formation and climate, as well as the technology measures of GSHP applications, varied significantly at different zones, therefore it is significant to investigate the effects of soil and climate conditions on the performance of GSHP system.
     In this paper, the performance of conventional GSHP and GSHP with auxiliary heat rejecter and heat transfer characteristics of the soil were studied with a transient modular system simulation software TRNSYS. Firstly, a water-water heat pump model, which can be run accurately in a wide range of operating conditions, was established, and the accuracy of the model was verified. Then conventional GSHP system in three climate zone for two different building types was designed and simulated, and the results showed GSHP with proper design in cold zone and hot summer and cold winter (HSCW) zone could ensure normal operation over an extended period, however the one in hot summer and warm winter (HSWW) zone was difficult to guarantee normal operation. The relation of the design entrance water temperature (EWT) of heat pump and total system energy consumption was investigated, and the result suggested that total energy consumption did not significantly reduce with decreasing the design EWT.
     The investigation of Hybrid GSHP system with cooling tower as auxiliary heat rejecter was performed in cool load dominant buildings, and a novel control strategy i.e. cooling tower priority was carried out and compared from some known control strategy. The result of analysis showed that hybrid GSHP in HSCW zone should be controlled by the strategy based on set temperature different and temperature, and the one in HSWW zone should be modulated by the novel control strategy. And the ratio of flow rate through borehole loop to total flow rate should correspond to the ratio of the load that borehole loop would release to total load.
     Finally, a multi-functional GSHP system with cooling, heating and domestic hot water was developed and analysed. The result of investigation showed that multi-functional system can significantly improve the thermal balance of the soil; compared with traditional system, energy consumption reduced 46 percent, and the saving of the present valve of life-cycle costs ranged from 7%-40% and investment payback period ranged from 5-12 years depended on economic analysis parameters.
     These models developed in this paper can be easily applied in practical projects, and the conclusion is of significance for proper design and energy consumption forecast of GSHP system.
引文
[1]GB 50366-2005.地源热泵系统工程技术规范.北京:中国建筑工业出版社,2005.
    [2]ASHRAE.ASHRAE Handbook 2007.Atlanta,GA:ASHRAE,Inc,2007.
    [3]Rybach Ladislaus,Sanner Burkhard.Ground-source heat pump systems the European experience.GHC Quarterly Bulletin,2000,21(1):16-26.
    [4]Cane R.L.D.,Forgas D.A.Modeling of ground-source heat pump performance.ASHRAE Transactions,1991,97(1):909-925.
    [5]Ingersoll L.R,Plass H.J.Theory of the ground pipe heat source for heat pump.Heating,Piping & Air Conditioning,1948,20:119-122.
    [6]Ingersoll L.R,Zoeble O.J,Ingersoll A.C.Heat conduction with engineering,geological and other application.New York:McGraw-Hill,1954.
    [7]Carslaw H.S,Jaeger J.C.Conduction of heat in Solids.Oxford:Claremore Press,1947:260-265.
    [8]Zeng H.Y.et al.A finite line-source model for boreholes in geothermal heat exchangers.Heat Transfer-Asian Research,2002,31(7):558-567.
    [9]Zeng Heyi et al.Heat transfer analysis of boreholes in vertical ground heat exchangers.International Journal of Heat and Mass Transfer,2003,46(23):4467-4481.
    [10]Lamarche Louis,Beauchamp Benoit.A new contribution to the finite line-source model for geothermal boreholes.Energy and Buildings,2007,39(2):188-198.
    [11]Ball D.A,Fisher R.D,et al.Design methods for ground source heat pumps.ASHRAE Transactions,1983,89(2):416-440.
    [12]Kavanaugh S.P.Simulation and experimental verification of vertical ground-coupled heat pump systems[Doctoral Thesis].Oklahoma State University,1985.
    [13]Hart D.P,Couvillion R.Earth-coupled heat transfer.Dublin,OH:Prepared for National Water Well Association,1986.
    [14]Eskilson P.Thermal analysis of heat extraction boreholes[Doctoral Thesis].Lund University,Sweden,1987.
    [15]Hellstrom G.Duct ground heat storage model manual for computer code.Sweden:University of Lund,1989.
    [16] Muraya N.K, O'Neal D.L. Thermal interference of adjacent legs in a vertical U-tube heat exchanger for a ground-coupled heat pump. ASHRAE Transactions,1996,102(2): 12-21.
    [17] Rottmayer S.P et al. Simulation of a single vertical U-tube ground heat exchanger in an infinite medium. ASHRAE Transactions, 1997, 103(2): 651-659.
    [18] Yavuzturk C, Spitler J.D, Rees S.J. A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Transactions, 1999,105(2): 465-474.
    [19] Lee C.K., Lam H.N. Computer simulation of borehole ground heat exchangers for geothermal heat pump systems. Renewable Energy, 2008, 33(6): 1286-1296.
    [20] Deerman J.D, Kavanaugh S.P. Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution. ASHRAE Transactions,1991, 97(1): 287-294.
    [21] Yavuzturk C, Spitler J.D. A short time step response factor model for vertical ground loop heat exchanger. ASHRAE Transactions, 1999,105(2): 475-485.
    [22] Bernier M.A. Ground-coupled heat pump system simulation. ASHRAE Journal,2006,48(9): 48-55.
    [23] Shonder J.A, Thornton J, et al. Selecting the design entering water temperature for vertical geothermal heat pumps in cooling-domainated applications.ASHRAE 2001 Annual Meeting. Cincinnati, Ohio: 2001.
    [24] Shonder J.A, Baxter Van, Thornton J, et al. A new comparison of vertical ground heat exchanger design methods for residential applications. ASHRAE Annual Meeting. Seattle, WA: 1999.
    [25] Shonder J.A, Baxter Van D., Hughes P.J, et al. A comparison of vertical ground heat exchanger design software for commercial applications. ASHRAE Transactions, 831,106(1): 2000.
    [26] Kavanaugh S.P. Impact of operating hours on long-term heat storage and the design of ground heat exchangers. ASHRAE Transactions, 2003, 109(1):187-192.
    [27] Carlson S.W, Thornton J.W. Development of equivalent full load heating and cooling hours for GCHPs. ASHRAE Transactions, 2002,108(2): 88-98.
    [28] Yavuzturk C, Spitler J.D. Comparative study of operating and control strategies for hybrid ground-source heat pump systems using a short time step simulation model. ASHRAE Transactions, 2000,106(2): 192-209.
    [29]Man Yi,Yang Hongxing,Fang Zhaohong.Study on hybrid ground-coupled heat pump systems.Energy and Buildings,2008,40(11):2028-2036.
    [30]Cui Ping,Yang Hongxing,Spitler Jeffrey D.,et al.Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+.Energy and Buildings,2008,40(9):1731-1736.
    [31]Biaou A.L.,Bernier M.A.Achieving total domestic hot water production with renewable energy.Building and Environment,2008,43(4):651-660.
    [32]IGSHPA.History about us.http://www.igshpa.okstate.edu/about/about_us.htm.
    [33]Bloomquist R.G.Geothermal heat pumps,four plus decades of experience.GHC Quarterly Bulletin,1999,20(4):13-18.
    [34]Wikipedia.Commonwealth Building(Portland,Oregon).http://en.wikipedia.org/wiki/Commonwealth_Building_(Portland,_Oregon).
    [35]Dinse D.R.Geothermal systems for school.ASHRAE Journal,1998,40(5):51-54.
    [36]Lund J,Sanner B,et al.Geothermal(Ground Source) Heat Pumps,A World Overview.GHC Quarterly Bulletin,2004,25(3):1-10.
    [37]《机电信息》调研部.2005年国内地源热泵市场调研.机电信息,2006(19):10-14.
    [38]Gao Qing,Li Ming,et al.Review of development from GSHP to UTES in China and other countries.Renewable and Sustainable Energy Reviews,2009,13(6-7):1383-1394.
    [39]Li Xinguo.Development of the geothermal heat pump market in China.US:National Renewable Energy Laboratory,2006.
    [40]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告(2008).北京:中国建筑工业出版社,2008.
    [41]Thornton J.W,McDowell T.P,et al.Residential vertical geothermal heat pump system models:calibration to data.ASHRAE Transactions,1997,103(2):660-674.
    [42]TRNSYS.TRNSYS 16-a transient system simulation program Volume 6Multizone building modeling with Type56 and TRNBuild.Madison,WI-USA:Solar Energy Laboratory,University of Wisconsin-Madison.
    [43]Jin,H,Spilter J.D.A Parameter Estimation Based Model of Water-To-Water Heat Pumps for use in Energy Calculation Programs.ASHRAE Transactions,2002,108(1):3-17.
    [44]Chen Yu,Halm Nils P.,et al.Mathematical modeling of scroll compressors—part Ⅰ:compression process modeling.International Journal of Refrigeration,2002,25(6):731-750.
    [45]Brown R.N.Compressor:Selection and Sizing 3rd edition.Elserier Science &Technology Books,2005.
    [46]Winandy Eric,O.Claudio Saavedra,Lebrun Jean.Experimental analysis and simplified modelling of a hermetic scroll refrigeration compressor.Applied Thermal Engineering,2002,22(2):107-120.
    [47]Bourdouxhe Jean-Pascal H.,Grodent Marc,et al.A Toolkit for Primary HVAC System Energy Calculation-Part 2:Reciprocating Chiller Models.ASHRAE Transactions,1994,100(2):774-786.
    [48]McQuay.McQuay Application Guide 31-003-1 Chiller plant design.McQuay International,2002.
    [49]汪训昌.关于发展地源热泵系统的若干思考.暖通空调,2007,37(3):38-43.
    [50]GB 50189-2005.公共建筑节能设计标准.北京:中国建筑工业出版社,2005.
    [51]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集.北京:中国建筑工业出版,2005.
    [52]Bernier,M.A.Uncertainty in the Design Length Calculation for Vertical Ground Heat Exchangers.ASHRAE Transactions,2002,108(1):939-944.
    [53]Bernier,M.A.Ground-coupled heat pump system simulation.ASHRAE Transactions,2001,107(1):605-616.
    [54]Remund,C.P.Borehole thermal resistance:Laboratory and field studies.ASHRAE Transactions,1999,105(1):439-445.
    [55]徐伟等译.地源热泵工程技术指南.北京:中国建筑工业出版社,2001.
    [56]TRNSYS.TRNSYS 16-a transient system simulation program Volume 5-Mathematical Reference.Madison,WI-USA:Solar Energy Laboratory,University of Wisconsin-Madison.
    [57]Kavanaugh S.P.A design method for hybrid ground-source heat pump.ASHRAE Transactions,1998,104(2):691-698.
    [58]龙惟定.建筑节能与建筑能效管理.北京:中国建筑工业出版社,2005.
    [59]马利标准型冷却塔.http://www.jnzlcs.com/Product/105987-4.html.
    [60]GenOpt.Generic Optimization Program User Manual.Berkeley,CA,USA:Lawrence Berkeley National Laboratory.
    [61]TRNOPT.TRNOPY-Optimal design with TRNSYS and GenOpt.Madison,WI-USA:Thermal Energy System Specialists,LLC.
    [62]GB 50015-2003.建筑给水排水设计规范.中国计划出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700