城乡交错带沟谷地污染元素迁移通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪60年代以后,随着全球工业化和现代农业的迅速发展,人类的生产和生活活动对元素的迁移影响越来越大,在很多方面已经超过了自然界的影响力,许多传统和新型污染物不断地随人类活动进入自然环境,导致了局地和全球性的环境污染。我国正处于经济发展的快速阶段,载负经济增长的人工建筑物、废弃物和不断增加的人口已经接近甚至超过了环境承载力,中国已成为全球元素迁移产生污染问题最多的国家。
     城乡交错带沟谷地是连接交错带基底与河流的纽带,其特点是规模小但分布广,遍布于各种类型的城市,其类似于人体内分布的大量毛细血管源源不断地向大型河流输送各种物质。作为一种典型的水陆交错带,这里往往最先接受大量的非点源污染物,如果其污染状况长期得不到研究和治理,那么主要江河水体的污染问题将不可能得到根本解决,城市水环境安全也就无从谈起。因此,定量研究沟谷分布区污染元素的源—流—汇过程,搞清污染元素迁移的规律,对控制区域环境污染特别是水体污染具有重要意义。
     本研究以位于中国东北的长春市东南部城乡交错带的一条沟谷地为研究对象,在综合考虑间距、景观斑块典型性和代表性、土地利用情况、降雨量、植被等因素的基础上,选取了五条研究样带。在2011年度内,运用野外定位监测的方法,对研究区域内N、P、Cu、Zn、Pb、Cd、Cr七种元素的主要迁移途径、迁移规律、地表分布、污染元素来源和迁移通量进行了系统研究。同时,运用了正交试验设计法、Pearson相关分析法、大气元素富集因子分析法等分析方法对监测数据进行了定量分析,得出了以下主要结论。
     在大气干沉降方面,沟谷地分布区内2011年全年大气氮干沉降通量为3.00kg/km2,其中铵氮干沉降通量为1.07kg/km2,硝氮0.95kg/km2,可溶性有机氮为1.07kg/km2。三种形态的氮素即NH4-N、NO3-N、DON的干沉降通量比较接近。从总氮干沉降的季节性迁移通量来看,各季节通量排序为冬季>春季>秋季>夏季。全年大气总磷的干沉降通量为2.44kg/hm2,总磷的干沉降迁移通量排序为冬季>夏季>秋季>春季。2011年全年时间内,Cu的干沉降通量为7.58mg/m2,Zn的干沉降通量为55.53mg/m2,Pb的干沉降通量为9.54mg/m2,Cd的干沉降通量为0.10mg/m2,Cr的干沉降通量为3.84mg/m2。Cu的大气沉降迁移通量时间排序为冬季>春季>秋季>夏季;Zn的迁移通量时间排序为冬季>秋季>夏季>春季;Pb的迁移通量时间排序为冬季>秋季>春季>夏季;Cd的迁移通量时间排序为冬季>秋季>春季=夏季;Cr迁移通量时间排序为春季>秋季>夏季>冬季。五种重金属季节性迁移通量值均很小。Pearson相关分析结果显示,研究区域大气干沉降重金属中,Zn受人为影响较大,Cr基本未受人为影响,Cu、Pb、Cd受自然和人为双重影响。
     在大气湿沉降方面,研究区域内2011年全年DTN湿沉降通量为1.38kg/hm2,NH4-N的全年湿沉降通量为0.52kg/hm2,NO3-N的全年湿沉降通量为0.40kg/hm2,DON的全年湿沉降通量0.46kg/hm2。总磷的全年湿沉降通量为0.309kg/hm2。从总氮湿沉降的季节性迁移通量来看,各季节通量排序为夏季>秋季>春季>冬季,总磷的湿沉降迁移通量排序为夏季>秋季>春季>冬季。数据分析表明,大气降水量与氮和磷的浓度呈负相关关系,与湿沉降通量呈正相关关系。
     从元素的地表径流迁移来看,氮、磷的地表径流浓度和通量与地表斑块的性质和比例有着密切关系,即透水斑块比例高的样带对应的地表径流氮、磷浓度和迁移通量较低,反之则较高。相关分析结果证明,透水斑块比例与地表径流氮、磷浓度和通量呈负相关关系。
     从7种元素的时空分异来看,在研究时段内,沟谷地自坡顶至坡底方向,自上游至下游方向表土中各元素含量均未出现统计学意义上的差异显著变化。分析原因,主要是与降雨量偏少、频次偏低、沟谷坡度和坡降很小有关。此外,与大气干沉降和湿沉降同时起到了输入和输出双重作用也有关系。从具体数值分析来看,虽然各元素在沟谷两个方向上未达到差异显著,但沟谷纵向方向元素的分布变化幅度更大一些,更接近于差异显著的临界值。这说明降水对五条样带之间造成的分布差异要大于对每条样带内自坡顶至坡底的分布差异,这可能是由于沟谷纵向的坡降大于横向的坡度,从而使得元素更容易沿沟谷坡降方向迁移所致。同时发现,水溶性好的元素其分布变异幅度较大,更接近于差异显著临界值,水溶性差的元素则变幅很小,不易发生迁移。
     从7种元素的迁移通量来看,氮和磷的年迁移通量值较大,且年净贮存率也较高,这说明两种元素在区域内的输入和输出迁移已处于明显的不平衡状态,区域内环境污染特别是水体的污染已经显现,原因是不合理的人为扰动,过多的生活垃圾和畜禽粪便随意排放是过量氮、磷的主要来源。区域内五种重金属的迁移通量均处于较低水平,尚未出现污染状况。
Since the nineteen sixties, with the rapid development of global industrialization andmodern agriculture, the effect to elements transfer of human life and production activities isgreater, in many aspects has exceeded natural influence, many of the traditional and newpollutants constantly along with the human activity into the natural environment, leading tolocal and global environmental pollution. Our country is in the stage of rapid economicdevelopment, artificial structures, load growth waste and increasing population is close to oreven exceed the environmental capacity, China has become the largest pollution problemshave global migration of elements of the state.
     Urban-rural ecotone gully is a tie connecting the substrate and the river, which is the sizeof a small but widely distributed, scattered in various types of city, it is similar to a lot ofcapillary in the human body conveying a variety of material to the large river everfount, is aconcentration of comprehensive effect of city water and subsurface erosion. As a typicalecotone, here are often the first to accept a large number of non point source pollution, at thesame time, it is often easy to be ignored object. If the pollution not be research andmanagement long-term, then the main river water pollution problems will not be solvedthoroughly. Urban water environment security is impossible, therefore,It is important wequantitative study the source-flow-exchange process of pollution elements in gully area tounderstand the pollution elements migration rule, control of regional environmental pollutionespecially to the water pollution.
     A urban-rural gully was located the southeast of Changchun City in the northeast ofChina is selected in this study, considering the distance, the landscape patch typical andrepresentative, land use, rainfall, vegetation and other factors, we selected five of transect. Inthe2011, using the method of field monitoring in the study area, the N, P, Cu, Zn, Pb, Cd, Crseven elements of the main migration pathways、migration law、 surface distribution、pollution source and migration flux were studied, at the same time, the use of the orthogonaltest design method, Pearson correlation analysis method, the atmospheric elementalenrichment factor analysis method of monitoring data for quantitative analysis, the mainconclusion.
     In the atmospheric dry deposition,2011Annual atmospheric N dry deposition flux ingully area was3.00kg/km2, in which ammonium nitrogen dry deposition fluxes of1.07kg/km2, nitrate nitrogen is0.95kg/km2, soluble organic nitrogen was1.07kg/km2, dry deposition fluxof NH4-N, NO3-N, DON was close. Analysing the total nitrogen dry deposition fluxes ofseasonal migration, the order of seasonal flux was winter> spring> autumn> summer. Thetotal annual atmospheric dry deposition flux of2.44kg/hm2, the order of total dry depositionflux was winter> autumn> spring> summer. In2011, Cu dry deposition fluxes was7.58mg/m2, Zn dry deposition flux was55.53mg/m2, Pb dry deposition flux was9.54mg/m2,Cd dry deposition flux was0.10mg/m2, Cr dry deposition flux was3.84mg/m2. The order ofCu atmospheric deposition flux was winter> spring> autumn> summer; the migration fluxof Zn was winter> autumn> summer> spring; the migration flux of Pb was winter> autumn> spring> summer; the migration flux of Cd was winter> autumn> spring=summer; themigration flux of Cr was spring> autumn> summer> winter. Five kinds of heavy metalsseasonal migration flux values were very small. Pearson correlation analysis showed: Zn wasinfluenced greatly by human activities, were basically not affected by human Cr, Cu, Pb, Cdby natural and man-made influence.
     In the aspect of atmospheric wet deposition, in2011, DTN wet deposition flux was1.38kg/hm2; NH4-N annual wet deposition flux was0.52kg/hm2; NO3-N annual wetdeposition flux was0.40kg/hm2; DON annual wet deposition flux was0.46kg/hm2, totalphosphorus annual wet deposition flux was0.309kg/hm2. Anysising the total nitrogen wetdeposition of seasonal migration flux, the order of seasonal flux was the summer> autumn>spring> winter. The wet deposition order of total phosphorus migration was summer>autumn> spring> winter. Data showed, a negative correlation consisted in atmosphericprecipitation and the concentration of nitrogen and phosphorus, and wet deposition fluxeswere positively correlated with atmospheric precipitation.
     Analysing the migration of elements in Surface runoff, concentrations and fluxes ofnitrogen and phosphorus of the runoff had a close relationship between the nature andproportion of surface plaque, which was a high proportion of permeable plaque transectcorresponding a low flux runoff of nitrogen and phosphorus concentration, and vice versa washigh. Correlation analysis showed that the proportion of permeable plaque was negativelycorrelated with the concentrations and fluxes of nitrogen, phosphorus in surface runoff.
     Analysing the differentiation of7elements, in the study period, along the slope directionin the gulley, from upper to lower change, topsoil content had not a statistically significantdifference. The mainly reasons were little rainfall, low frequency, gully slope and the slopewas very small in addition, relevant, and dry deposition and wet deposition also had the dualrole of input and output at the same time. Analysing the specific number, although twodirections did not reach significant difference in the gully, the distribution range of elementsin longitudinal direction of gulley were larger, more close to the difference in critical values.This result showed that the difference of distribution of precipitation of five transects exceed the difference from the top to the bottom of the slope, the distribution of each kind of band,which might be due to the longitudinal gradient of gully was greater than that of thetransverse slope, so that the elements more easily along the gully slope direction caused bymigration. At the same time, good water solubility elements distribution greatly varied, it wasmore close to significant critical value, a poorly water-soluble element amplitude was verysmall, not easy migration.
     Analysing the migration flux of seven elements, the flux of nitrogen and phosphorus werelarge, and net storage rate were also high, it suggested that migration of two elements were inan obviously unbalanced state in the region, the reason was the unreasonable humandisturbance, too much discharged garbage and feces was the main source of excess nitrogenand phosphorus. The migration fluxs of five heavy metals within the region were at arelatively low level, no pollution.
引文
[1]Skeffington R A, Wilson E J. Excess nitrogendeposition: issues forconsideration[J].Environ. Pollut.,1988,54:159-184.
    [2]Van Miegroet, H Cole, D W. The impact of nitrification on soil acidification and cationleaching in a redalder ecosytem[J].J. Environ. Qual.,1984,13:586--590.
    [3]Raven P H.The California flora. In Terrestrial Vegetation of California[M].New York:John Wiley and Sons,1977.109-137.
    [4]庄亚辉,李长生,高拯民.复合生态系统元素循环[M].北京:中国环境科学出版社,1995.3-4.
    [5]张庆丰,罗伯特·克鲁克斯.迈向环境可持续的未来----中华人民共和国环境分析[M].北京:中国财政经济出版社,2012.36-37.
    [6]Chow J C, Watson J G, Lowenthal D H, et al. PMI0source apportionment in California'sSanJoaguin Valley.[J].Atmos. Environ.,1992,18:3335-3354.
    [7]Downing J A, McClain M, Twilley R, et al. The impact of accelerating land-use changeon the N-Cycle of tropical aquatic ecosystems: Current conditions and projectedchanges[J].Biogeochemistry,1999,46:109–148.
    [8]Fowler D, Sutton M A, Smith R I, et al. Regional mass budgets of oxidized and reducednitrogen and their relative contribution to the nitrogen inputs of sensitiveecosystems[J]. Environ.Poll.,1998,102:337–342.
    [9]Berner R A. The rise of plants and their effect on weathering and atmosphericCO2[J].Science,1997,276:544-546.
    [10]Chadwick O A, Derry L A, Vitousek P M, et al. Changing sources of nutrients during fourmillions years of ecosystem development[J].1999Nature,397:491-497.
    [11]Cross A F, Schlesinger W H. A literature review and evaluation of the Hedleyfractionation:Applications to the biogeochemical cycle of soil phosphorus in naturalecosystems[J].Geoderma,1995,64:197-214.
    [12]Delaney M L, Boyle E A Tertiary paleoceanic chemical variability: Unintendedconsequences of simple geochemical models[J].Paleoceanogr,1988,3:137-156.
    [13]Chow J C, Watson J G, Ono D M.et al. PM10standards and nontraditional particulate sourcecontrols: a summary of the A and WMA/EPA International Specialty Conefrence[J].AirWaste,1993,43:74-84.
    [14]Solange F, Luiza M, Michael R,Land use and nitrogen export in the Piracicaba Riverbasin,Southeast Brazil[J].Biogeochemistry,2003,65:275–294.
    [15]Caraco N F, Cole J J. Human impact on nitrate export: an analysis using major worldrivers[R].1999,Ambio.28:167–170.
    [16]Galloway J N, The global nitrogen cycle: changes and consequences[J].Environ.Poll.,1998,102:15–24.
    [17]Howarth R W, Billen G, Swaney D, et al. Regional nitrogen budgets and riverine N andP fluxes for the drainages in the North Atlantic Ocean: Natural and human influences[J].Biogeochemistry,1996,22:1–65.
    [18]Kornd rfer G H, Valle M.R, Martins M.,Aproveitamento do nitrogênio dauréia pelacana-planta[J].Rev. Brasil. Cienc.Sol.,1997,21:23–26.
    [19]Lewis W M. Precipitation chemistry and nutrient loading by precipitation in a tropicalwatershed[J].Water Resources Research,1981,17:169–181.
    [20]Seitzinger S P, Kroeze C. Global distribution of nitrous oxide production and N inputsin freshwater and coastal marine ecosystems. Glob[J].Biogeochem.Cycl.,1998,12:93–113.
    [21]Staver K W, Brinsfield R D.atterns of soil nitrate availability in corn productionsystems--implications for reducing groundwater contamination[J].P J. Soil Wat.Conserv.1990,45:318–323.
    [22]Tundisi J G, Matsumura-Tundisi T. Limnology and eutrophication of Barra BonitaReservoir,Sao Paulo state, southern Brazil[J].Arch. Fur. Hydrobiol,1990,33:661–676.
    [23]Xuejun Liu, Ying Zhang,Wenxuan Han. Enhanced nitrogen deposition over China [J].Nature,1987,494:459–462.
    [24]J D Newbold, D C Erman, K B Roby. Effects of Logging on Macroinvertebrates in StreamsWith and Without Buffer Strips [J]. Canadian Journal of Fisheries and AquaticSciences,1980,37(7):1076-1085.
    [25]H Harris.Two New Species of Late Pleistocene Woodrats (Cricetidae: Neotoma) from NewMexico[J].Journal of Mammalogy,1984,65:4560-4566.
    [26]K J Brown,P Hess.Stability and uniqueness of positive solutions for a semi-linearelliptic boundary value problem[J].Differential Integral Equations,1990,3(2):201-207.
    [27]E J Rohling, M Fenton, F J Jorissen et al. Magnitudes of sea-level lowstands of thepast500,000years[J].Nature,1998,394:162-165.
    [28]Estonia ülo Mander. Nutrient dynamics of riparian ecotones: A case study from thePorijo gi River catchment[J].Valdo Kuusemets Mari Ivaskb,1995,31,(1–3):333–348.
    [29]Kuo-Ming Huang, Saulwood Lin. Consequences and implication of heavy metal spatialvariations in sediments of the Keelung River drainage basin, Taiwan[J].Atmosphericenvironment,2003,53,(9):1113–1121.
    [30]Saulwood Lin, I-Jy Hsieh, Kuo-Ming Huang.Influence of the Yangtze River and grain sizeon the spatial variations of heavy metals and organic carbon in the East China Seacontinental shelf sediments[J].Water Research,2002,182,15:377–394.
    [31]Peter Sheridan, Cynthia Hays. Are mangroves nursery habitat for transient fishes anddecapods?[J].Wetlands,2003,23,(2):449-458.
    [32]C P Huang,M H Wu.The removal of chromium(VI) from dilute aqueous solution by activatedcarbon[J].Water Research,1977,11,(8):673–679.
    [33]Chin-Pao Huang, Hung-Wen Wang, Pei-Chun Chiu.Nitrate reduction by metalliciron[J].Water Research,1998,32,(8):2257–2264.
    [34]Robert L.Toward a Theory of Inter-Refuge Corridor Design Harrison Conservation[J].Biology,1992,6,(2):293-295.
    [35]P Latinopoulos, N Mylopoulos,Y Mylopoulos. Risk-Based Decision Analysis in the Designof Water Supply Projects[J].Water Resources Management,1997,11(4):263-281.
    [36]Marc Antrop. Landscape change and the urbanization process in Europe[J].Landscape andUrban Planning,2004,67,(1–4):9–26.
    [37]贺宝根,周乃晟.苏州河污染底泥处理的合理措施[J].上海师范大学学报,1997,26(4):54-61.
    [38]许峰,蔡强国,吴淑安,等.三峡库区坡地生态工程控制土壤养分流失研究—以等高植物篱为例[J].地理研究,2000,19(3):303–310.
    [40]Christine M,Smitha Riparian. Pasture retirement effects on sediment, phosphorus, andnitrogen in channellised surface run‐off from pastures[J].New Zealand Journal ofMarine and Freshwater Research,1989,(23):25-29.
    [39]Dillaha T A,Reneau R B Mostaghimi.Vegetative filter strips for agricultural ono-pointsource pollution control Trans[J].ASAE,1989,(32):513-519.
    [41]A D Muscutt, G L Harris, S W Bailey et al. Buffer zones to improve water quality: areview of their potential use in UK agriculture[J].Agriculture Ecosystems&Environment,1993,45,(1–2):59–77.
    [42]Chengqing Yin, Ming Zhao, Weigen Jin, et al. A multi-pond system as a protective zonefor the management of lakes in China,Nutrient Dynamics and Retention in Land/WaterEcotones of Lowland, Temperate Lakes and Rivers[M]. Germany: Springer,1997.78-92.
    [43]William T, Peterjohn, David L. Correll Nutrient Dynamics in an Agricultural Watershed:Observations on the Role of A Riparian Forest[J].Agriculture Ecosystems&Environment,1984,(65):1466-1475.
    [44]Mitch W J, Gosselink J G. wetlands[M].New York: van Nostrend Reinhold,1983,87-95.
    [45]Davenport A J, Gurnell A M, Armitage P D.Habitat survey and classification of urbanrivers[J].River Research and Applications,2004,20(6):687-704.
    [46]Neung-Hwan Oh, Daniel D Richter.Elemental translocation and loss from tyree highlyweathered soil-bedrock profiles in the southeastern United States[J].Geoderma,2005,126:5-25.
    [47]晏维金,尹澄清,孙濮.磷氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,1999,10(3)∶312~316.
    [46]刘伟,陈振楼,许世远.上海市小城镇河流沉积物重金属污染特征研究[J].环境科学,2006,27(3):538-543.
    [48]杨卓,李贵宝,王殿武.白洋淀底泥重金属的污染及其潜在生态危害评价[J].农业环境科学学报,2005,24(5):945-951.
    [49]刘振东,刘庆生,杜耘.武汉市东湖沉积物重金属与城市污染环境的关系[J].湖泊科学,2006,18(1):79-85.
    [50]丁振华,贾洪武,刘彩娥,黄浦江沉积物重金属的污染及评价[J].环境科学与技术,2006,29(2):64-66.
    [51]贾振邦,林健枝.香港河流重金属污染及潜在生态危害研究[J].北京大学学报(自然科学版),1997,4485-4492.
    [52]贾振邦,周华,赵智杰.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.
    [53]贾振邦,赵智杰,杨小毛,洋涌河、茅洲河和东宝河沉积物中重金属的污染及评价[J].环境化学,2001,20(3):212-219.
    [54]贾振邦,赵智杰,安凯.北京大学未名湖沉积物中主要重金属随深度变化的研究[J].北京大学学报(自然科学版),2003,39(4):522-525.
    [55]贾振邦,安凯,赵智杰.北京大学未名湖沉积物中主要重金属250年以来的变化[J].环境化学,2003,22(1):93-94.
    [56]王艳,刘晓环,金玲.仁泰山地区湿沉降中重金属的空间分布[J].环境科学,2007,28,(11):2562-2568.
    [57]董德明,李鱼,花修艺.自然水体中生物膜不同化学组分与铅、镉最大吸附量的关系[J].高等学校化学学报,2001,(22):1379-1381.
    [58]董德明,李鱼,花修艺.湿地水环境中采集的生物膜吸附铅和镉的特性[J].环境科学2003,24(1):131-134.
    [59]董德明,路永正,李鱼.吉林省部分河流与湖泊表层沉积物中重金属的分布规律[J].吉林大学学报(地球科学版),2005,35(1):91-96.
    [60]王国平.湿地磷的生物地球化学特性[J].水土保持学报,2004,18(4):193-199.
    [61]白军红,邓伟,张玉霞.洪泛区天然湿地土壤有机质及氮素空间分布特征[J].环境科学,2002,23(2):77-81.
    [62]庄舜尧,吴红艳,杨浩.红壤丘陵区沟谷养分的分布特征初探[J].水土保持研究,2002,9(1):112-115.
    [63]严登华,何岩,邓伟.东辽河水质演化及其对环境酸化的响应[J].水土保持学报,2002,22(4):1-5.
    [64]尹澄清,毛战坡.用生态工程技术控制农村非点源水污染[J].应用生态学报,2002,13(2):229~232.
    [65]晏维金,章申,唐以剑模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332-337.
    [66]焦菊英.黄土高原沟沿线的廊道防蚀效应探析[J].水土保持通报,2006,26(5):108-118.
    [67]宣功巧.运用景观生态学基本原理规划城市绿地系统斑块和廊道[J].浙江林学院学报,2007,24(5):599—603.
    [68]杨海军,李永祥.河流生态修复的理论与技术[M].长春:吉林科学技术出版社,2005.78-83.
    [69]张宇博,杨海军,王德利.受损河岸生态修复工程的土壤生物学评价[J].应用生态学报,2008,19(6):1374-1380.
    [70]杨芸.论多自然型河流治理法对河流生态环境的影响[J].四川环境,1999,18(1):21-24.
    [71]董哲仁.保护和恢复河流形态多样性[J].中国水利,2003,11:53-56.
    [72]周文华,王如松.城市生态安全评价方法研究--以北京市为例[J].生态学杂志,2005,24(7):848-852.
    [73]周文华,张克锋,王如松.城市水生态足迹研究——以北京市为例[J].环境科学学报,2006,26(9):1524-1531.
    [74]颜文涛,袁兴中,邢忠.基于属性理论的城市生态系统健康评价——以重庆市北部新区为例[J].生态学杂志,2007,26(10):1679-1684.
    [75]罗固源,付永川,许晓毅.三峡库区次级河流污染整治的对策分析[J].癌变·畸变·突变,2007,19(3):209-211.
    [76]闫德千,刘国经,杨海军.亚热带城市水源地受损河岸植物群落修复方法研究[J].北京林业大学学报,2007,29(3):40-45.
    [77]邹从阳,张维佳,李欣华.城市河道水质恢复技术及发展趋势[J].环境科学与技术,2007,30(8):99-102.
    [78]金建峰,吴辉.白河水库泥沙淤积规律及对防洪的影响[J].水利科技与经济,2007,13(11):844-846.
    [79]马蓓蓓,薛东前,延军平.西部城市水环境与经济发展协调模式研究——以西安市浐灞生态区为例[J].干旱区资源与环境,2007,21(5):53-58.
    [80]张义安,高定,陈同斌.城市污泥不同处理处置方式的成本和效益分析--以北京市为例生态环境[J].2006,15(2):234-238.
    [81]刘沛林,刘春腊,徐美.城市滨水风光带景观建设研究——以衡阳市湘江生态风光带为例[J].湖南文理学院学报(社会科学版),2007,32(1):66-71.
    [82]邓红兵,王青春,王庆礼等.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(6):154-159.
    [83]Carpenter, S R, N F Caraco, D L Correll. Non-point pollution of surface waters withphosphorus and nitrogen[J].Ecological Applications,1998,8:559–568.
    [84]Coats R N, C R Goldman. Patterns of nitrogen transport in streams of the Lake Tahoebasin, California–Nevada[J].Water Resources Research,2001,37:405–415.
    [85]Mulliss R M, D M Revitt, R B Shutes. The impacts of urban discharges on the hydrologyand water quality of an urban watercourse[J].1996,Science of the TotalEnvironment,190:385–390.
    [86]Osborne L, M J Wiley. Empirical relationships between land use/cover and stream waterquality in an agricultural watershed[J].Journal of Environmental Management,1988,26:9–27.
    [87]Paul M J, J L Meyer. Streams in the urban landscape[J].Annual Review of Ecology andSystematics,2001,32:333–365.
    [88]Sickman J O,J M Melack. Nitrogen and sulfate export from high elevation catchments ofthe Sierra Nevada, California[J].Water, Air and Soil Pollution,1998,105:217–226.
    [89]Soranno P A., S L Hubler, S R Carpenter. Phosphorus loads to surface waters: A simplemodel to account for spatial pattern of land use[J].Ecological Applications,1996,6:865–878.
    [90]Tufford D L, H N McKellar, J R Hussey. Instream nonpoint source nutrient predictionwith land-use proximity and seasonality[J].Journal of EnvironmentalQuality,1998,27:100–111.
    [91]Tufford D L, C L Samarghitan, H N McKellar. Impact of urbanization on nutrientconcentrations in small southeastern coastal streams[J].Journal of the American WaterResources Association,2003,39:301–312.
    [92]Wahl M H, H N McKellar,T M Williams. Patterns of nutrient loading in forested andurbanized coastal streams[J].Journal of Experimental Marine Biology and Ecology,1997,213:111–131.
    [93]Cchrane T A,Flanagan D C. Assessing water erosion in small watersheds using WEPP withGIS and digital elevation models[J].Journal of Soil and Water Conservation,1999,4:678-685.
    [94]Wickham J D, R V O’Neill, K H Riitters,et al. Geographic targeting of increases innutrient export due to future urbanization[J].Ecological Applications,2002,12:93–106.
    [95]Leitch C, J Harbor. Impacts of land use change on freshwater runoff into the near-coastalzone, Holetown Watershed, Barbados: Comparisons of long-term to single-stormeffects[J].Journal of Soil and Water Conservation,1999,3:584–592.
    [96]Harbor J M. A practical method for estimating the impact of land-use change on surfacerunoff, groundwater recharge and wetland hydrology[J].Journal of the American PlanningAssociation,1994,60:95–108.
    [97]Daniel T C, Sharpley A N,Edwards D R et al. Minimizing surface water eutrophicationfrom agriculture by phosphorus management[J].Journal of Soil and WaterConservation,1994,49:30-38.
    [98]Duda A M, addressing non-point source of water pollution must become an inter-nationalpriority[J].Water Science and Technology,1993,3:1-11.
    [99]Kathleen Segerson. Uncertainty and incentives for nonpoint pollution control[J].Journal of Environmental Economics and Management,1988,15:87-98.
    [100]Chapa S C, Canale R P,long-term phenomenogical model of phosphorus and oxygen instratified lakes[J].Water Research,1991,25:707-715.
    [101]Johnsona M S,Coon W F, Application of two hydrologic models with different runoffmechabisms to a hillslope dominated watershed in the northeastern US:a comparison ofHSPF and SMR[J].Journal of Hydrology,2003,284:57-76.
    [102]Albek M,Ogutveren U B, Albek E.hydrological modeling of seydi suyu watershed(Turkey)with HSPF[J].Journal of Hydrology,2004,285:260-271.
    [103]Rcckhow K H, water quality simulation modeling and uncertainty analysis for riskassessment and decision making[J].Ecological Modeling,1994,72:1-20.
    [104]Huaguo Xiao,Wei Ji.Relating landscape characteristics to non-point source pollutionin mine waste-located watersheds using geospatial techniques[J].Journal ofEnvironmental Management,2007,82:111–119.
    [105]Chesters G, L Schierow. A primer on nonpoint pollution[J].J. Soil and WaterConserv,1985,40:9-13.
    [106]D G Neary, W T Swank, H Riekerk An overview of nonpoint source pollution the southernUnited States[R].General technical report SE-U.S. Department of Agriculture, ForestService, Southeastern Forest Experiment Station,1989,1-7.
    [107]J N Galloway,F J Dentener, D G Capone.Nitrogen cycles: past, present, andfuture[J].Biogeochemistry,2004,70:153–226.
    [108]Boddey R M, Sá J C D, Alves B J R.The contribution of biological nitrogen fixationfor sustainable agricultural systems in the tropics[J].Soil Biol.Biochem.,1997,29:787–799.
    [109]Vignon B W. The status of nonpoint source pollution: Its nature, extent andcontrol[J].Water Res.Bull.,1985,21:179-184.
    [110]G M Filippelli.Reviews in mineralogy and geochemistry[J].Mineral Soc America,2002,48,10:391-425.
    [111]袁铭道.美国水污染控制和发展概况[M].北京:中国环境科学出版社,1986:5-8.
    [112]汪慧贞,李宪法.北京城区雨水径流的污染及控制[J].城市环境与城市生态,2002,15(2):16-18.
    [113]USEPA. National water quality inventory, report to congress executivesummary[M].Washington:DC:USEPA,1995:49-56.
    [114]Lee J H, Bang K W. Characterization of urban storm water runoff[J].WaterResearch,2000,34(6):1773-1780.
    [115]徐谦.我国化肥和农药的非点源污染状况综述[J].农村生态环境,1996,12(2):39-43.
    [116]Zachary M, Easton M, Walter T et al. Identifing dissolved phosphorus source areas andpredicting transport from an urban watershed using distributed hydrologicmodeling[J].Water Resource Research,2007,43:411-426.
    [117]Mainstone P, William P, Phosphorus in rivers-ecology and management[J].The Scienceof the Total Environment,2002,282:25-47.
    [118]Brown T C, Brown D, Law and programs for controlling non-point source pollution inforest areas[J].Water Resource Bulletin,1993,29:1-3.
    [119]Foy R H, Smith R V.Upward trend in soluble phosphorus loadings to Lough Neagh despitephosphorus reduction at sewage treatment works[J].Water Research,1995,29:1051-1063.
    [120]刘培桐环境学概论[M].北京:高等教育出版社,1995.124-128.
    [121]P Babula, V Adam, R Opatrilova,et al.Uncommon heavy metals, metalloids and their planttoxicity: a review[J].Environmental Chemical Letters,2008,6:189–213.
    [122]W X Liu, L F Shen, J W Liu.Uptake of toxic heavy metals by rice(Oryza sativa L.)cultivated in the agricultural soils near Zhengzhou City, People's Republic ofChina[J].Bulletin of Environmental Contamination and Toxicology,2007,79:209–213.
    [123]F Amato, M Pandolfi, M Viana. Spatial and chemical patterns of PM10in road dustdeposited in urban environment[J].Atmospheric Environment,2009,43:1650–1659.
    [124]A D K Banerjee. Heavy metal levels and solid phase speciation in street dusts of Delhi,India[J].Environmental Pollution,123,2003,95–105.
    [125]E De Miguel, J F Llamas, E. Chacón.Origin and patterns of distribution of trace elementsin street dust: unleaded petrol and urban lead[J].Atmospheric Environment,1997,31:2733–2740.
    [126]N S Duzgoren-Aydin, C S C Wong, A Aydin, Z. Song.Heavy metal contamination anddistribution in the urban environment of Guangzhou, SE China[J].EnvironmentalGeochemistry and Health,2006,28:375–391.
    [127]L Ferreira-Baptista, E De Miguel. Geochemistry and risk assessment of street dust inLuanda, Angola: a tropical urban environment[J].Atmospheric Environment,2005,39:4501–4512.
    [128]Y Han, P Du, J Cao. Multivariate analysis of heavy metal contamination in urban dustsofXi'an,Central China[J].Science of the Total Environment,2006,355:176–186.
    [129]S Kartal, Z Aydin, S Tokal o lu. Fractionation of metals in street sediment samplesby using the BCR sequential extraction procedure and multivariate statisticalelucidation of the data[J].Journal of Hazardous Materials,2006,132:80–89.
    [130]X Lu, L Wang, K Lei. Contamination assessment of copper, lead, zinc, manganese andnickel in street dust of Baoji,NW China[J].Journal of Hazardous Materials,2009,161:1058–1062.
    [131]O Morton-Bermea, E Hernández-álvarez, G González-Hernández. Assessment of heavy metalpollution in urban topsoils from the metropolitan area of Mexico City[J].Journal ofGeochemical Exploration,2009,101:218–224.
    [132]S Sindern, R F S Lima, J Schwarzbauer.Anthropogenic heavy metal signatures for thefast growing urban area of Natal (NE-Brazil)[J].Environmental Geology,2007,52:731–737.
    [133]J Zhou, D Ma, J Pan. Application of multivariate statistical approach to identify heavymetal sources in sediment and waters: a case study in Yangzhong, China[J].EnvironmentalGeology,2008,54:373–380.
    [134]S R Oliva, A J F Espinosa, Monitoring of heavy metals in topsoils, atmospheric particlesand plant leaves to identify possible contamination sources[J].MicrochemicalJournal,2007,86:131–139.
    [135]A G Kachenko, B Singh. Heavy metals contamination in vegetables grown in urban andmetal smelter contaminated sites in Australia[J].Water, Air&Soil Pollution,2006,169:101–123.
    [136]D Montagne, S Cornu, H Bourennane et al. Effect of agricultural practices ontrace-element distribution in soil[J].Communications in Soil Science and PlantAnalysis,2007,38:473–491.
    [137]Y Li, X Gou, G Wang et al. Heavy metal contamination and source in arid agriculturalsoils in central Gansu Province, China[J].Journal of EnvironmentalSciences,2008,20:607–612.
    [138]P Yang, R Mao, H Shao et al.The spatial variability of heavy metal distribution inthe suburban farmland of Taihang Piedmont Plain, China, C. R.[J].Biologies,2009,332:558–566.
    [139]Swank W T Atmospheric contributions to forest nutrient cycling[J].Water Res.Bull.,1984,20:313-321.
    [140]Binggan Wei, Linsheng Yang. A review of heavy metal contaminations in urban soils,urban road dusts and agricultural soils from China[J].Microchemical Journal,2010,94:99–107.
    [141]翟航.长春市土壤重金属分布规律及土壤环境质量评价研究[D]:[硕士学位论文].长春:吉林大学环境与资源学院,2007.
    [142]章北平.面源污染的截纳控制技术[J].武汉城市建设学院学报,1996,13(2):1-6.
    [143]陈植华,丁国平,胡成.用于水资源系统观测网空间布局优化设计的技术方法[J].地质科技情报,2000,19(4):83-88.
    [144]施为光.邛海非点源污染及模型参数的红外遥感航片率定[J].重庆环境科学,1994,16(4):30-34.
    [145]Kao J, Lin W L,Tsai C H.Dynamic spatial modeling approach for estimation of internalphosphorus load[J].Water Research,1998,32(1):47-54.
    [146]Ciarpical L,Todini E, TOPKAPI.A model for the representation of the rainfall-runoffprocess at different scales[J].Hydrological Process,2002,16(2):207-229.
    [147]Saleh A, Arnold J G, Gassman P W, et al. Application of SWAT for the Upper North BosqueRiver Watershed[J].Transactions of the a American Society of AgriculturalEngineers,2000,43(5):1077-1087.
    [148]Chistopher L L,Sreven E K.Using GIS-based ecological-economic modeling to evaluatepolocies affecting agriculture watersheds[J].Ecological Economics,2005,55:467-484.
    [149]Young R A AGNPS. A non-point source pollution modeling for evaluation agriculturalwatersheds[J].Journal of Soil and Water Conservation,1989,44(2):168-173.
    [150]长春市规划局.长春市净月区JY-GD2-KD3[农大单元]控制性详细规划.[EB/OL].http://www.ccghj.gov.cn/index.jsp.
    [151]Ingall E D, Jahnke R.Influence of water-column anoxia on the elemental fractionationof carbon and phosphorus during sediment diagenesis[J].Mar Geol.,1997,139:219-229.
    [152]Florig H K.China’s air pollution risks[J].Environmental Science&Technology,1997,31:274-279.
    [153]Kelly J, Thornton I, Simpson P R.Urban geochemistry: a study of the influence ofanthropogenic activity on the heavy metal content of soils in traditionally industrialand non-industrial areas of Britain[J].Applied Geochemistry,1996,11:363-370.
    [154]Nriagu J O.A silent epidemic of environmental metal poisoning?[J].EnvironmentalPollution,1988,50:139-161.
    [155]Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air,water and soils by trace metals[J].Nature,1988,333:134-139.
    [156]Hertel O, Skth C A, Froun L M, et al. Assessment of the atmospheric nitrogen and sulphurinputs into the North S ea u sing a Lagrangian model[J].Physics and Chemistry of theEarth,2002,27(35):1507-1515.
    [157]Sheeder S A, Lynch J A, Grimm J.Modeling atmospheric nitrogen deposition and transportin the Chesapeake Bay watershed[J].Journal of Environmental Quality,2002,31(4):1194-1206.
    [158]王体健,刘倩,赵恒,等.江西红壤地区农田生态系统大气氮沉降通量的研究[J].土壤学报,2008,45(2):280-287.
    [159]魏样,同延安,段敏,等.陕北典型农区大气干湿氮沉降季节变化[J].应用生态学报,2010,21(1):255-259.
    [160]WF Graham, RA Duce Atmospheric pathways of the phosphorus cycle Geochimicaet[J].Cosmochimica Acta,,1979,43:1195-1208.
    [161]张乃明.大气沉降对土壤重金属累积的影响[J].土壤与环境,2001,10(2):91-93.
    [162]李波,刘娅,姚燕.吉林省西部地区大气干湿沉降元素通量及来源[J].吉林大学学报(地球科学版),2010,40(1):176-182.
    [163]王云.土壤环境元素化学[M].北京:中国环境科学出版社,1995.193-194.
    [164]Sweet C W, Weiss A,Vermette S J. A tmospheric deposition of trace metals in three sitesnear the Great Lakes[J]. Water, Air, and Soil Pollution,1998,103:423-439.
    [165]ZhuB Q, Wang H F, Mao C X,et al.Geochronology of and Nd-Sr-Pb isotopic evidences formantle source in the ancient subduction zone beneath Sanshui Basin, Guangdong Province,China[J].Chinese Journal of Geochemistry,1989,8:65-71.
    [166]Injuk J, Van Grieken R, De Leeuw G.Deposition of atmospheric trace elements into theNorth Sea: Coastal, ship, platform measurements and model predictions [J].AtmosphericEnvironment,1998,32:3011-3025.
    [167]C S C Wong, X D Li G Zhang. Atmospheric deposition of heavy metals in the Pearl RiverDelta, China[J].Atmospheric Environment,2003,37(6):767-776.
    [168]U pierrou.the global phosphorus cycle[J].Ecol.Bull.,1976,22:75-88.
    [169]EPA National Air Quality and Emissions Trends Report--Office of Air Quality Planningand Standards[M].Research Triangle Park,NC,2003,128—135.
    [170]Kean A J,Littlejohn D,Ban-Weiss G A,et al. Trends in on-road vehicle emissions ofammonia[J].Atmospheric Enviromnent,2009,43:1565-1570.
    [171]陈建华,王玮,刘红杰,等.北京市交通路口大气颗粒物污染特征研究(I)---大气颗粒物污染特征及其影响因素[J].环境科学研究,2005,18(21):34-38.
    [172]李俊然,陈利顶,郭旭东,等.土地利用结构对非点源污染的影响[J].中国环境科学,2000,20(6):506-510.
    [173]刘惠清,许嘉巍.景观生态学[M].长春:东北师范大学出版社,2008.94-95.
    [174]朱波,汪涛,徐泰平,等.紫色丘陵区典型小流域氮素迁移及其环境效应[J].山地学报,2006,24(5):601-606.
    [175]北京农业大学《肥料手册》编写组.肥料手册[M].北京:农业出版社,1979,40-41.
    [176]王玮,魏小林,盛宏至.城市生活垃圾中微量金属元素含量的特性分析[J].环境工程,2004,10(22):5.
    [177]傅伯杰,陈利顶.景观生态的类型及其生态意义[J].地理学报,1996,51(5):454-462.
    [178] Burel F,Baudry J. Struetural dynamic of a hedge row network landscape in BrittanyFranee[J].Landscape Ecology,1990,4(4):197-210.
    [179]Fu Bojie,Gulinck H,Masum MZ.Loess erosion in relation to landuse change in the Ganspoelcatchment.Central Belgium[J].Land Deradation&Rehabilitation,1994,5:261-270.
    [180]Peterjohn WT,Correl DL.Nutrient dynamics in an agricultural watershed:observationson the role of a riparian forest[J].Ecology,1984,65:1466-1475.
    [181]贺瑞敏,张建云,陆桂华.我国非点源污染研究进展与发展趋势[J].水文,2005,25(4):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700