季节性冻融对川西亚高山/高山森林土壤动物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤动物群落的结构和功能在生态系统的物质循环和能量转换过程中具有十分重要且不可替代的作用和地位,因而全球范围内不同生态系统的土壤动物群落结构和功能等受到普遍的关注。季节性冻融是全球中高纬度和高海拔地区普遍存在的气候变化过程。现在的关键科学问题是:受季节性雪被和冻融循环影响明显的生态系统过程具有4个明显的关键时期(生长季节、土壤冻结初期、冻结期和融冻期),这4个关键时期的土壤动物群落是否发生显著变化?如何变化?生长季节与非生长季节的土壤动物群落结构和功能有何联系?但迄今缺乏深入系统的研究,这限制了人们对季节性冻土区土壤生态过程的理解。
     川西亚高山/高山森林地处青藏高原东缘和长江上游地区,是我国第二大林区(西南林区)的主体,在水源涵养、生物多样性保育、全球碳循环、指示全球气候变化、调节区域气候等方面具有十分重要且不可替代的作用和地位。作为中纬度高海拔地区最具代表性的森林生态系统,土壤冻结时间长达5-6个月,气候垂直分异明显,是研究全球变暖情景下冬季土壤生态学过程的理想科研场所。但迄今为止,季节性冻融对该区土壤动物群落结构和功能影响的研究尚未见报道,更缺乏从4个关键时期来研究亚高山森林生态系统过程的研究报道。因此,本研究以川西亚高山和高山地区分布面积最大和范围最广的原始冷杉林(Abies faxoniana)、针阔混交林(A. faxoniana, Betula albosinensis)和次生冷杉林为研究对象,采用干、湿漏斗法和手拣法研究了一个季节性冻融期间和生长季节(2008-11-1~2009-10-31)的土壤动物群落特征,这对于深入了解亚高山/高山森林冬季土壤生态学过程及其与生长季节生态过程的相互联系具有十分重要的意义。初步研究结论如下:
     3个森林群落的土壤温度在监测期间表现出显著的动态变化特征,土壤平均温度均以8月最高,1月最低。2008年11月~2009年4月为各森林群落的季节性冻融期,土壤12月上旬完全冻结,次年4月下旬完全解冻。原始林、混交林、次生林的土壤季节性冻融的起始时间分别为11月8日、11月9日、11月23日,冻结持续时间分别为157天、127天、120天,完全解冻时间分别为4月13日、3月15日、3月22日,冻融循环次数分别为20次、18次、11次。
     研究森林群落中共检出土壤动物159038只,原始林61313只,混交林55897只,次生林41828只,隶属7门16纲30目。可检出的土壤动物平均个体数量和类群数量以生长季节最高,冻结期最低。虽然各森林土壤在季节性冻融期间仍存在相当数量和类群的土壤动物,但土壤冻结和冻融循环显著影响了可检测的土壤动物个体和类群数量,平均个体数量最大比生长季节少3379只,类群数量最大比生长季节少18个。
     所选森林群落的土壤动物群落以鞘翅目(Coleoptera)、双翅目(Dipter)、蜱螨目(Acarina)、线虫纲(Nematoda)、弹尾目(Collembola)为优势类群,土壤冻结和冻融循环显著影响了土壤动物群落结构,蜘蛛目(Araneae)、带马陆目(Polydesmida)、异蛩目(Spirostreptida)、膜翅目(Hymenoptera)对冻融作用响应敏感。
     各群落有机土壤层的土壤动物个体密度和类群数量显著高于矿质土壤层,以生长季节最高,但混交林个体密度除外。原始林和次生林有机土壤层的大型土壤动物个体密度以8月5日最高,混交林以3月25日最高,而类群数量均以12月15日最低。原始林和混交林有机土壤层的中小型土壤动物个体密度以11月3日最高,次生林以10月20日最高,而原始林和混交林有机土壤层类群数量以12月15日最低,次生林以11月19日最低。土壤冻结和冻融循环显著影响了有机土壤层和矿质土壤层的土壤动物个体密度和类群数量,表现为随季节性冻结动态而先降低后增加的变化趋势,这种趋势在受冻融作用更为强烈、持续时间更长的原始林有机土壤层更显著,平均密度最大比生长季节降低了201±18只,平均类群最大比生长季节降低了14个,而有机土壤层的中小型动物个体密度同样表现出相似的变化,平均密度最大比生长季节降低了169±19(103)只,但类群数量不明显。
     原始林、混交林、次生林群落优势类群的大型土壤动物优势类群比例均以生长季节最低,混交林和次生林的中小型土壤动物优势类群比例变化以冻结期最低,原始林以生长季节最低。土壤冻结和冻融循环显著影响了优势类群蜱螨目和弹尾目个体密度及其比值(A/C),以原始林最显著,最大分别降低了286±26(102)只、134±22(102)只、0.94±0.21,特别是初冻期和融冻期。
     3个森林群落的Shannon-Wiener指数H'、Pielou均匀性指数J和Simpson优势度指数C同样受土壤冻结和冻融循环影响显著。大型土壤动物的指数H'和J总体表现为以生长季节最高,冻结期最低,指数C表现为融冻期最高,生长季节最低。中小型土壤动物的各指数变化不明显。
     与土壤动物群落相似,各森林群落土壤的可溶性有机碳、可溶性氮、微生物生物量碳、微生物生物量氮含量受土壤冻结和冻融循环显著影响也表现出明显的动态变化。同时以受冻融作用更为强烈、持续时间更长的原始林有机土壤层更显著,特别是初冻期和融冻期。相关分析表明,土壤动物群落密度与可溶性有机碳含量存在一定的负相关关系,与微生物生物量碳含量存在正相关关系。
     综合分析表明,川西亚高山/高山典型森林群落具有明显的季节性冻结和冻融交替特征。森林土壤即使在气候寒冷的冬季仍存在相当数量和类群的土壤动物。温度变化导致的土壤冻结和冻融循环对土壤动物群落施加强烈作用,显著影响了动物群落的结构和功能以及相关土壤生化特性,这在有机土壤层表现的更为明显。这些结果不仅证明了土壤动物群落对环境变化的敏感性,而且也表明了土壤的冻融时间、频度和强度对土壤动物群落结构施加了强烈影响,同时暗示着冻融作用驱动的土壤动物群落变化特征可能对深入认识冬季土壤生态过程及其与生长季节生态学过程的相互作用与相互关系具有重要意义。
Many focuses have been paid on the structure and function of soil fauna community all over the world, since the important role in material cycling and energy transferation in ecosystem. Seasonal freeze-thaw cycle is the significant climate change processes in the regions with relative higher altitude and latitude. However, there are four obvious periods (the growing period, early frozen period, continuously frozen period and the thawing period) in the ecological processes as affected by seasonal snow-pack and freeze-thaw cycles in these areas. The currently crucial scientific questions are:whether or how does the soil fauna community change among the periods, what are the relationships between growing period and non-growing period? These unresolved questions limit our understanding of soil ecological processes in the areas with seasonal soil frozen.
     The alpine/subalpine forest of Western Sichuan is the representative forest in southwest China, which is located in the upper reaches of Yangtze River and transitional area between the Qinghai-tibet plateau and Sichuan basin, and plays important roles in conserving water and biodiversity, balancing global carbon cycling, and regulating regional climate. As one of most representative forest ecosystems in middle latitude region with relative high altitude, the alpine/subalpine forest is an optimal ideal site to study soil ecological processes in wintertime since its vertical distribution characteristic of climate, and obviously seasonal freezing of soil with a length of 5-6 monthes. So far, researches on the structure and fuction of soil fauna community in the alpine/subalpine forests of western Sichuan as affected by seasonal freeze-thaw have not been well documented, far less to ecological processes of the four key periods in this region. A field experiment was therefore conducted to investigate the composition, abundance, and diversity of soil fauna by Hand, Baermann and Tullgren methods in primary fir (Abies faxoniana) forest (PF), fir and birch (Betula albosinensis) mixed forest (MF) and secondary fir forest (SF), which were three representative and widely distributed forests in the subalpine and alpine forest region in western Sichuan, during the seasonal freeze-thaw period and next growing period from November 2008 to October 2009. The results are helpful to deeply understand the effect of seasonal freezing-thawing events on the process of the subalpine and alpine forest ecosystem and its relationship between the ecological processes in winter and summer.
     There were obvious seasonal dynamic characters of soil temperature in the three sampling forests, and the maximum and minimum average soil temperature were respectively recorded in August and January. Seasonal freeze-thaw period began in November 2008 and ended in April 2009. Meanwhile, soil had frozen in the early December 2008, and thawed in the latter April 2009. Seasonal freeze-thaw period respectively started on November 8, November 9 and November 23 in the PF, MF and SF, which respectively ended on April 13, March 15, and March 22. Furthermore, a total of 157,127, and 122 days length of continuously frozen period were respectively recorded in the PF, MF and SF. Correspondly, a total of 20 cycles,18 cycles, and 11 cycles of freeze-thaw cycle had also been respectively recorded in the PF, MF and SF.
     By preliminary identification,159038 individuals were detected, which belonged to 7 phyla,156 classes and 30 orders in the three sampling forests.61313,55897 and 41828 individuals were detected in the PF, MF and SF, respectively. The highest and lowest detectable individuals and groups of soil fauna were both respectively observed in the growing period and continuously frozen period. Although there were still comparable individuals and groups of soil fauna during seasonal freeze-thaw period, frozen and repeated freezing-thawing cycle of soil imposed significant influence on the structure and function of detectable soil fauna communities. In comparison with the growing period, the maximum average individuals and groups of soil fauna had respectively decreased 3379 individuals and 18 groups.
     The dominant groups were consisted of Coleoptera, Dipter, Acarina, Nematoda, and Collembola in the three sampling forests, meanwhile, frozen and repeated freezing-thawing cycle of soil imposed significant influence on the structure and function of soil fauna, and groups of Araneae, Polydesmida, Spirostreptida, and Hymenoptera were sensitive to freezing-thawing events.
     In comparison with the mineral soil layer, the soil organic layer had higher density and groups of soil fauna, and the highest density and groups of soil fauna were observed in the growing period, but except density of the MF. The highest density of macrofauna, which belonged to organic soil layer, were observed on 5 August in the PF and SF, and on 25 March in the MF, but the lowest groups of that were observed on 15 December in all sampling forests. Similarly, the highest densities of mesofauna and microfauna, which belonged to organic soil layer, were observed on 3 November in the PF and MF, and on 20 October in the SF, but the lowest groups of that were observed on 15 December in the PF and MF, and on 19 November in the SF. Frozen and repeated freezing-thawing cycle of soil imposed distinct influence on density and groups of soil fauna, and following dynamics of seasonal freezing-thawing, density and groups of soil fauna exhibited a decreased then increased trend, and this trend in soil organic layer was more significant in the PF, owing to higher intense and more frequent freeze-thaw cycles in soil organic layer of the PF. In comparison with the growing period, the maximum average density and groups of macrofauna had respectively decreased 201±18 individuals and 14 groups, correspongdly, the maximum average density of mesofauna and microfauna had decreased 169±19 (103) individuals
     The lowest proportion of dominant groups of Marcofauna was in growing period in the three sampling forests, and the lowest proportion of dominant groups of Mesofauna and Microfauna was in frozen period of the MF and SF, and in growing season of the PF. Frozen and repeated freezing-thawing cycle of soil imposed dramatically influence on the density of Acarina and Collembola, and the value of Acarina to Collembola (A/C), this phenomenon was more significant in the PF. In comparison with others, the maximum average density of Acarina and Collembola respectively had decreased 286±26 (102) individuals、134±22 (102) individuals. the maximum value of Acarina to Collembola had decreased 0.94±0.21, especially in early frozen period and thawing periods.
     Furthermore, following freezing-thawing event, diversity indices of Shannon-Wiener (H'),Pielou (J) and Simpson (C) also obviously significant changed. The highest macrofauna indices of H' and J was in growing season, and the lowest in frozen period, but the highest macrofauna index of C was in soil thawing period, and the lowest in growing season. Meanwhile, diversity indices of mesofauna and microfauna were no significant changed.
     Similarly, the dissolve organic carbon, dissolve nitrogen, microbial biomass carbon, and microbial biomass nitrogen obviously changed during this study in the three sampling forests too. Frozen and repeated freezing-thawing cycle of soil imposed dramatically influence on nutrient sequestration and mineralization and microbial structure, and this trend in soil organic layer was more significant in the PF, owing to higher intense and more frequent freeze-thaw cycles in soil organic layer of the PF, especially during early frozen and thawing period. Pearson's correlation shown that density of soil fauna communities had certain degree negative correlation with dissolve organic carbon, and had positive correlation with microbial biomass carbon.
     In conclusion, the results indicated that there were obvious freeze-thaw cycles during seasonal freeze-thaw period in the subalpine and alpine forest of western Sichuan. These freeze-thaw cycles showed significant effects on the structure and function of soil fauna communities, especially which in soil organic soil layer. Moreover, the results not only revealed that soil fauna communities were sensitive to environmental change, but also indicated that the length, intensity and frequence of freeze-thaw cycles had significant effects on the structure and diversity of soil fauna community. Therefore, the changs in soil fauna community driven by freeze-thaw cycles could be contributed to understand the wintertime ecological processes, and the interaction in freeze-thaw season and growing period.
引文
[1]徐敦祖,丁德文.冻土改造和利用的研究现状及展望.第四届全国冻土学术会议论文集(冻土学)[C].北京:科学出版社,1990,191~199.
    [2]Gavrilova M K. Climate and permafrost [J]. Permafrost & Periglacial Process,1993,4:99-112.
    [3]杨针娘,刘新仁等著.中国寒区水文[M].北京:科学出版社,2000.
    [4]郭东信著.中国冻土[M].兰州:甘肃教育出版社,1990.
    [5]武海涛,吕宪国,杨青,等.土壤动物主要生态特征与生态功能研究进展[J].土壤学报,2003,43(2):314~323.
    [6]尹文英.土壤动物学研究的回顾与展望[J].生物学通报,2001,36(8):1~3.
    [7]Huhta V. The role of soil fauna in ecosystems:A historical review [J]. Pedobiologia,2007,50: 489-495.
    [8]陈国康,曹志平.土壤生物的生态学研究[J].土壤通报,2005,36(2):259~263.
    [9]王振中,张友梅,邢协加.土壤环境变化对土壤动物群落影响的研究[J].土壤学报,2002,39(6):892~897.
    [10]邓仁菊,杨万勤,张健,等.季节性冻融期间亚高山森林凋落物质量损失和元素释放[J].生态学报,2009,29(10):5730~5735.
    [11]Tan B, Wu F Z, Yang W Q, et al. Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan at the early stage of freeze-thaw season [J]. Acta Ecologica Sinica,2010, 30, doi:10.1016/j.chnaes.2010.03.008.
    [12]Sulkava P, Huhta V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralization in boreal forest soil [J]. Applied Soil Ecology,2003,22:225-239.
    [13]Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability [J]. Catena,2003,52:1-8.
    [14]Borken W. Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils [J]. Global Change Biology,2008,14:1-17.
    [15]Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms [J]. Soil Biology & Biochemistry,2004,36:641-654.
    [16]Yang W Q, Wang K Y, Kellomaki S, et al. Litter dynamics of three subalpine forests in Western Sichuan [J]. Pedosphere,2005,15(5):653-659.
    [17]Yang W Q, Wang K Y, Kellomaki S, et al. Annual and monthly variations in litter macronutrients of three subalpine forests in western China [J]. Pedosphere,2006,16(6):788-798.
    [18]邓仁菊,杨万勤,吴福忠.季节性冻融对岷江冷杉和白桦凋落物酶活性的影响[J].应用生态学报,2009,20(5):1020~1025.
    [19]Wu F Z, Yang W Q, Zhang J, et al. Litter decomposition in two subalpine forests during the ffreeze-thaw season [J]. Acta Oecologica,2009, doi:10.1016/j.actao.2009.11.002.
    [20]杨万勤.森林土壤生态学[M].成都:四川科技出版社.2006,174~195pp.
    [21]尹文英,杨逢春,王振中,等.中国亚热带土壤动物[M].北京:科学出版社,1992.
    [22]尹文英,张荣祖,殷绥公,等.中国土壤动物[M].北京:科学出版社,2000.
    [23]苏永春,勾影波,张忠恒,等.东北高寒地区土壤动物和微生物的生态特征研究[J].生态学报,2001,21(10):1614~1619.
    [24]陈国孝,宋大祥.暖温带北京小龙门林区土壤动物的研究[J].生物多样性,2000,8(1):88~95.
    [25]廖崇惠,李健雄,杨悦屏,等.海南尖峰岭热带林土壤动物群落群落的组成及其特征[J].生态学报,2002,22(11):1866~1872.
    [26]王扳中,张友棒.衡山自然保护区森林土壤中动物群落研究[J].地理学报,1989,44(2):205~213.
    [27]刘红,袁兴中.中国东部山地森林土壤动物多样性[J].山地学报,2000,18(3):221~225.
    [28]仲伟彦,殷秀琴,陈鹏.凉水自然保护区土壤动物群结构特征[J].东北林业大学学报,1997,25(3):80~85.
    [29]杨效东,佘宇平.西双版纳热带森林雨季土壤动物群落组成与分布特征[J].东北林业大学学报,1998,26(6):65~70.
    [30]王振中,张友梅,李忠武.黄山森林生态系统土壤动物群落结构特征及其多样性[J].林业科学,2009,45(10):168~173.
    [31]林英华,杨德付,张夫道,等.栎林凋落层土壤动物群落结构及其在凋落物分解中的变化[J].林业科学研究,2006,19(3):331~336.
    [32]田子珩,张春雨,赵秀海.红松伐根分解过程中土壤动物动态[J].生态学杂志,2007,26(2):286~290.
    [33]林英华,孙家宝,张夫道.我国重要森林群落凋落物层土壤动物群落生态特征[J].生态学报,2009,29(6):2938~2944.
    [34]殷秀琴,李金霞,董炜华.红松阔叶混交林凋落叶、土壤动物、土壤微量元素含量关系[J].应 用生态学报,2007,18(2):277~282.
    [35]由文辉.我国土壤动物学研究概况与展望.我国土壤动物学研究概况与展望[J].土壤学进展,1994,22(4):11~17.
    [36]Loreau M, Naeem S, Inchausti P. Biodiversity and ecosystem functioning:synthesis and perspectives [M]. Oxford University Press.2004,169-182pp.
    [37]张雪萍,李春艳,张思冲.马陆在森林生态系统物质转化中的功能研究[J].生态学报,2001,21(1):75~79.
    [38]Chamberlain P M, McNamara N P, Chaplow J, et al. Translocation of surface litter carbon into soil by Collembola [J]. Soil Biology & Biochemistry,2006,38:2655-2664.
    [39]陈小云,刘满强,胡锋,等.根际微型土壤动物-原生动物和线虫的生态功能[J].生态学报,2007,27(8):3132~3140.
    [40]陈国康,曹志平.土壤食物网及其生态功能研究进展[J].中国农业生态学报,2006,14(2):126~130.
    [41]Nadel R L, Scholes M C, Byrne M J. Slash burning, faunal composition, and nutrient dynamics in a Eucalyptus grandis plantation in South Africa [J]. Canadian Journal of Forest Research,2007,37: 226-235.
    [42]Niemela J, Spence J R, Langor D W, et al. Logging and boreal ground beetle assemblages on two continents:implications for conservation. In:Gaston K J, New T R, Samways M J (Eds.), Perspectives in Insect Conservation [M]. Andover, Hampshire, Intercept Publishers,1993,29-50.
    [43]Lundgren B. Bacteria in a pine forest soil as affected by clear-cutting [J]. Soil Biology & Biochemistry,1982,14:537-542.
    [44]Sohlenius B. Structure and composition of the nematode fauna in pine forest soil under theinfluence of clear-cutting-effects of slash removal and field layer vegetation [J]. European Journal of Soil Biology,1996,32:1-14.
    [45]Sohlenius B. Influence of clear-cutting and forest age on the nematode fauna in a Swedish pine forest soil [J]. Applied Soil Ecology,2002,19:261-277.
    [46]Christine G N, Robert W P, Torolf R T. Soil, litter, and coarse woody debris habitats for arthropods in eastern Oregon and Washington [J]. Northwest Science,2001,75, Special Issue.
    [47]Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001:The Scientific Basis [M]. Cambridge University. press, Cambridge,2001.
    [48]张乃莉,郭继勋,王晓宇,等.土壤微生物对气候变暖和大气沉降的响应[J].植物生态学报,2007,31(2):252~261.
    [49]Poutou E, Krinner G, Genthon C, et al. Role of soil freezing in future boreal climate change [J]. Climate Dynamics,2004,23:621-639.
    [50]梁文举,黄国宏.土壤动物对大气CO2浓度升高响应研究的进展[J].世界科技研究与发展,2001,23(1):68~73.
    [51]Li Q, Liang W J, Jiang Y, et al. Effect of elevated CO2 and N fertilization on soil nematode abundance and diversity in a wheat field [J]. Applied soil ecology,2007,36:63-69.
    [52]Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability [J]. Catena, 2003,52:1-8.
    [53]朴河春,刘广深,洪业汤.干湿交替和冻融作用对土壤肥力和生态环境的影响[J].生态学杂志,1995,14(6):29~34.
    [54]周幼吾,邱国庆,郭东信,等.中国冻土[M].科学出版社,2000.
    [55]Zhang D F, Wang S J. Mechanism of freeze-thaw action in the process of soil salinization in northeast China [J]. Environmental Geology,2001,41:96-100.
    [56]Kv(?)rnφ S H, φygarden L. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway [J]. Catena,2006,67:175-182.
    [57]Wang D Y, Ma W, Niu Y H, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Regions Science and Technology,2007,48(1):34-43.
    [58]杨成松,何平,程国栋,等.冻融作用对土体干容重和含水量影响的试验研究[J].岩石力学与工程学报.2003,22(增2):2695~2699.
    [59]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [60]杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):153~158.
    [61]吴秀臣,孙辉,杨万勤.土壤酶活性对温度和CO2浓度升高的响应研究[J].土壤,2007,39(3):358~363.
    [62]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139~142.
    [63]李述训,南卓铜,赵林.冻融作用对系统与环境间能量交换的影响[J].冰川冻土,2002,24(2):109~115.
    [64]王洋,刘景双,王国平,等.冻融作用与土壤理化效应的关系研究[J].地理与地理信息科学, 2007,23(2):91~96.
    [65]万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报(自然科学版),2005,33(6):87~90.
    [66]Sommerfeld R A, Mosier A R, Musselman, R C. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budget [J]. Nature,1993,361:140-142.
    [67]Ivarson K C, Sowden F J. Effects of soil action and storage of soil at freezing temperatures on the free amino acids, free sugar and respiratory activity of soil [J]. Canadian Journal of Soil Science, 1970,59:191-198.
    [68]魏丽红.冻融交替对黑土土壤有机质及氮钾养分的影响[D].吉林:吉林农业大学,2004.
    [69]魏晶,吴钢,邓红兵.长白山高山冻原生态系统凋落物养分归还功能[J].生态学报,2004,24(10):2211-2215.
    [70]杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应[J].应用生态学报,2007,18(12):2889-2895.
    [71]Cynthia L W, Robert L S. Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone [J]. Soil Biology & Biochemistry,2007,39:68-75.
    [72]王开运,杨万勤,宋光煜等著.川西亚高山森林群落生态系统过程研究[M].成都:四川科学技术出版社,2004.
    [73]Coxson D S, Parkinson D. Winter respiratory activity in aspen woodland forest floor litter and soils [J]. Soil Biology & Biochemistry,1987,19:49-59.
    [74]Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test [J]. Ecology,1989,70 (1):97-104.
    [75]Groffman P M, Driscoll C T, Fahey T J, et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in northern hardwood forest [J]. Biogeochemistry,2001,56:191-213.
    [76]Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils [J]. Soil Biology & Biochemistry,2002,34:1495-1505.
    [77]Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils [J]. Soil Biology & Biochemistry,1996,28:1061-1066.
    [78]Withington C L, Sanford R L. Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone [J]. Soil Biology & Biochemistry,2007,39:68-75.
    [79]Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions:Implications for N and P availability [J]. Applied Soil Ecology,2007,35:247-255.
    [80]Lipson D A, Schmidt S K, Monson P K. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem [J]. Ecology,1999,80:1623-1631.
    [81]Bardgett R D, Bowman W D, Kaufmann R, et al. A temporal approach to linking aboveground and belowground ecology [J]. Trends in Ecology and Evolution,2005,20:634-641.
    [82]Christensen S, Tiedje J M. Brief and vigorous N2O production by soil at spring thaw [J]. European Journal of Soil Science,1990,41:1-4.
    [83]Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types [J]. Applied Soil Ecology,2002,21:187-195.
    [84]Sjursen H, Michelsen A, Holmstrup M. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil [J]. Applied Soil Ecology,2005,28:79-93.
    [85]Wang G P, Liu J S, Zhao H Y. Phosphorus sorption by freeze-thaw treated wetland soils derived from a winter-cold zone (Sanjiang Plain, Northeast China) [J]. Geoderma,2007,138 (1-2):153-161.
    [86]冯瑞芳,杨万勤,张健.森林土壤有机层生化特性及其对气候变化响应的研究进展[J].应用与环境生物学报,2006,12(5):734~739.
    [87]Teepe R, Vor A, Beese F, et al. Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing [J]. European Journal of Soil Science, 2004,55:357-365.
    [88]Song C C, Wang Y S, Wang Y Y, et al. Emission of CO2, CH4 and N2O from fresh water marsh during freeze thaw period in Northeast of China [J]. Atmospheric Environment,2006,40:6879-6885.
    [89]Dise N B. Methanee mission from Minnesota peatlands:Spatial and seasonal variability [J]. Global Biogeochemical Cycles,1993,7(1):123-142.
    [90]宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地C02, CH4和N20排放动态[J].环境科学,2005,26(4):7~12.
    [91]Konestabo H S, Michelsen A, Holmstrup M. Responses of springtail and mites population to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem [J]. Applied Soil Ecology,2007, 36:136-146.
    [92]Campbell J L, Mitchell M J, Groffman P M, et al. Winter in northeasten North America:a critical period for ecological processes [J]. Frontiers in Ecology and the Environment,2005,3(6):314-322.
    [93]龚子同,张甘霖,陈志诚,等.土壤发生与系统分类[M].北京:科学出版社,2007.
    [94]《土壤动物研究方法手册》编写组.土壤动物研究方法手册[M].北京:中国林业出版社,1998.
    [95]尹文英,胡圣豪,宁应之,等.中国土壤动物检索图鉴[M].北京:科学出版社,1998.
    [96]李鸿兴.昆虫分类检索[M].北京:农业出版社,1987.
    [97]鲁如坤.土壤农化分析[M].北京:中国农业科技出版社,1999,296-338pp.
    [98]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [99]廖崇惠,李健雄,黄海涛.南亚热带森林土壤动物群落多样性研究[J].生态学报,1997,17(5):549~555.
    [100]郭占荣,荆恩春,聂振龙,等.冻结期和冻融期土壤水分运移特征分析[J].水科学进展,2002,13(3):298~302.
    [101]张殿发,郑琦宏.冻融条件下土壤中水盐运移规律模拟研究[J].地理科学进展,2005,24(4):46~55.
    [102]Monson R K, Lipson D L, Burns S P. Winter forest soil respiration controlled by climate and microbial community composition [J]. Nature,2006,439(9):711-713.
    [103]Bokhorst S, Huiskes A, Convey P, et al. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic [J]. Soil Biology & Biochemistry,2008,40: 1547-1556.
    [104]Schimel J P, Bilbrough C, Welker J M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities [J]. Soil Biology & Biochemistry,2004,36: 217-227.
    [105]张雪萍,张武,曹会聪.大兴安岭不同冻土带土壤动物生态地理研究[J].土壤学报,2006,43(6):996~1003.
    [106]Fitzhugh R D, Driscoll C T, Groffman P M, et al. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem [J]. Biogeochemistry,2001,56:215-238.
    [107]Brooks P D, Williams M W, Schmidt S K. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt [J]. Biogeochemistry,1998,43:1-15.
    [108]Terborgh J, Lopez L, Nunez P V, et al. Ecological meltdown in predator-free forest fragments [J]. Science,2001,294(30):1923-1926.
    [109]Groffman P M, Driscoll C T, fahey T J, et al. Colder soils in a warmer world:a snow manipulation study in a northern hard-wood forest ecosystem [J]. Biogeochemistry,2001a,56:135-150.
    [110]Schadt C W, Martin A P, lipson D A, et al. Seasonal dynamic of previously unknown fungal lineages in tundra soils. Science,2003,301:1359-1361.
    [111]Edwardsa K A, McCulloch J, Kershaw G P. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring [J]. Soil Biology & Biochemistry,2006,38:2843-2851.
    [112]Koponena H T, Jaakkolaa T, Keinanen-Toivola M M, et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles [J]. Soil Biology & Biochemistry,2006,38: 1861-1871.
    [113]Slotsbo S, Maraldo K, Malmendal A, et al. Freeze tolerance and accumulation of cryoprotectants in the enchytraeid enchytraeus albidus (Oligochaeta) from Greenland and Europe [J]. Cryobiology, 2008,57:286-291.
    [114]Dumana J G, Bennett V, Sformo T, et al. Antifreeze proteins in Alaskan insects and spiders [J]. Journal of Insect Physiology,2004,50,259-266.
    [115]Sinclaira B J, Terblanchea J S, Scott M B, et al. Environmental physiology of three species of collembola at Cape Hallett, North Victoria Land, Antarctica [J]. Journal of Insect Physiology,2006, 52:29-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700