微咸水灌溉土壤水盐分布及苜蓿生长特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理的开发利用微咸水是缓解农业淡水资源短缺的重要途径。本文在查阅国内外有关微咸水地面灌溉研究成果的基础上,采取了理论分析与室内外试验相结合的方法,微咸水灌溉土壤水盐运移特征及苜蓿耐盐特性进行了研究,取得了如下结论。
     1.相同入渗水量,不同矿化度微咸水间歇入渗试验表明,相同入渗历时内,随着入渗水矿化度的增大,累积入渗量增加,土壤入渗深度逐渐增大;淡水间歇入渗有减渗效果,而微咸水间歇入渗发生增渗现象。停水阶段停水时间越长,微咸水间歇入渗比连续入渗湿润深度增大越显著,增加湿润深度效果随着矿化度的增大而增大。同一土层含水量随着矿化度的增大而减少,间歇入渗较连续入渗土壤含水量分布均匀,微咸水间歇入渗有利于盐分离子向下层土壤运移,表层浓度较低,湿润峰处盐分积累;
     2.相同灌水量,不同咸淡交替间歇入渗的试验表明,交替入渗次序对土壤入渗速率有很大的影响,第一阶段入渗水质对土壤入渗特性起决定性的作用,且第一阶段入渗微咸水,入渗速率则快;交替入渗次序对土壤水分分布的影响并不明显。交替次序淡咸淡和咸淡咸入渗后,土壤剖面上盐分浓度相对较低,尤其淡咸淡交替方式,表层盐分浓度较低,有利于盐分向深层土壤移动,在实际中,有利于作物吸水。有利于Na+向深层土壤运移及Na+的淋洗;淡咸淡交替方式最佳,更有利于Ca2+保存于表层土壤中。
     3.施钙条件下微咸水间歇入渗实验表明,入渗水中钙离子浓度的增大有利于微咸水中所带钠离子向下运移,钙离子阻碍表层土壤吸附微咸水中的钠离子,表层钠离子浓度降低,在实际中有利于作物生长。
     4.盆栽苜蓿耐盐试验表明,以出苗率达到80%为苜蓿苗期耐盐标准,在土壤初始含盐量为0.08%时,灌溉水质不能超过7g/L;在土壤初始含盐量0.3%时,灌溉水质不能超过3g/L;在土壤初始含盐量0.6%时,灌溉水质只能是淡水。在灌溉水质1g/L时,土壤初始含盐量不能超过0.6%;在灌溉水质3g/L时,土壤初始含盐量不能超过0.3%;在灌溉水质5g/L时,土壤初始含盐量不能超过0.3%。土壤含盐量和灌溉水质对苜蓿分枝数无明显的影响,分枝数只与苜蓿的生育期有关。
     5.田间灌溉矿化度等于或大于5g/L后,土壤出现轻度盐化;苜蓿产量随着灌水矿化度的增加而降低;苜蓿的株高随矿化度的增大先增大后减小;混灌时灌水矿化度尽量控制在5g/L范围以内,一是防止微咸水灌溉造成土壤盐化现象的发生,而是保证苜蓿一定的产量。
     6.田间咸淡轮灌实验表明,轮灌条件下土壤含盐量与苜蓿产量均介于淡水与咸水之间,采用咸淡咸轮流灌溉的方式有利于提高作物产量。
     7.田间石膏改良试验表明,施钙量越大,土壤盐分浓度越大,表层土壤钠离子含量越低,苜蓿产量越低,故选择低钙量70g/(2*3)m2适当,即能降低表层土壤钠离子含量的同时土壤盐分浓度不会太高,而且产量上相对有一定的保证。
Reasonably development and utilization of saline water is an important approach of relieving the agricultural freshwater resource shortage. On the basis of using for reference of saline water sueface irrigation research findings both abroad and home, the paper adopt method of combining theoretical analysis and laboratory and field experiments, soil water and salt distribution characterisrics and alfafa growth characterisrics by saline water irrigation was studied, the impact on it made conclusions as below:
     1.Experiments in soils with the same irrigation quantity and different saline water intermittent infiltration showed that soil cumulative infiltration and soil depth of infiltration increase with increase of at the same infiltration time. Freshwater intermittent infiltration was infiltration reduction, but saline water intermittent infiltration was increased permeation,and the more long was water pause time at intermittent stage, the more prominent was enlargment of soil depth of infiltration saline water intermittent infiltration than continuous infiltration,and enlargement of increased permeation was increased with increase of salinity. Water content was decreased with increase of salinity at the same soil layer, and the distribution of soil water content on intermittent infiltration was uniformer than continuous infiltration. Saline water intermittent infiltration was beneficial to salt ions towards on subsoil movement. The surface concentration of salt ions was lower, but salt accumulation appeared on the soil profile.
     2.Experiments in soils with the same irrigation quantity and alternating intermittent infiltration with saline and fresh water showed that alternating infiltration sequence has great effect on infiltration rate. Infiltration water quality of the first stage played a decisive role on soil infiltration characteristics, and when saline water infiltration at the first stage, infiltration rate was faster. Alternating infiltration sequence had no significant effect on soil water distribution. After alternating infiltration sequence fresh-saline-fresh and saline-fresh-saline infiltrating, salt concentration in soil profile was lower, especially fresh-saline-fresh sequence, salt concentration in upper soil layer was the lowest, it was beneficial to salt ions towards on subsoil movement, and was beneficial to absorbing water of crop at actual. And even alternating sequence of resh- saline- fresh was beneficial to surface soil leaching sodium ions and storing calcium ions in surface soil.
     3.Experiments in soils with soil water and salt transport features of saline water intermittent infiltration and under calcium fertilizer application showed that the increase of calcium ions concentration in infiltrating water was beneficial to sodium ions of saline water moved towards to subsoil. Calcium ions hindered surface soil to absorb sodium ions of saline water, the decrease of sodium ions concentration in surface soil was beneficial to crops growth.
     4. Experiments in pot with alfafa salt tolerance showed that, seedling emergence rate reaching 80% was used as the seedling stage standard,when initial soil salt content was 0.08%, salinity water was less than 7g/L; When initial soil salt content was 0.3%, salinity water was less than 3g/L; When initial soil salt content was 0.6%, salinity water only was freshwater; But, when irrigation water quality was 1g/L, soil salt content was less than 0.6%;when irrigation water quality was 3g/L, soil salt content was less than 0.3%; when irrigation water quality was 5g/L, soil salt content was less than 0.3%. Initial soil salt content and irrigation water quality had on significant effect on alfafa branch number, alfafa branch number was related to growth period of alfafa.
     5. The field mixing irrigation experiments showed that the soil salinity occurred when the concentration was larger than or equal to 5g/L.The alfafa yield decreased with the increasing salinity of irrigation water. The alfafa plant height increased at first then decreased with the increasing salinity of irrigation water. So the suitable concentration of irrigation water was should be less than 5g/L, one was preventing saline water irrigation to the soil salinity,the other was ensured a certain alfafa yield.
     6. The field experiments with saline and fresh water alternating irrigation showed that soil salt content and wheat yield were between that with saline water or fresh water only. The saline and fresh water alternating irrigation may improve alfafa yield.
     7. The field experiments with gypsum improvement showed that the greater Ca application. the greater soil salt concentration, and the lower alfafa yield. So selection lower Ca application 70g/(2*3) m2 was better, both decreased soil calcium ions contents in surface soil and soil salt concentration was't too high, and even ensured a certain alfafa yield.
引文
[1]UNFAO, Crops and Drops, ww.fao.org/DOCREP/005/Y3918E/y3918el0.htm.
    [2]孙景生、康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报.2002,3,16(2).
    [3]United Nations Population Division, Woeld Population Prospects, The 2000 Revision, Highlights*, DRAFT, Feb.28,2001.
    [4]乔玉辉,宇振荣,张银锁,等.微咸水灌溉对盐渍化地区冬小麦生长的影响和土壤环境效应[J].土壤肥料,1999(4):11-14
    [5]马太玲等.内蒙河套灌区建立回归水灌溉系统可行性分析[J].灌溉排水,2001,20(2).
    [6]J,D.Rhoades, A.Kandiah and A.M.Mashali. The use of saline waters for production-FAO irrigation and drainage paper 48.
    [7]李国正,简明凯.河北省节水高效农业的建设途径与保障措施[J].南水北调与水利科技,2007,10,5(5)
    [8]许迪.现代节水农业技术研究进展与发展趋势[J].高技术通讯.2001,12.
    [9]王成章.不同苔稽品种比较试验[J].华中农业大学学报.2002,21(1):44-46.
    [10]洪级曾.草业与西部大开发[M].北京:中国农业出版社,2001.
    [11]胡跃高.中国首稽草产业化发展战略分析[J].草业科学.1996 13(4):44-50.
    [12]孟昭仪.苜蓿品种引种鉴定及推广应用研究[M].北京,1986.
    [13]陆静梅,李建东,周道玮,等.松嫩平原5种盐生牧草耐盐结构研究[J].草业科学.1999,5(2):9-13.
    [14]毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展[J].中国生态农业学报,2004,12(1):43-46.
    [15]石德成,赵可夫.NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响[J].草业科学,1997,6(2):51-61.
    [16]杨富裕,周禾.草坪草抗盐性研究进展[J].草原与草坪,2001,92(1):10-15.
    [17]王丹、康跃虎、万书勤.微咸水滴灌条件下不同盐分离子在土壤中的分布特征[J].农业工程学报,2007,2,23(2).
    [18]张芮,成自勇,宋淑珍,等.土壤盐分和浓度对苜蓿建植初期的耦合效应[J].草地学报.2007,11,15(6)
    [19]王广军.盐碱地紫花苜蓿种植技术[J].动物科学与动物医学.2002,9,19(9)
    [20]王明珍;王玉珍.盐碱地紫花苜蓿种植技术[J].特种经济动植物,2005,01.
    [2l]梁云媚,多立安,李燕等.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学.1998,15(6):21-25.
    [22]杨青川等编著.苜蓿生产与管理指南[M].北京:中国林业出版社,2001,9,28-29.
    [23]石德成,盛艳敏.复合盐碱生态条件的人工模拟及其对羊草生长的影响[J].草业学报.1998,7(1):36-41.
    [24]仪慧兰,季秀兰.盐胁迫浓度与大麦幼苗生长分裂和遗传损伤的相关性研究[J].植物研究,2001,21(4):592-595.
    [25]梁云媚,多立安,李燕,等.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学.1998,15(6):21-25.
    [26]韩建国.实用牧草种子学[M].北京:中国农业大学出版社,1997,9,93-95.
    [27]王学文,蔺彩虹,等.NaHCOs胁迫对大叶紫花苜蓿生理特征的影响[J].草业科学.2007,2,26.
    [28]Simmune J., M. Sejna, M. Th. van Genuchten. The Hydrus-1D Software Package for Simulating the One Dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media. http://www. ussl. ars. usda. gov.1998.
    [29]黄修桥,等.节水灌溉与21世纪水资源的持续利用,灌溉排水[J],2001,20(3):1-5.
    [30]马太玲,等.内蒙河套灌区建立回归水灌溉系统可行性分析.灌溉排水[J].2001,20(2).
    [31]Rhoades, J.D., A.K..Andiah and A.M.Mashali.The use of saline waters for Produetion.FAO irrigation and drainage PaPer 48.
    [32]郭永杰,崔云岭,吕晓东,等.国内外微咸水利用现状及利用途径.甘肃农业科技[J].2003,8.
    [33]Dutt G.R, Pennington D.A. and Turner F.Jr.1984. Irrigation as a solution to salinity problems of river basins. In:Salinity in Watercourses and Reservoirs. R.H.French (ed.).Ann Arbor Science, Michigan, pp.465-472.
    [34]吴兰.澳大利亚机械化旱作节水农业和保护性耕作情况[J].四川农机,2001,(2):20-21.
    [35]王全九,徐益敏,王金栋,等.咸水与微咸水在农业灌溉中的应用[J].灌溉排水.2002,12,21(4).
    [36]Van Hoorn J. W.1971.Quality of irrigation water, limits of use and prediction of long-term effects. In Salinity Seminar, Baghdad. Irrigation and Draninage Paper 7.FAO, Rome:117-135.
    [37]蔺海明.世界农业[J],1996(2).
    [38]宛成刚.对以色列农业的考察与思考[J].南京农专学报,1999,15(1):53-54.
    [39]陈双庆.以色列高效利用水资源[J].瞭望.2005,41.
    [40]邵孝侯,单捷.世界农业与农业工程的发展现状及发展政策[J].农业开发与装备,2007,4.
    [41]佚名.以色列沙漠里的奇迹[J].农业技术与装备.2007,11.
    [42]Van Hoorn J. W.1971.Quality of irrigation water, limits of use and prediction of long-term effects. In: Salinity Seminar, Baghdad. Irrigation and Draninage Paper 7.FAO, Rome:117-135.
    [43]张建新,王爱云.利用咸水灌溉碱茅草的初步研究.干旱区研究[J],1996,4:30-33.
    [44]王卫光,王修贵,沈荣开,等.微咸水灌溉研究进展[J].节水灌溉.2003,2.
    [45]尉宝龙,等.咸水灌溉试验研究[J].人民黄河,1997,9:28-32.
    [46]张会元.咸水利用可行性分析[J].天津农林科技,1994,3:18-19.
    [47]褚贵发,等.水稻微咸水灌溉试验及开发研究[J].中国农村水利水电,1999,215-18.
    [48]王洪彬.沧州地区利用微咸水灌溉分析[J].河北水利水电技术,1998,4:4-5.
    [49]乔玉辉.微咸水灌溉对盐碱地地区冬小麦生长的影响和土壤环境效应[J].土壤肥料.1999,4:11-14.
    [50]郑九华,等.秸秆覆盖条件下微咸水灌溉棉花试验研究[J].农业工程学报.2002,18(4).
    [51]郑九华,等.7g/l微咸水灌溉棉花试验研究[J].灌溉排水.2002,21(3).
    [52]刘友兆,付光辉.中国微咸水资源化若干问题研究[J].地理与地理信息科学.2004,3,20(2).
    [53]雷廷武、肖娟、王建平等.微咸水滴灌对盐碱地西瓜产量品质及土壤盐渍度的影响[J].水利学报.2003,4.
    [54]尉宝龙,邢黎明,牛豪震.1997.咸水灌溉实验研究.人民黄河,9:28-32.
    [55]杨树青,杨金忠,史海滨.2007.不同作物种植条件下微咸水灌溉的土壤环境效应试验研究.灌溉排水学报,26(6):55-59.
    [56]乔冬梅,吴海卿,齐学斌,胡超,朱东海,樊向阳.2007.不同潜水埋深条件下微咸水灌溉的水盐运移规律及模拟研究.水土保持学报,21(6):7-15.
    [57]王丹,康跃虎,万书勤.2007.微咸水滴灌条件下不同盐分离子在土壤中的分布特征.农业工程学报,23(2):83-87.
    [58]史晓楠,王全九,巨龙.2007.微咸水入渗条件下Philip模型与Green-Ampt模型参数的对比分析.土壤学报,44(2):360-363.
    [59]吴忠东,王全九.2007.利用一维代数模型分析微咸水入渗特征.农业工程学报,23(6):21-26.
    [60]王艳娜,侯振安,龚江,等.咸水资源农业灌溉应用研究进展与展望[J].中国农学通报.2007,02.
    [61]薛峰.杨劲松.劣质水的灌溉利用,土壤[J],1997,5.
    [62]Nikos J. Warrence,Dr. James W. Bauder,Krista E. Pearson,LRES Department, MSU-Bozeman.2003. Basics of Salinity and Sodicity Effects on Soil Physical Properties.water quality and irrigation management.
    [63]Feigen A.1990. Effect of irrigation with treated sewage effluent on soil, plant and environment, irrigation with treated sewage effluent. Management for Environmental Protection.
    [64]Xiao Zhenhua, B. Prendergast and P. Rengasamy,1992, Effect of irrigation water Quality on Soil Hydraulic Conductivity. Pedosphere, Vol.2, No.3,237-244.
    [65]Pasternak.1995. Irrigation with Brackish water under desert conditions Ⅺ.Salt tolerance in sweet-corn cultivars. Agric. Wat. Manag.28:325-334.
    [66]Magaritz-M; Nadler-A. Agrotechnically included salinization in the unsaturated zone of loessial soils, N.W.Negev, Israel.Ground-Water.1993,31:3,363-369.
    [67]Zartman,-R.E.; Gichuru,-M. Saline Irrigation Water:Effect on Soil Chemical and Physical Properties. Soil Science, Vol.138, No.6, p417-422, December,1984.
    [68]Sharma-DP; Singh-KV; Rao-KVGK; Kumbhare-PS.Reuse of saline drainage water for irrigation in a
    sand loam soil.Proceedings Symposium on Land Drainage for Salinity control in Arid and Semi-arid regions, Cairo.1990, Vol.3,304-312.
    [69]McNeal, B.L. and Coleman, N.T. (1996) Effect of Solution composition on soil hydraulic conductivity.Soil Sci. Soc. Amer.Proc.30:308-312.
    [70]Hamdy,-A. General advancement of research on saline irrigation practices and management. Transaction-of-the-Chinese-Society-of-Agriculture-Engineering (China).1993.9 (3):34-44.
    [71]苏莹.微咸水地面灌溉实验研究:[硕士学位论文].西安:西安理工大学,2006.
    [72]张余良,邵玉翠,严晔瑞,等.微咸水灌溉农作物生长的改善技术研究[J].农业环境科学学报.2006,25(增刊):295-300.
    [73]李取生,王志春,李秀军.2002.苏打盐渍土壤微咸水淋洗改良技术研究,地理科学,22(3):342-348.
    [74]郭晔红,张晓琴,胡明贵.紫花苜蓿对次生盐渍化土壤的改良效果研究,甘肃农业大学学报2004.
    [75]王德清,郭鹏程,董翔云.氯对作物毒害作物的研究[J].土壤通报,1990,21(6):258-261
    [76]高战武.紫花苜蓿对复合盐碱胁迫的适应性响应:[硕士学位论文].长春:东北师范大学,2006.
    [77]李加宏,等.水-土壤-植物系统中盐分的迁移和植物耐盐性研究进展[J].土壤学进展.1995,23(6).
    [78]谢承陶主编.盐渍土改良原理与作物抗性[M].中国农业科技出版社,1992.
    [79]郑九华,等.微咸水处理对玉米、棉花发芽和出苗的影响,山东农业大学学报,2002,33(2):158-161.
    [80]田桂萍,等.盐碱土壤小麦体内盐分含量动态变化规律[J].灌溉排水.1997,16(4).
    [81]肖振华,等.微咸水水质对土壤化学特征和作物生长的影响[J].土壤学报.1997,34(3)
    [82]张展羽,郭相平.微咸水灌溉对苗期玉米生长和生理性状的影响[J].灌溉排水[J].1999,18(1).
    [83]H.A.Esechie,A.Al-Saidi and S.Al-Khanjari.2002.Effect of Sodium Chloride Salinity on Seedling Emergence in Chickpea.J.Agronomy&Crop Science.188:155-160.
    [84]王全九,邵明安,郑纪勇.土壤中水分运动与溶质迁移[M].中国水利水电出版社,2007.
    [85]Malash N, Flowers T J, Ragab R.2005.Effect of irrigation systems and water management practices using saline and non-saline water on tomato production[J]. Agricultural Water Management, 78(1):25-38.
    [86]于天任,王振权.土壤分析化学[M].北京:科学出版社,1988.
    [87]王文焰.波涌灌设计研究与应用[M].西安:西北工业大学出版社,1994.
    [88]吴军虎,费良军,赵茜,等.土壤间歇入渗水肥耦合特性试验研究[J].农业工程学报,2006,22(4):28-31.
    [89]贾辉,张宏伟,费良军.循环率对一维间歇入渗土壤水、氮运移分布影响的室内试验.农业工程学报[J].2007,23(2):92-96.
    [90]Blair A W, Smerdon E T. Feedback-controlled surge irrigation infiltration [J].Journal of Irrigation and Drainage Engineering,1987,113(4):497-515.
    [91]Fekersillassie D, Eisenhauer D E. Feedback-controlled surge irrigation:Ⅰ.Model development [J]. Transactions of the ASAE,2000,43(6):1621-1630.
    [92]吴军虎,费良军,李怀恩,等.波涌灌溉土壤间歇入渗数学模型研究现状[J].水土保持学报,2003,17(5):51-53.
    [93]汪志荣,王文焰,张建丰.波涌畦灌入渗规律及数值模拟[J].水利学报,1995(1):75-80.
    [94]王文焰,汪志荣,费良军,等.波涌灌溉的灌水质量评价及计算[J].水利学报,2000(3):53-58.
    [95]I.山伯格,J.D.鲁斯特,鲁光四译.灌溉水质[J].水利电力出版社,1984.
    [96]Shalhevet, J.1994. Using water of marginal quality for crop production:major issues. Agricultural-Water-Management [J].25(3):233-269.
    [97]刘贤赵,康绍忠.连续与间歇积水入渗对比试验研究[J].水科学进展,1999,3,10(1):53-57.
    [98]吕殿青,王全九,王文焰.土壤盐分分布特征评价.土壤学报[J],2002,Vol.(5):720-725.
    [99]王艳娜,侯振安,龚江,等.咸水资源农业灌溉应用研究进展与展望[J].中国农学通报,2007,2.
    [100]Zohard A Samani, Wynn R Waker, Lymans willardson. Infiltration under surge irrigation. American Society of Agricultural Engnieers, American,1985,28(5):1539-1542.
    [101]洪级曾.草业与西部大开发[M].北京:中国农业出版社,2001.
    [102]胡跃高.中国首稽草产业化发展战略分析[J].草业科学.1996 13(4):44-50.
    [103]孟昭仪.苜蓿品种引种鉴定及推广应用研究[M].北京,1986.
    [104]Godfrey W N, John C O, Erwin B. Sorghum and Salinity:Ⅰ. Response of Growth, Water Relations, and Ion Accumulation to NaCl Salinity [J],Crop Sci,2004,44:797-805.
    [105]郭会荣,靳孟贵,高云福.冬小麦田咸水灌溉与土壤盐分调控试验.地址科技情报[J],2002,Vol.21(1):95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700