松嫩平原苏打盐渍土灌区稻田水盐调控灌排模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松嫩平原是世界三大苏打盐渍土集中分布区之一,也是我国粮食主产区之一。土壤盐渍化和水资源短缺及不合理利用是松嫩平原农业可持续发展的重要威胁。种稻改良盐渍土具有成本低、效果好等优点,但国内外关于排水频率对盐渍土改良、水稻产量和水资源高效利用影响研究的较为少见。本研究以松嫩平原典型苏打盐渍土灌区——前郭灌区为研究区域,选择轻、中、重三种盐渍化程度土壤,建立稻田试验小区,开展多种灌排模式(薄灌频排、薄灌多排、薄灌少排、浅灌多排、浅灌少排、常规灌排)野外小区试验,同时开展前郭灌区的水盐平衡研究。重点分析了不同灌排模式对水稻耕层土壤盐分、水稻产量和灌溉水利用效率的影响,估算了灌区水盐平衡现状。在此基础上,提出了松嫩平原苏打盐渍土灌区不同盐渍化程度稻田土壤基于盐渍土改良、水稻稳产和水资源高效利用目标的相对最佳的水盐调控灌排模式。本研究对于松嫩平原苏打盐渍土灌区水盐调控与农业可持续发展具有重要的理论意义和实践价值。通过研究,取得了以下主要成果。
     (1)通过对同一土壤盐渍化程度、不同灌排模式及同一灌排模式、不同土壤盐渍化程度对水稻耕层土壤含盐量变化等的分析,揭示了各灌排模式均导致水稻耕层土壤含盐量降低,且同一土壤盐渍化程度下,排水频率越大,水稻耕层土壤含盐量降低越多的规律。其中薄灌频排模式下土壤含盐量降低量约为常规灌排模式下对应值的5.3倍,浅灌多排模式下土壤含盐量降低量约为常规灌排模式下对应值的3.5~4.3倍,而浅灌少排模式下土壤含盐量降低量约为常规灌排模式下对应值的1.1~1.7倍。此外,揭示了同一灌排模式下,土壤盐渍化程度越重,水稻耕层土壤含盐量削减越多,其中重度盐渍土含盐量降低量约为轻度盐渍土对应值的6.9~8.9倍,而中度盐渍土含盐量降低量约为轻度盐渍土对应值的2.8~6.0倍。
     (2)基于对同一土壤盐渍化程度、不同灌排模式及同一灌排模式、不同土壤盐渍化程度对水稻产量等的分析,阐明了灌水深度和排水频率对水稻产量具有重要影响:产量随灌水深度增加而增加。并揭示了轻度盐渍土各薄灌模式下,产量随排水频率增加而增加;轻、中、重三种盐渍土浅灌多排和浅灌少排模式下产量均随排水频率增加而降低,但均不显著低于常规灌排模式;同一灌排模式下,产量随土壤盐渍化程度的加剧而降低等规律。
     (3)通过对各稻田小区水量平衡要素和不同灌排模式下水稻灌溉水利用效率和水分利用效率的监测与计算,获得如下结果:水稻生育期降雨量为466.4mm,灌水量为:薄灌频排530mm、薄灌多排440mm、薄灌少排320、浅灌多排520mm、浅灌少排320mm、常规灌排340mm;揭示了排水频率的增加导致灌溉水利用效率的降低;排水频率对水分利用效率影响较小;灌溉水利用效率和水分利用效率均随土壤盐渍化程度的增加而降低等规律。
     (4)通过对前郭灌区水盐平衡现状的监测与估算,得知前郭灌区目前处于脱盐状态,2012年前郭灌区盐量排引比约为4.8,净排盐量为3.5×108kg。
     (5)在充分考虑盐渍土改良、水稻稳产以及水资源高效利用等水盐调控目标的基础上,结合前郭灌区水盐平衡现状,提出松嫩平原苏打盐渍土灌区盐分调控的对象主要为中度和重度盐渍土,宜实行浅灌多排模式并辅之增施有机肥等农艺措施;而轻度盐渍土作为次要调控对象,宜保持常规灌排模式。
The ongnen lain in northeast China is among the nation’s most importantcommodity grain production bases where much of the rice crop is cultivated. Soilsalinization, water scarcity and unreasonable use are major threats to sustainabledevelopment of agriculture. Irrigated rice culture is an effective low-cost ameliorationapproach to prevent and/or reduce soil salinization. But few studies focused on theeffects of water discharge on saline-sodic salt improving, rice yield and effectiveutilization of water resource. The study area was the typical saline-sodic irrigationarea of the Songnen Plain (i.e., Qianguo irrigation district). A field experimentconsisting of a low, a moderate and a high saline-sodic soil and six irrigationschedules was carried out to investigate changes in root-zone soil salt content, riceyield and irrigation water use efficiency on saline-sodic soils across a salinity gradientunder different irrigation schedules. The irrigation and discharge schedules were:(1)30-mm irrigation with9-time discharge (I-30-9);(2)30-mm irrigation with6-timedischarge (I-30-6);(3)30-mm irrigation with3-time discharge (I-30-3);(4)50-mmirrigation with6-time discharge (I-50-6);(5)50-mm irrigation with3-time discharge(I-50-3);(6)80-mm irrigation with2-time discharge (local traditional irrigation anddischarge, I-80-2). In addition, salt balance of the Qianguo Irrigation Area was carriedout. On this basis, we put forward comparatively good management options forreclamation the saline-sodic soil, increase rice yield and saving water. This study hasimportant theoretical significance and practical value for long-term, sustainable development and food security in the saline-sodic irrigation area of the Songnen Plain.Through the above research, we mainly obtained the following conclusion:
     (1) Reductions in soil salt under different irrgaiton and discharge schedules com-bined with different initial salinity were analysised. While all six treatments reducedroot zone salt content, the reduction increased with increasing discharge frequency:reduction in soil salt under I-30-9treatment was about5.3times than that underI-80-2, reduction in soil salt under I-30-6treatment was about3.5~4.3times than thatunder I-80-2, whereas reduction in soil salt under I-30-6treatment was about1.1~1.7times than that under I-80-2; the reduction increased with increasing salinity as well:reduction in soil salt in the high saline-sodic soil was about6.9~8.9times than that inthe low saline-sodic soil, whereas reduction in soil salt in the moderate saline-sodicsoil was about2.8~6.0times than that in the low saline-sodic soil.
     (2) Rice yield under different irrgaiton and discharge schedules combined withdifferent initial salinity were analysised. Irrigation water depth and dischargefrequency have a major impact on the rice yield. Rice yield increased with increasingirrigation water depth; Rice yield increased with increasing discharge frequency underall30-mm irrigation on the low saline-sodic soil; Rice yield decreased with increasingdischarge frequency under50-mm irrigation with6-time discharge and50-mmirrigation with3-time discharge on the low, moderate and high saline-sodic soils,whereas no significant difference among the rice yields mentioned above and yieldunder local traditional irrigation and discharge schedule were found; Rice yielddecreased with increasing salinity.
     (3) Water balance components, irrigation water use efficiency and water useefficiency under different irrgaiton and discharge schedules combined with differentinitial salinity were analysised. During the5-month rice growth period, total rainfallwas recorded466mm. Irrigation water during the same period was530mm for I-30-9,440mm for I-30-6,320mm for I-30-3,520mm for I-50-6,320mm for I-50-3, and340mm for I-80-2. The irrigation water use efficiency decreased with increasingdischarge frequency; Discharge frequency has small impact on the water useefficiency; both the irrigation water use efficiency and the water use efficiency decreased with increasing salinity.
     (4) The present situation of water and salt balance of the Qianguo irrigationdistrict was estimationed. The Qianguo Irrigation Area is in the desalinization state.Salt removed through drainage was4.8times as salt input through irrigation in theQianguo irrigation district. Net salt losses (salt input through irrigation minus saltremoved through drainage) was3.5×108kg in2012.
     (5) Considering reduction of soil salt, maintain and increase rice yield and watersaving and efficient water utilization as a whole, and in view of the Qianguo IrrigationArea salt balance situation, we put forward that the main regulating targets of thesaline-sodic irrigation areas on the Songnen Plain is the moderate and highsaline-sodic soils and the comparatively good option of irrigation and dischargeschedule for the two kind of soils are50mm irrigation with6-time discharge; thesecondary regulating targets of the saline-sodic irrigation areas on the Songnen Plainis the low saline-sodic soils and the comparatively good option of irrigation anddischarge schedule for this soil is the local traditional irrigation and dischargeschedule.
引文
Abrol, I. P., Yadav, J. S. P., Massoud, F. I. Salt-affected soils and their management [R]. Rome,Italy: FAO Soils Bulletin,1988, vol.39.
    Adusumilli, R. and S. Bhagya, Laxmi. Potential of the system of rice intensification for systemicimprovement in rice production and water use: the case of Andhra Pradesh, India [J]. Paddyand Water Environment,2010: p.1-9.
    Ahmad, N., Qureshi, R. H., Qadir, M. Amelioration of a calcareous saline-sodic soil by gypsumand forage plants [J]. Land Degrad. Rehabil.,1990,2:277-284.
    American Society of Civil Engineers (ASCE). Agricultural salinity assessment andmanagement[A]. ASCE manuals and reports on engineering practice [M]. No71. New York,NY10017, USA,1990.
    Asch F. Dingkuhn. D rffing. hysiological stresses of irrigated rice caused by soilsalinity in the Sahel [A]. In: Miezan, K. M. M., Wopereis, C.S., Dingkuhn, M., Deckers, J.,Randolph, T. F.(eds.). Irrigated Rice in the Sahel: Prospects for Sustainable Development[C]. Bouake Cote d’ voire: West Africa ice Development Association1997pp.247–273.
    B. A.柯夫达著,席承藩等译.盐碱土的发生与演变[M].科学出版社,1957.
    Ceuppens, J., Wopereis, M. C. S. Impact of non-drained irrigated rice cropping on soil salinizationin the Senegal River Delta [J]. Geoderma,1999,92(1-2):125-140.
    Chahal, G. B. S., Sood, A., Jalota, S. K., Choudhury, B. U., Sharma, P. K. Yield,evapotranspiration and water productivity of rice (Oryza sativa L.)–wheat (Triticum aestivumL.) system in Punjab-ndia as infuenced by transplanting date of rice and weatherparameters[J]. Agric. Water Manage.,2007:88,14-27.
    Chhabra, R., Abrol, I. P. Reclaiming effect of rice grown in sodic soils[J]. Soil Sci.,1977,124:49-55.
    Chhabra, R., Abrol, I.P. Reclaiming effect of rice grown in sodic soils [J]. Soil Sci.,1977,124:49-55.
    Chi, C. M., Wang, Z. C. Characterizing salt-affected soils of Songnen Plain usingsaturated pasteand1:5soil-to-water extraction methods[J]. Arid Land Res. Manage.,2010,24(1):1-11.
    Dormaar, J.F. Effect of plant roots on chemical and biochemical properties of surrounding discretesoil zones[J]. Can. J. Soil Sci.,1988,68(2):233-242.
    Funakawa, S., et al. Salt-affected soils under rice-based irrigation agriculture in southernKazakhstan [J]. Geoderma,2000,97(1-2): p.61-85.
    Ghafoor, A. Murtaza, G. Rehman, M. Z., Saifullah and Sabir, M. Reclamation and salt leachingefficiency for tile drained saline-sodic soil using marginal quality water for irrigating rice andwheat crops. Land Degrad. Develop.2012,23:1-9.
    Hammecker, C., et al. Simulating the evolution of soil solutions in irrigated rice soils in theSahel[J]. Geoderma,2009,150(1-2): p.129-140.
    Hillel, D. Salinity Management for Sustainable Irrigation: Integrating Science, Environment, andEconomics[R]. World Bank, Washington, DC,2000.
    Jalota, S. K., Prihar, S. S. Reducing Soil Water Evaporation by Tillage and Straw Mulching [J].Ames, USA: IOWA State University Press,1998.
    Karim, Z., Hussain, S. G., Ahmed, M. Salinity problems and crop intensification in the coastalregions of Bangladesh [A]. Soils publication No.33[M]. Farmgate, Dhaka1215, Bangladesh:BARC, Soils and Irrigation Division,1990:1-20.
    Liu, S. H., Kang, Y. H., Wan, S. Q., Wang, Z. C., Liang. Z. W., Sun, X. J. Water and salt regulationand its effects on Leymuschinensis growth under drip irrigation in saline-sodic soils of theSongnen Plain [J]. Agric. Water Manage,2011,98(9):1469-1476.
    Mondal, M. K., Bhuiyan, S. I., Franco, D. T. Soil salinity reduction and prediction of saltdynamics in the coastal ricelands of Bangladesh[J]. Agricultural Water Management,2001,47(1):9-23.
    Pitman, M. G., Laüchli, A. Global impact of salinity and agricultural ecosystems [A]. In: Laüchli,A., Lüttge, U. Salinity: Environment-Plants-Molecules [C]. Dordrecht, the Netherlands:Kluwer Academic,2002, pp3-20.
    Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., Arslan, A. Sodicity-induced land degradationand its sustainable management: Problems and prospects [J]. Land Degrad. Dev.,2006,17:661-676.
    Qadir, M., Oster, J. D. Crop and irrigation management strategies for saline-sodic soils and watersaimed at environmentally sustainable agriculture [J]. Sci. Total Environ.,2004,323:1-19.
    Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., Karajeh, F. Non-conventional waterresources and opportunities for water augmentation to achieve food security in water scarcecountries [J]. Agric. Water Manage.,2007,87:2-22.
    Ritzema, H.P., et al. Subsurface drainage to combat waterlogging and salinity in irrigated lands inIndia: Lessons learned in farmers' fields [J]. Agricultural Water Management,2008,95(3): p.179-189.
    Schilfgaarde, J. Irrigation-a blessing or a curse [J]. Agric. Water Manage.,1994,(25):203-219.
    Seckler, D. The new era of water resource management from dry to wet water saving [A]. InResearch Report1[R]. Colombo, Sri Lanka: International irrigation water managementInstitute,1996.
    Suarez, D. L. Sodic soil reclamation: Modelling and field study [J]. Aust. J. Soil Res.,2001,39:1225-1246.
    Tanji, K. K. Nature and extent of agricultural salinity [A]. In: Tanji, K. K. Agricultural SalinityAssessment and Management, Manuals and Reports on Engineering Practices NO.71[C].New York: American Society of Civil Engineers,1990.
    Tanji, K. K. River basin hydrosalinity modelling[J]. Agric. Water Manage.,1981,6.
    Tuong, T.P. Productive water use in rice production: opportunities and limitations [A]. In: Kikham,M.B. Water Use and Production [M]. The Haworth Press Inc.,1999: pp.241–264.
    V. A.柯夫达等著.中国科学院土壤研究所盐碱地球化学研究室译.土壤盐化和碱化过程的模拟[M].科学出版社,1986.
    van Asten.. A. van’t Zelfde. A., van der Zeem, S. E. A. T. M., Hammecker, C. The effect ofirrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel [J]. Geoderma,2004,119:233–247.
    Wang, L., Seki, K., Miyazaki, T. The causes of soil alkalinization in the Songnen Plain ofNortheast China [J]. Paddy Water Environ,2009,7:259–270.
    Wang, M. M., Liang, Z. W., Wang, Z. C., Huang, L..H, Ma, H. Y., Liu, M. A., Gu, X. Y. Effect ofirrigation water depth on rice growth and yield in a saline-sodic soil in Songnen plain, China.Journal of Food Agriculture&Environment [J].2010,8:530-534.
    Wopereis, M.C.S., Ceuppens, J., Boivin, B., Ndiaye, A.M., Kane, A. Preserving soil quality underirrigation in the Senegal River valley[J]. Neth. J. Agric. Sci.,1998,46:97–107.
    Zeng, L., Lesch, S. M. and Grieve, C. M. Rice growth and yield respond to changes in water depthand salinity stress [J]. Agricultural Water Management,2003,59(1): p.67-75.
    Zhang, B., Song, X. F., Zhang, Y. H., Han, D. M., Tang, C. Y., Yu, Y. L., Ma, Y. Hydrochemicalcharacteristics and water quality assessment of surface water and groundwater in Songnenplain, Northeast China [J]. Water Research,2012,46(8):2737-2748.
    曹丽萍.苏达盐渍土种稻“浅晒浅湿”型节水灌溉栽培技术[J].中国稻米,2005,(3):31-32.
    陈诚,姜艳等.开封引黄灌区灌溉条件下稻田土壤盐分阈值研究[J].华北水利水电学院学报,2009,30(5):26-29.
    陈恩鳳,王汝槦.种稻改良苏打盐土的經驗总結(吉林省郭前旗灌區的試驗結果)[J].科学通报,1963(02):35-39.
    陈巍,陈邦本,沈其荣.滨海盐土脱盐过程中pH变化及碱化问题研究[J].土壤学报,2000,04:521-528.
    陈小兵,杨劲松,杨朝晖,余世鹏,汪玉磊.基于水盐平衡的绿洲灌区次生盐碱化防治研究[J].水土保持学报,2007,90(03):32-37,51.
    邓伟,裘善文,梁正伟.中国大安碱地生态试验站区域生态环境背景[M].北京:科学出版社,2006,46.
    董凤珍,戴素芬,刘月茹.盐碱地垦荒种稻的栽培技术要点[J].中国农村科技,2005,(04):26.
    范笑微,高志文,李艳冬.回归分析确定苏打盐碱土种稻节水增产灌溉模式[J].黑龙江水利科技,2005(06):16-18.
    范震.苏打盐碱土种稻节水高产型灌溉制度初探[J].东北水利水电,1988,(06):29-32.
    郭士德,房建.发展水田灌溉改良苏打盐碱土[J].东北水利水电,1990,(1):22-25,15.
    韩宇平.宁夏青铜峡灌区农区非农区的水盐均衡研究[J].西北农林科技大学学报(自然科学版),2009,37(11):224-230.
    黄领梅,沈冰.水盐运动研究评述[J].西北水资源与水工程,2000,11(1):6-12.
    姜玉华,朱海民,李淑娟.盐碱地种稻技术问题[J].黑龙江水利科技,2007,35(01):137-138.
    科索洛夫,A. A.,希克洛曼诺夫,N. A.水资源的区域再分配[M].北京:水电电力出版社,1983.
    李彬,王志春.松嫩平原苏打盐渍土碱化特征与影响因素[J].干旱区资源与环境,2006,06:183-191.
    李取生,李秀军,李晓军,等.松嫩平原苏打盐碱地治理与利用[J].资源科学,2003,25(1):15-20.
    李取生,裘善文,邓伟.松嫩平原土地次生盐碱化研究[J].地理科学,1998,03:268-272.
    李取生.苏打盐碱土地区水田水盐运移模拟与预测研究[J].生态环境,2005,03:396-398.
    李秀军.松嫩平原西部土地盐碱化与农业可持续发展[J].地理科学,2000,20(01):51-55.
    李颖,杨伟刚.松嫩平原苏打盐渍土水盐调控与开发利用[J].中国水利,2006,23:46-48.
    梁籍,李颖,张学红,张洁,李同斌,王松涛,沈建德.阿克苏地区地下水资源与水盐调控分析[J].吉林大学学报(地球科学版),2003,02:192-196.
    刘广明,彭世彰,杨劲松.不同控制灌溉方式下稻田土壤盐分动态变化研究[J].农业工程学报,2007,23(7),86-89。
    刘广明,杨劲松,姜艳,张秀勇.基于控制灌溉理论的水稻优化灌溉制度研究[J].农业工程学报,2005,21(05):29-33.
    罗金明,王永洁,叶雅杰,等.松嫩平原碱化稻田溶质运移规律研究[J].灌溉排水学报,2010,29(05):117-120.
    罗新正,孙广友.松嫩平原大安古河道强度盐渍土种稻脱盐试验[J].土壤通报,2007,38(1):72-76.
    罗新正,孙广友.松嫩平原含盐碱斑的重度盐化草甸土种稻脱盐过程[J].生态环境,2004,13(1):47-50.
    马淑芬.肇源县盐碱土特性及种稻改良措施[J].黑龙江农业科学,1999,(3):35-36.
    彭世彰,张秀勇,刘广明.稻田土壤中控制灌溉+淋洗水分的节水抑盐效率分析[J].土壤,2002,06:315-318.
    秦丽杰,张郁,任丽军,刘湘南.前郭尔罗斯灌区土壤盐渍化与农业可持续发展[J].干旱区研究,2002,(02):52-55.
    石元春,陈介福,谢经荣.区域水盐运动的类型及其划分[A].盐渍土的水盐运动[M].北京:北京农业大学出版杜,1986:22-40.
    石元春,辛德惠等.黄淮海平原的水盐运动和旱涝盐碱综合治理[M].河北人民出版社,1983.
    苏立成,李慧萍.种稻泡田期和生育期灌溉对土壤的脱盐作用[J].黑龙江水利科技,2010,38(5):67-68.
    孙彤,杜震宇,张瑞珍,等.松嫩平原盐碱土盐碱胁迫对水稻分蘖及产量的影响[J].吉林农业大学学报,2006,28(6):597-600,605.
    汪林,甘泓,于福亮,等.论银北灌区的盐害指标与排引比[J].地球学报,2001,22(1):91-96.
    王春裕.论盐渍土之种稻生态改良[J].土壤通报,2002,33(02):94-95.
    王少英,李韵珠.不同地学条件下土壤的水盐均衡分析[A].盐渍土的水盐运动[M].北京:北京农业大学出版杜,1986:201-223.
    王翔.松嫩平原苏打盐渍土种稻改良中水盐动态与调控[J].土壤通报,1993,24(5):211-213.
    王翔.松嫩平原苏打盐渍土种稻水盐动态及其调控的问题[J].黑龙江农业科学,1992,(5):37-41.
    王翔.盐碱土种稻控制土壤次生盐渍化措施及作用的剖析[J].黑龙江农业科学,1991,(2):35-39.
    王学全,高前兆,卢琦.内蒙古河套灌区水资源高效利用与盐渍化调控[J].干旱区资源与环境,2005,06:120-125.
    王英,李伟群,邹秋菊,等.松嫩平原低平易涝地旱改水种稻治涝防止土壤次生盐渍化技术的研究[J].土壤,2006,38(1):99-101.
    王英.旱改水种稻治涝防止土壤次生盐渍化研究[J].中国农学通报,2005,(03):215-217.
    王跃武,姜玉田.盐碱土种稻节水高产型灌溉制度的研究[J].黑龙江水利科技,1997,(1):80-83.
    王志春.松嫩平原盐碱地区发展水稻问题[J].国土与自然资源研究,1999(2):51-52.
    王遵亲,等.中国盐渍土[M].北京:科学出版社,1993.1.
    奚广生,王艳玲,等.松嫩平原低洼易涝盐碱地井灌水稻节水灌溉技术[J].吉林农业大学学报,2002,24(5):17-20.
    相慧,孔祥斌,武兆坤,史婧然,张青璞.中国粮食主产区耕地生产能力空间分布特征[J].农业工程学报,2012,28(24):235-244.
    谢承陶.盐碱土改良原理与作物抗性[M].北京:中国农业科技出版社,1993.
    许艳争.松嫩平原不同盐分补给类型盐渍土的水盐运移规律研究[D].东北师范大学,2008.
    杨富亿,李秀军,王志春,等.鱼-稻-苇-蒲模式对苏打盐碱土的改良[J].农业现代化研究,2004,(04):306-309.
    杨国荣,刘文通,温新,等.东北松辽平原苏打盐碱土改良利用研究(第二报)-种稻改良利用苏打盐碱土的农业技术措施及其改土效果[J].吉林农业科学,1964,(03):17-24.
    袁宇明,潘昌保.江淮滨海重盐土地区水稻节水灌溉可行性试验初探[J].水利水电科技进展,1999,01:62-64.
    曾晔.松嫩平原盐渍土积盐条件与盐分补给类型的空间分异研究[D].东北师范大学,2006.
    张殿发,林年丰.松嫩平原第四纪以来生态环境演化的影响因素[J].吉林地质,2000,19(1):23-29.
    张利,傅景林.对盐碱地井水种稻节水灌溉的探索[J].内蒙古农业科技,1993,(3):4-5.
    张瑞珍.盐碱胁迫对水稻生理及产量的影响[D].吉林农业大学,2003
    张蔚榛,张瑜芳.对灌区水盐平衡和控制土壤盐渍化的一些认识[J].中国农村水利水电,2003,8:13-18.
    张蔚榛,张瑜芳.对灌区水盐平衡和控制土壤盐渍化的一些认识[J].中国农村水利水电,2003,(8):13-18.
    张秀勇.盐碱耕地水稻控制灌溉技术研究[D].河海大学,2002.
    张英,张红旗,李秀彬.近20年中国农业主产区耕地资源质量和产能变化研究[J].地理与地理信息科学,2011,27(04):52-55.
    章光新.东北粮食主产区水安全与湿地生态安全保障的对策[J].中国水利,2012,15,9-11.
    章光新.松嫩平原水资源可持续利用战略探讨[J].水土保持通报,2004,(01):69-73.
    郑冬梅.松嫩平原盐渍土水盐运移的节律性研究[D].东北师范大学,2005.
    周斌,李凤霞.水稻节水灌溉生长条件下农田水盐动态运移模型[J].宁夏农林科技,2007,(05):19-21.
    周义成,田雨春,陈宝忠,李孟双,吴风晨,姜海轩.水稻“浅、晒、浅湿”灌溉技术[J].内蒙古民族大学学报,2008,14(2):84-85.
    朱庭芸,高佩文.盘锦种稻改良盐碱土的回顾与展望[J].垦殖与稻作,1996,(01):9-11.
    朱巍.松嫩平原浅层地下水水质状况发展趋势研究[D].吉林大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700