黔西北土法炼锌废弃地的植物修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黔西北土法炼锌具有300多a的冶炼历史,由于冶炼工艺简单,重金属回收率低,大量重金属累积废渣中,造成冶炼区环境严重污染。冶炼过程中产生了大量的烟尘,没有采取任何环境保护措施,烟尘中含有大量的重金属和二氧化硫等有毒有害物质,破坏了冶炼区附近植被,大量的重金属随烟尘向四周扩散,导致大面积大气、土壤、植物、水体的重金属污染。虽然土法炼锌目前已基本上取缔,但留下了2000万t废渣和1200hm~2的废弃地。因而对废弃地的植被重建与生态恢复、对污染环境的修复具有重要科学价值和实际意义。本研究充分调查了重金属在生态系统中的分布与扩散规律,分析了土壤和植被退化的过程。通过苗圃的模拟实验和田间植被重建实验,探讨了废弃地植被重建的主要限制因子,基质改良的有效手段及耐性植物的筛选。对废弃地自然形成的优势植物进行调查,筛选重金属的超富集植物,并研究其富集特性与机理。主要的研究结果如下:
     土法炼锌导致了Pb、Zn、Cd在土壤、水体和植物中大量积累,对整个生态系统构成了严重的威胁。在冶炼废渣中,Pb、Zn、Cd的含量分别为4632 mg/kg、8968 mg/kg、58 mg/kg;冶炼区周围的土壤Pb、Zn、Cd含量分别达到234 mg/kg、400 mg/kg、9.6mg/kg。废弃地的基质的地球化学形态分析表明,废渣中Pb、Zn、Cd具有很低的生物有效性和迁移性,交换态含量低于0.2%,但其交换态与碳酸盐态含量相当高,构成了潜在的环境风险。相对而言,冶炼区附近污染土壤的Pb、Zn、Cd可交换态含量较高,具有较大迁移性和生物有效性。冶炼区的小河受到严重的Pb、Zn、Cd污染,地下水受到轻微污染,未超出三类水体的质量标准。在小河水体中,可溶态的Pb、zn、Cd含量少,大部分的Pb、Zn、Cd以悬浮态的形式存在,表明了河流重金属污染主要因为废弃地的水土流失。为了有效地控制废弃地重金属向河流扩散,以致污染和破坏下游地区的生态系统,废弃地的植被重建是最有效的途径。
     冶炼残渣具有较高的pH值和EC值、低CEC,有机质极为缺乏,含N量低。冶炼区污染土壤明显酸化,导致P有效性降低。在冶炼时造成大面积的植被破坏,成为裸地,停止冶炼后,植被自然恢复极为缓慢,特别是废渣。为了控制水土流失和重金属扩散,需要人工措施以加速植被重建。
     在苗圃中,以土法炼锌废弃地的废渣、污染土壤和背景土壤为基质材料,并设计了基质的改良处理,分别种植黑麦草(Lolium perenne)、三叶草(Trifolium pretense)、刺槐(Robinia pseudoacacia),进行植被恢复的模拟实验,以探讨废弃地植被重建的限制因子和基质改良的有效途径。土法炼锌新废渣上植被重建的主要限制因子包括盐碱胁迫、有机质含量低、养分缺乏(总N、碱解N、总K)。废弃了多年(20a以上)废渣经过了长期的淋溶过程,盐碱胁迫明显降低,养分状况有了明显的改善,植被重建的限制因子明显降低。所有冶炼废渣具有高的孔隙度,具有良好通气性,但持水保水能力差,田间持水量低于土壤,而凋萎系数高于土壤,有效水分含量范围明显低于土壤,干旱胁迫是植被恢复的重要限制因子。污染土壤的植被重建的胁迫因子包括重金属毒性、P有效性低。
     通过苗圃模拟实验与田间造林实验研究,可以获得植被重建有效方法:1)在新废渣上进行植被恢复,采用部分客土法能有效地降低盐碱胁迫、缓和营养缺乏的矛盾、提高基质的持水保水能力、促进植物生长,结合选择耐性植物,可以成功进行植被重建;2)废弃多年的废渣,采用部分客土或保水剂能提高基质的持水保水能力,可以大大促进植被恢复进程;3)在污染土壤上,通过碱石灰改良,提高了养分的有效性,降低重金属的毒性,促进了植物生长。
     通过对冶炼区优势植物的筛选,并且结合水培实验,筛选出一种Zn的超富集植物——南黄堇(Corydalis davidii)。南黄堇对Pb、Zn、Cd都具有很强耐性,并且为Pb、Cd的富集植物。Pb、Zn、Cd在南黄堇的各器官中均表现明显的区隔化分布特征,其中有70~90%累积在细胞壁中。在Pb、Cd的胁迫浓度处理下,抗氧化酶(SOD、POD、CAT)是重要的防护系统,随着浓度增强,酶活性明显增强,但在高浓度下表现出受到抑制现象。在Zn的不同浓度处理下,抗氧化酶活性变化很小。
The widely spread indigenous zinc smelting sites in western Guizhou, China, with a history of 300 years, have caused serious pollution of heavy metals of lead (Pb), zinc (Zn) and cadmium (Cd) in slags due to low recovery rate. A large amount of fumes rich in heavy metals and sulfur dioxide, have destroyed vegetation around the smelting areas and have released heavy metals into soil, plant and water body. Although indigenous zinc smelting activities have been abolished due to heavy environmental pollution in 2004, 20 millions tons of open dumped slags and 1200 hectares of polluted land were environmental concerns at present with high risk to the local ecosystem. It is of importance to understand revegtation on smelting wasteland and remediation on heavy metals in the smelting areas. This study is conducted to: 1) analyze distribution and transfer of heavy metals and degradation of soil and vegetation in the polluted environments; 2) explore limited factors on revegetation, substrate amendment methods and strongly-tolerant plant; 3) screen hyperaccumulators for heavy metals and study their accumulation properties and mechanism. The main research results were as follows.
     Concentrations of Pb, Zn and Cd in slags averaged at 4632 mg/kg, 8968 mg/kg, and 58 mg/kg, respectively, whereas 234 mg/kg Pb, 400 mg/kg Zn and 9.6 mg/kg Cd occurred in soil around the smelting areas. The geochemical leaching test showed that Pb, Zn and Cd in slags have low mobility and bioavailability because their concentrations presented small percentages (all less than 2 %) in the exchangeable fraction, whereas the contaminated soils had higher mobility and bioavailability for the metals. The Pb, Zn and Cd concentrations in exchangeable and carbonate fractions in slags were high and posed potential environmental risks. Concentrations of Pb, Zn and Cd were high in the local stream water but low in groundwater. In the stream water, Pb, Zn and Cd were significantly concentrated in the suspended sediments, and indicated that metal-rich erosion process of slag and contaminated soil contributed to metal mobility into stream water. To remediate the local environment polluted by Zn smelting activity, revegetation is an effective approach to control dispersion of Pb, Zn and Cd in the indigenous zinc smelting areas.
     Compared to background soil, slags have higher pH values and EC values, lower CEC values, lower organic matter and nitrogen. The pH values and bioavailable P contents in contaminated soil decrease compared to background soil. The indigenous zinc smelting activities destroyed vegetation around the smelting areas. The natural restoration for vegetation is quite slow on smelting waste land, especially on slags. Therefore, it is important to accelerate revegetaion by artificial measures so as to control soil and water erosion and dispersion of heavy metals.
     Pot experiments were applied to understand the limited factors on revegetation and substrate amendment on smelting waste land by planting Lolium perenne, Trifolium pretense and Robinia pseudoacacia. The limited factors to revegetation on newly-produced slags were salt-alkali stress, low contents of organic matter and nutrients (total N, bioavailable N and total K). The salt-alkali stress in slags was remarkably mitigated, their soil nutrients were improved after long-term eluviation. Therefore, the constraints to revegetation in slag decreased remarkably after 20 years. The slag still has high porosity and aeration, however its capacity of water provision and retention were poor with low field capacity and wilting coefficient. Therefore, droughty stress was constraint to revegetation in slag. The constraints to revegetation in contaminated soil were toxicity of heavy metals and low bioavailable P.
     Through pot and field experiments, some findings were obtained: 1) alien soil amendment on slag could mitigate salt-alkali stress, improve nutrients in new smelting residue, and increase water provision and retention. Revegetation could be obtained in newly-produced slag by alien soil and stong-tolerant plants. 2) Alien soil or hydrogel applied in old slag could increase water provision and retention and accelerate revegetation. 3) Applying lime in contaminated soil could improve available nutrients and reduced toxicity of heavy metals, improving growth of plant.
     A new Zn-hyperaccumulator, Corydalis davidii, was found in the smelting areas through screening in fields and hydroponic solutions. Corydalis davidii has strong tolerance for Pb, Zn and Cd, even though high accumulation for Pb and Cd. 70~90 percent of Pb, Zn and Cd accumulated in cell wall. Antioxidant enzymes (SOD, POD, CAT) are important protection systems of Corydalis davidii. Activities of antioxidant enzymes increase with increase of Pb and Cd concentrations in lower concentrations, but decrease in higher metal concentrations. Activities of antioxidant enzymes slightly increase with increase of Zn concentration.
引文
[1] 贵州省环境监测总站.《三岔河流域水环境质量调查及对策研究技术报告》.2003,24-45
    [2] 杨元根,刘丛强,吴攀,等.贵州赫章土法炼锌导致的重金属积累.矿物学报,2003,23(3)255-262
    [3] 吴攀,刘丛强,张国平,等.黔西北炼锌地区河流重金属污染特征.农业环境保护,2002,21(5):443-446
    [4] 吴攀,刘丛强,杨元根,等.土法炼锌废渣堆中的重金属及其释放规律.中国环境科学,2002,22(2):109-113
    [5] 杨元根,刘丛强,吴攀,等.贵州赫章土法炼锌导致的土壤重金属污染特征及微生物生态效应.地球化学,2003,32(2):131-138
    [6] 毕向阳,杨元根,冯新斌,等.土法炼锌导致Cd对土壤-农作物系统污染的研究.农业环境科学学报,2006,25(4):828-833
    [7] Bi SY, Feng XB, Yang YG, et al. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environment International, 2006, 32: 883-890
    [8] 杨元根,刘丛强,张国平,等.铅锌矿山开发导致的重金属在环境介质中的积累.矿物岩石地球化学通报,2003,24(3):305-309
    [9] 顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,2003,11(2):143-151
    [10] 周国华,黄怀曾,何红蓼.重金属污染土壤植物修复及进展.环境污染治理技术与设备,2002,3(6):33-39
    [11] Cunningham SD, William RB, Huang JW. Phytoremediation of contaminated soils. Trends in Biotechnology, 1995, 139(9): 393-397
    [12] 杨肖娥,傅承新.东南景天——一种新的锌超富集植物.科学通报,2002,47(13):1003-1006
    [13] Garbisu C, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77: 229-236
    [14] Ebbs SD, Lasat MM, Brady DJ, et al. Phytoextraction of cadmium and zinc from a contaminated site. Journal of Environmental Quality, 2003, 26, 1424-1430.
    [15] 曾键年.矿山安全与矿山环境保护.北京:地质出版社,1998
    [16] 张祥华,刘勤.贵州省矿业开发引起的环境问题及其成因探讨.地质灾害与环境保护,2001,12(4):21-25
    [17] 郑正.环境工程学.北京:科学出版社,2004:458-460
    [18] 李娟,赵竟英,陈伟强.矿区废弃地复垦与生态环境重建.国土与自然资源研究,2004,1:27-28
    [19] 武军.试析云南矿山环境地质的主要问题.云南环境科学,1999,18(4):7-10
    [20] 陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策.人类环境杂志,1999,28(2):130-134
    [21] 杨福海,李富平,甘德清.矿山生态复垦与露天地下联合开采.北京:冶金工业出版社,2002:1-5
    [22] 吴烈善,彭省临.金属矿山生态环境问题及其防治对策.南方国土资源,2004,11,118-120
    [23] 白中科,赵景逵.工矿土地复垦与生态重建.北京:中国农业科学出版社,2000
    [24] 黄铭洪.环境污染与生态恢复.北京:科学出版社,2003:131-184
    [25] Skousen JG, Call CA and Knight R W. National regeneration of and unreclaimed lignite surface mine in east-central Texas(USA). Southwestern Naturalist. 1990, 35: 434-440
    [26] Bradshaw, AD. Restoration of mined lands-using natural processes. Ecological Engineering, 1997, 8: 25-269
    [27] Kimmerer RW. Natural re-vegetation of abandoned lead and zinc mines Wisconsin. Restoration and Management Notes, 1981, 1: 20-25,
    [28] Gibson DJ. The natural re-vegetion of lead/zinc mine spoil in northeastern Oklahoma. The South western Naturalist, 1982, 27: 425-436.
    [29] Johnson MS, Cooke JA, Stevenson JKW. Revegetation of metalliferous wastes and land after metal mining. In: Hester and Harrison MS (eds.). Mining and its environmental impact. Royal society of chemistry, Cambridge. 1994: 31~48
    [30] 蓝崇钰,束文圣.矿业废弃地植被恢复中基质改良.生态学杂志,1996,15(2):55-59
    [31] Dancer WS, Handley JF and Bradshaw AD. Nitrogen accumulation in Kaolin mining waste in Cornwall Natural communities. Plant and Soil, 1997, 48: 153-167.
    [32] 李永庚,蒋高明.矿山废弃地生态重建研究进展.生态学报,2004,24(1):95-100
    [33] Li MS. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Science of the total environment, 2006, 357: 38-53
    [34] Ye ZH, Wong JWC, Wong MH, et al. Lime and pig manure as ameliorants for revegetating lead/zinc mine tailings: a greenhouse study. Bioresource and Technology, 1999, 69: 35-43.
    [35] Jiang GM, Putwain PD, Bradshaw AD. Response of A grostis stoloniferia to limestone and nutritional factors in the reclamation of colliery spoils. Chinese Journal of Botany, 1994, 6(2): 155-162.
    [36] Virendra S. Utilization of medicinal plants for wasteland. Journal of Economic and Taxonomic Botany, 2000, 24(1): 99-103.
    [37] 王剑虹,麻密.植物修复的生物学机制.植物学通报,2000,17(6):504-510.
    [38] 李永庚,蒋高明.矿山废弃地生态重建研究进展.生态学报,2004,24(1):95-100
    [39] Virendra S. Utilization of medicinal plants for wasteland. Journal of Economic and Taxonomic Botany, 2000, 24(1): 99-103.
    [40] 胡振琪.露天矿土地复垦研究.北京:煤炭工业出版社,1995,1-60
    [41] 胡振琪.关于土地复垦若干基本问题的探讨.煤炭环境保护,1997,11(2):24-29
    [42] 白中科,王文英,李晋川,等.矿区生态重建基础理论与方法研究.煤矿环境保护,1999,13(1):10-14
    [43] 杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究.生态学报,2001,21(11):1932-1941
    [44] 胡宏伟,姜必亮,蓝崇钰,等.广东乐昌铅锌尾矿废弃地酸化控制研究.中山大学学报(自然科学版),1999,3:68-71
    [45] 阳承胜,蓝崇钰,束文圣.矿业废弃地生态恢复的土壤生物肥力.生态科学,2000,19(3):73-79
    [46] 宋玉芳.周启星,宋玉芳主编.污染土壤的修复原理与方法.北京:科学出版社,2004,134—206
    [47] 骆永明.金属污染土壤的植物修复.土壤,1999,5:261-266
    [48] Mcgrath, S.P. Phytoextraction for soil remediation. In plants that Hyperaccumulate Heavy Metals. Ed. By Brooks R.R. CAB International, Wallingford, UK, 1998, 267-287
    [49] Brooks R R. Plants that hyperaccumulate heavy metals. CAB intemational, 1989, 1-2
    [50] Brooks R R, Lee J, Reeves R D. Detection of nickeliferous rocks by alysus of herbarium species of indicator plants. Journal of geochemistry, and explore, 1977, 7: 49-57
    [51] Chaney R L. Plant uptake of inorganic waste constituents. In: Parr J. F. eds. Land Treatment of Hazardous Wastes. Noyes Data Corporation, Park Ridge, New Jersey, USA. 1983. 50-76.
    [52] Urszula Kukier, Carinne A Peters, Rufus L Chaney, et al. The Effect of pH on metal accumulation in two Alyssum species. Journal of Environment Quality, 2004, 33(6): 2090-2102
    [53] Chaney, R. L., M. Malik, Y. M. Li, et al. Phytoremediation of soil metals. Current opinion, in biotechnology, 1997, 8: 279-284.
    [54] Baker AJM, McGrath S P, et al. The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 1994, 11: 41-49
    [55] 唐莲,刘振中,蒋任飞.重金属污染土壤植物修复法.环境保护科学,2002,29(6):33-36
    [56] Baker AJM. Metal tolerance. New Phytol, 1987, 106 (suppl): 93-111
    [57] Suresh B, Ravishankar GA. Phytoremediation-a novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 2004, 24: 97-124
    [58] Clemens S., Palmgren, M. G., Kramer, U. A long way ahead: Understanding and engineering plant metal accumulation. Trends in plant science. 2002, 7(7): 309-315
    [59] 江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7(1):92-99
    [60] Nies DH, Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus. Journal of bacteriology, 1989, 171: 896-900
    [61] De VC, Vonk MJ, Voousr R, et al. Glutathione Depletion Due to Copper—Induced Phytochelatin Synthesis Causes Oxidative Stress in Silene Cucubalus. Plant Physiology, 1992, 98: 853-858
    [62] Lugany M, Lombini A, Poschertrieder C, et al. Diferent Mechanisms Account for Enhanced Copper Resistance in Silence Armeria Ecotypes From Mine Spoil and Serpentine Sites. Plant and soil, 2003, 251: 55-63.
    [63] Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat Ⅱ. Oxalic acid detoxifies aluminum internally. Plant physiology, 1998, 117: 753-756
    [64] 龙新宪,杨肖娥,叶正钱.超富集植物的金属配位体及其在植物修复中的应用.植物生理学通讯,2003,39(1):7177
    [65] 邬飞波,张国平.植物螯合肽及其在重金属耐性中的作用.应用生态学报,2003,14(4):632-636
    [66] Grill E, Winnacker EL, Zenk MH. Phytochelatins: The principal heavy metal complexing peptides of higher plants. Science, 1985, 230: 674-676.
    [67] Rauser WE. Phytochelatins and related peptides. Plant Physiology. 1995, 109: 1141-11491
    [68] Kneer R and Zenk MH. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry, 1992, 31: 2663—2667
    [69] 王正秋,江行玉,王长海.铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响.过程工程学报,2002,2(6):558-563
    [70] 祁忠占,彭永康,宋玖雪,等.汞对蔬菜幼苗生长及氧化酶同工酶的影响.环境科学学报,1991,11(3):370-374
    [71] Van Assche F, Clijsters H. Effects of metal on enzyme activity in plants. Plant, Cell and Envionment, 1990, 13: 195-206
    [72] 杨肖娥,龙新宪,倪吾钟.超富集植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1):8-15
    [73] Marschner H. Mineral nutrition of higher plants. Academic Press, San Diego. CA, USA. 1995, 120-165
    [74] Lasat MM, Baker AJM, et al. Physiological characterization of root Zn2+ absorption to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physoilogy, 1996, 112: 1715-1722
    [75] Vazquez MD, Poschenrieder C, Barcelo J, et al. Compartment of zinc in roots and eaves of the hyperaccumulator Thlaspi caerulescens J & C Presl. Bot Acta, 1994, 107: 243-250
    [76] Wegner LH and Raschke K. Ion channels in the xylem paraenchyma of barley roots. Plant Physiology, 1994, 105: 799-813
    [77] Roberts SK and Tester M. Inward and outward K+ selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Plant Journal, 1995, 8: 811-825.
    [78] Roberts SK and Tester M. Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells. Journal of Experimental Botany, 1997, 48: 839-846
    [79] Nishizono H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscens. Plant and soil. 1987, 101: 15-20
    [80] Molone C, Koeppe DE, et al. Localization of lead accumulation by corn plants. Plant Physiology, 1974, 3: 388-394
    [81] Vazquez MD, Poschenrieder C, et al. Localization of zinc and cadmium in Thlaspi caerulescens: A metallophyte that can hyperaccumulate both metals. Plant Physiology, 1992, 140: 350-355.
    [82] Grotz, N., Fox T., Connolly, E., et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA, 1998, 95: 7220-7224.
    [83] Meagher, RB. Phytoremediation of topic elemental and organic pollutants. Current Opinion in Plant Biology. 2000, 3, 153-162.
    [84] He YK, Sun JG, Feng XZ, et al. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Research, 2001, 11(3): 231-236
    [85] 史宇、何玉科.重金属污染环境的植物修复及其分子机制.植物生理与分子生物学报,2003,23(4):267-274
    [86] Rugh CL, Wilde HD, Stack NM, et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA, 1996, 93: 3182-3187
    [87] Salt DE, Blaylock M, Kumar NPBA, et al. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants Biotechnology, 1995, 13: 468-474
    [88] 张国平,刘丛强,杨元根,等.贵州省几个典型金属矿区周围河水的重金属分布特征.地球与环境,2004,30(1):82-85
    [89] Zayed A M, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetlands plants Ⅰ: Duckweed. Journal of Environmental Quality, 1998, 27(3): 715-721
    [90] Zhu YL, Zayed AM, Qian JH, et al. Phytoremediation of trace elements by wetland plants Ⅱ: Water hyacinth. Journal of Environmental Quality, 1999, 28(1): 339-334
    [91] Meers E, Hopgood M, Lesage E, et al. Enhanced phytoextraction: in search of EDTA alternatives. International Journal of Phytoremediation, 2004, 6(2): 95-109
    [92] Penilla S, Bordas F, Bollinger JC. Sequential heavy metals extraction from polluted solids: Influence of sulfate over concentration. Journal of Colloid and Interface Science, 2005; 292: 20-28
    [93] Voegelin A, Barmettler K, Kretzschmar R. Heavy metal release from contaminated soils: comparison of column leaching and batch extraction results. Journal of Environment Quality, 2003; 32: 865-875
    [94] Ma LQ and Rao GN. Chemical fi'actionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environment Quality, 1997; 26: 259-264.
    [95] 沈新尹,汪新福,朱光华,等.土法炼锌对大气环境造成的铅、镉污染.中国环境监测,1991,7(6):8-9
    [96] 吴善绮.环境铅污染对儿童智商的影响.微量元素与健康研究.2001,18(2):58-60
    [97] 贵州省环境科学研究所.镉污染对赫章和普安地区居民的健康的影响.1990
    [98] 毕向阳,杨元根,冯兴斌,等.土法炼锌导致Cd对土壤-农作物系统污染的研究.农业环境科学学报,2006,25(4):828-833
    [99] 林文杰,肖唐付,敖子强,等.黔西北土法炼锌废弃地植被重建限制因子.应用生态学报,2007,18(3):631-635
    [100] 鲁如坤.农业土壤化学分析方法.北京:中国农业科技出版社,1999:45-180
    [101] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytica Chimica Acta, 1979, 51: 844-850.
    [102] Sims JT and Kline JS. Chemical fractionation and plant uptake of heavy metals in soils amended with co-composted sewage sludge. Journal of Environment Quality 1991, 20: 387-396.
    [103] 刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究.土壤学报,2005,42(2):247-252
    [104] Naicker K, Cukrowska E, McCarthy TS. Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution, 2003, 122: 29-40.
    [105] Enrico D, Federico L, Miriam F, et al. Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy). Journal of Geochemical Exploration, 2001, 74: 141-152.
    [106] Jung MC and Thormton I. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. The Science of Total Environment, 1997, 198: 105-121.
    [107] Chad NC, Thomas RF, James A, et al. Effects of silvicultural treatments on survival and growth of trees planted on reclaimed mine lands in the Appalachians. Forest Ecology and Management, 2006; 223: 403-414
    [108] Shu WS, Ye ZH, Lan CY, et al. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment International, 2001; 26: 389-394.
    [109] 冯绍元,马素英,杨华锋.北京地区3种污灌土壤镉最大吸附容量的推求.生态毒理学报,2006,1(4):343-349
    [110] Gregorich EG, Beare MH, McKim UF, et al. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society of America Journal, 2006, 70, 3: 975-985
    [111] 方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断.生态学报,2006,26(5):1494-1501
    [112] Eckel WP, Rabinowitz MB, Foster GD. Investigation of unrecognized former secondary lead smelting sites: confirmation by historical sources and elemental ratios in soil. Environmental Pollution, 2002, 117: 273-278
    [113] Abd EH, El-Moselhy KM. Determination and partitioning of metals in sediments along the Suez Canal by sequential extraction. Journal of Marine System, 2005, 56: 363-374.
    [114] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 2005, 61: 800-809.
    [115] Harrison RM, Laxen DPH, Wilson SJ. Chemical associations of lead, cadmium, copper, and zinc in dusts and roadside soils. Environment Science and Technology, 1981, 15: 129-158.
    [116] Manno E, Varrica D, Dongarra G. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmospheric Environment, 2006, 40: 5929-5941.
    [117] Hseu ZY. Extractabiliby and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere, 2006, 63: 762-771
    [118] 李书鼎.污染生态物理化学.北京:中国环境科学出版社,2002:78-97
    [119] 杜彩艳,祖艳群,李元.施用石灰对大白菜中Cd,Pb,Zn含量的影响.云南农业大学学报,2005,20(6):810-818
    [120] 夏立江,王宏康.土壤污染及其防治.上海:华东理工大学出版社,2001:77-81
    [121] Zhang MK and Xu JM. Difference of lead, copper and Zinc concentrations between interiors and exteriors of peds in some contaminated soils. Chemosphere, 2003, 50: 733-738.
    [122] Bacon JR and Hewitt IJ. Heavy metals deposited from the atmosphere on upland Scottish soils: Chemical and lead isotope studies of the association of metals with soil components. Geochimica Cosmochimica Acta, 2005, 69: 19-33
    [123] 阮心玲,张甘霖,赵玉国,等.基于高密度采样的土壤重金属分布特征及迁移速率.环境科学,2006,27:1020-1025
    [124] 国家标准局.地下水质量标准.(GB/T 14848-93),1993
    [125] Yan G and Bradshaw AD. The containments of toxic wastes: Ⅱ. Metal movement in leachate and drainage at Pare lead-zinc mine, North Wales. Environmental Pollution 1995, 90: 379-382.
    [126] Burckhard SB, Schwab AP, Banks MK. The effect of organic acids on the leaching of heavy metals from mine tailings. Journal of Hazardous Materials, 1995, 41: 135-145.
    [127] Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 2003, 50: 775-780
    [128] 王志宏,李爱国.矿山废弃地生态恢复基质改良研究.中国矿业,2005,14(3):22-24
    [129] 廖敏,黄昌勇.黑麦草生长过程中有机酸对镉毒性的影响.应用生态学报,2002,13(1):109-112
    [130] 徐卫红,熊治庭,王宏信,等.锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响.水土保持学报,2005,19(4):32-36
    [131] 杨明杰,林咸永,杨肖娥.Cd对不同种类植物生长和养分积累的影响.应用生态学报,1998,9(1):89-94
    [132] 储玲,刘登义,王友保,等.铜污染对三叶草幼苗生长及活性氧代谢影响的研究.应用生态学报,2004,15(1):119-122
    [133] Singh BR, Narwal RP, Jeng AS, et al. Crop uptake and extractability of cadmium in soils naturally high in metals at different pH levels. Commun. Soil Sci Plant Anal, 1995, 26(13, 14): 2133-2142
    [134] 刘世全,蒲玉琳,张世熔,等.西藏土壤阳离子交换量的空间变化和影响因素研究.水土保持学报,2004,18(5):1-5
    [135] 刘家女,周启星,孙挺.Cd—Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究.环境科学学报,2006,26(12):2039-2044
    [136] 周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究.农业环境保护,1994,13(4):148~151.
    [137] 艾伦弘,汪模辉,李鉴伦,等.镉及镉锌交互作用的植物效应.广东微量元素科学,2005,12(12):6~11
    [138] 颜宏,赵伟,盛艳敏,等.碱胁迫对羊草和向日葵的影响.应用生态学报,2005,16(8):1497-1501
    [139] El SH, Shaddad MAK. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants. Journal of Plant Nutrition, 1996, 19(5): 717-728.
    [140] Khan M G. Effect of salt stress on nitrate reductase activity in some leguminous crops, Indian Journal of Plant Physiology. 1994, 37(3): 185~187
    [141] 陈怀满.土壤中化学物质的行为与环境质量.北京:科学出版社,2002.259-266
    [142] 吴攀,刘丛强,杨元根,等.炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响.地球化学,2003,32(2):139-145
    [143] 中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978,56-78
    [144] Ye ZH, Shu WS, Zhang ZQ, et al. Evalution of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere, 2002, 47: 1103-1111
    [145] 孟昭福,张增强,薛澄泽,等.替代黑麦幼苗测定土壤中重金属生物有效性的研究.农村环境保护,2001,20(5):337-340
    [146] Andersson A, Siman G. Levels of Cd and some other trace elements in soils and crops as influenced by lime and fertilizer levels. Acta Agac Scand, 1991, 41: 3-11
    [147] 胡振琪,张光灿,毕银丽,等.煤矸石山刺槐林分生产力及生态效应的研究.生态学报,2002,22(5):621-628
    [148] 张怡,罗晓芳,沈应柏.土壤逐渐干旱过程中刺槐新品种苗木抗氧化系统的动态变化.浙江林学院学报,2005,22(2):166-169
    [149] 杨春武,贾娜尔·阿汗,石德成,等.复杂盐碱条件对星星草种子萌发的影响.草业学报,2006,15(5):45-51
    [150] 林文杰.保水剂在小江干热河谷地区植被恢复中的应用.昆明:西南林学院硕士论文,2004,35-40
    [151] 林文杰,马焕成,周蛟.干旱胁迫下不同保水剂处理的水分动态研究.水土保持研究,2004,22(2):121-124
    [152] 李小刚.含盐量对土壤的水汽吸附及土壤水能量状况的影响.土壤通报,2001,32(6):245-249
    [153] 卫智军,李青丰,贾鲜艳,等.矿业废弃地的植被恢复与重建.水土保持学报,2003,17(4):172-175
    [154] Richards IG, Palmer JP, Barratt PA. The reclamation of former coal mines and steelworks, Elsevier, Amsterdam, 1993
    [155] Antonovics J, Bradshaw AD and Turner RG. Heavy mental tolerance in plants. Advance in Ecological Research. 1971, 71-85
    [156] Gisbert G, Ros R, Haro AD, et al. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Commun 2003; 303: 440-445.
    [157] 陈怀满,郑春荣.土壤中化学物质的行为和环境质量.陈怀满主编,北京,科学出版社,2002,95-136
    [158] 周启星,宋玉芳主编.污染土壤的修复原理与方法.北京:科学出版社,2004,175-178
    [159] Salt D E, BlaylockM, Enaley B D, et al. Phytoremediatlon: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 1995, 13: 468-474
    [160] Yang X E, Shi W Y, Fu Q X, et al. Copper-hyperaccumulators of Chinese native plants: Characteristics and possible use for phto-remediation. In: Bassam N E L, ed. Sustainable Agriculture for Food, Energy and Industry. London: James and James Pulishers, 1998, 484-489
    [161] 陈同斌,韦朝阳.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210
    [162] 韦朝阳,陈同斌,黄泽春.大叶井边草——一种新发现的富集砷的植物.生态学 报,2002,22(5):777-778
    [163] 刘威,束文圣,蓝崇钰.宝山堇菜——一种新的镉超富集植物.科学通报,2003,48(19):2046-2049
    [164] Wei SH, Zhou QX, Wang X, et al A newly-discovered Cd-hyperaccumulator Solanum nigrum. Chinese Science Bulletin, 2005, 50(1): 33-38
    [165] 汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物——圆锥南芥.中山大学学报,2005,44(4):135-136
    [166] 薛生国,陈英旭,林琦,等.中国首次发现的锰超富集植物——商陆.生态学报,2003,23(5):935-937
    [167] 李永涛,刘科学,张池,等.广东大宝山地区重金属污染水田土壤的Cu、Pb、Zn、Cd全量与DTPA浸提态含量的相互关系研究.农业环境科学学报,2004,23(6):1110-1114
    [168] Ye HB, Yang XE, He B, et al Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels. Acta Botanica Sinica, 2003, 45(9): 1030-1036
    [169] Weigel HJ and Jager HJ. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiology, 1980, 65: 480-482
    [170] 李合生.植物生理生化实验分析技术.北京:高等教育出版社,2000,100-145
    [171] 国家环境保护总局.土壤环境质量标准(GB 15618—1995),1995
    [172] Chancy R L. Malik M, Li Y M. Phytoremediation of soil metals. Current Opinions in Biotechnology, 1997, 8: 279-284
    [173] 中国环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社,1990,78
    [174] Brooks RR, Lee J, Reeves RD, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemistry Exploring, 1977, 7: 49-57
    [175] Brooks RR, Chambers MF, Nicks LJ, et al. Phytomining. Trends in Plant Science, 1998, 3(9): 359-362
    [176] Vogel-Mikus K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 2005; 133: 233-242
    [177] 弓晓峰,黄志中,张静,等.鄱阳湖湿地重金属形态分布及植物富集研究.环境科学研究,2006,19(3):34-40
    [178] 朱波,青长乐,牟树森.紫色土外源锌、镉形态的生物有效性.应用生态学报,2002,13(5):555-558
    [179] Reeves RD, Baker AJM. Metal-accumulating plants. In: Raskin H, Ensley BD, eds. Phytoremediaton of Toxic Metals: Using Plants to Clean up the Environment. New York: John Willey & Sons, Ins, 2000, 193-230.
    [180] Brown SL, Chaney RL, Angle JS, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrients solution. Soil Sci Am J, 1995, 59: 125-133
    [181] 刘威.几种堇菜对铅、镉富集特征与机理.中山大学博士论文,2004:39-40
    [182] Baker AJM. Accumulators and excluders——strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 1981, 3: 643-654.
    [183] Dahmani-Muller H, van Oort F, Gelie, B, et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 2000, 109: 231-238.
    [184] Sun Q, Ye ZH, Wang XR, et al. Increase of glutathione in mine population of Sedum alfredii: A Zn hyperaccumulator and Pb accumulator. Phytochemistry 2005, 66: 2549-2556
    [185] Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 2006, 88(11): 1707-1719
    [186] Gulriz B. Phytochelatin biosynthesis and cadmium detoxification. J Cell Mol Biol, 2002, 1, 45-55.
    [187] McGrath SP and Zhao FJ. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 2003, 14: 277-282
    [188] 仇硕,张敏,孙延东,等.植物重金属镉吸收、运输、积累及耐性机理研究进展.西北植物学报,2006,26(12):2615-2622
    [189] 林冬,朱诚,孙宗修.镉敏感水稻突变体在镉胁迫下活性氧代谢的变化.环境科学,2006,27(3):561-566
    [190] Verma S, Dubey RS. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 2003, 164: 645-655.
    [191] Weckx JEJ, Clijsters HMM. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiologia Plantarum, 1996, 506-512
    [192] Srivastava M, Ma LQ, Singh N, Singh S. Antioxidant responses of hyper-accumulator and sensitive fem species to arsenic. Journal of experimental botany, 2005, 56(415): 1335-1342
    [193] 刘鹏,杨玉爱.钼、硼对大豆叶片膜脂过氧化及体内保护系统的影响.植物学报,2000,42(5):461-466,
    [194] 李影,刘登义.铜对节节草生理代谢及抗氧化酶活性的影响.应用生态学报,2006,17(3):498-501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700