吉林省西部地区盐渍土环境下混凝土耐久性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土耐久性问题是混凝土材料科学领域的一项重要研究课题。随着混凝土的广泛应用,使用环境的日益恶化,混凝土工程受环境侵蚀的危害性也日益增加,即环境条件的严酷程度决定了混凝土结构工程寿命的长短。在国家自然科学基金项目“东北季冻区路基水份迁移的微观机理研究”(No.406721780)和国家自然科学基金项目“不同气候带几种表生特殊土的形成环境及演化趋势”(No.40911120044)、博士点基金“干湿冻融循环对吉林西部分散土的影响及机理研究”(No.20120061110054)资助下,本文针对吉林西部盐渍土分布区内的混凝土工程为研究对象,结合吉林西部地区的气候条件与土壤环境等因素,开展了混凝土耐久性的研究工作,主要揭示盐蚀、干湿、冻融等单一或多重因素作用下混凝土性能的衰变规律,进行不同环境因素或土壤情况下混凝土破坏机理分析与评价,以及混凝土耐久性的诸多影响因素与其质量或动弹性模量的关联度分析,以减少季冻区盐碱土对混凝土工程耐久与安全的潜在威胁,并进一步完善混凝土耐久性研究的理论体系。
     吉林省大安市是松嫩平原土壤盐渍化最严重的地区之一,以苏打盐渍土为主,境内的土壤及地表水中的易溶盐分量相似。针对大安盐渍土区的自然环境特点,模拟实际工程的环境条件设计了四种试验工况,即盐浸、盐蚀-干湿、盐蚀-冻融、盐蚀-冻融-干湿试验;并根据大安春季土壤中主要易溶盐的种类与含量,配制了不同浓度的复合盐侵蚀溶液,根据复合盐中的各种易溶盐分别配置了单盐侵蚀溶液进行对比试验;制备五种不同配合比的基准混凝土、粉煤灰混凝土、引气混凝土试件,进行了以下四组试验:混凝土的复合盐或单盐溶液长期浸泡试验、复合盐或单盐-干湿循环试验、复合盐或单盐-冻融循环试验、复合盐或单盐-冻融-干湿循环试验,以质量与动弹性模量的变化作为混凝土耐久性能的评价指标;同时,通过物理、电镜扫描及超声波等手段进行混凝土在各种试验工况下的性能研究,包括混凝土的破坏规律、破坏机理分析、宏观现象、微观结构、质量损失与动弹性模量衰减规律、以及影响因素等。在以上试验数据的基础上,利用灰关联度法和粗糙集理论对浸泡时间、冻融循环次数、干湿循环次数、冻融-干湿次数、复合盐浓度、含气量、粉煤灰掺量7个影响因素分别与混凝土的质量损失率、相对动弹性模量的关系进行分析,确定各影响因素对混凝土耐久性影响程度的大小,计算权重,并进行不同环境条件下混凝土动弹性模量的衰减规律评价,从而对吉林省西部地区盐渍土环境下混凝土耐久性进行深入研究。
Along with the wide application of concrete and increasing deterioration of the servingenvironment and resulted from the changes of temperature, humidity, water levels and thecorrosion of acid, alkali, salt, etc., the problems of premature aging and disease in theconcrete projects have been gradually drawn the attention by the field of civil engineering.
     The western region of Jilin province locates in the south-central Songnen plain and lyingto the north of Liaohe plain. Not only is it a typical season frozen area of northeast part ofChina, but one of the areas with the most serious soil salination.
     As the research subject in this paper, Da’an city of Jilin province situates in thehinterland of Songnen plain, it is not only a typical season frozen area of northeast part ofChina, but one of cities with the most serious soil salination in Jilin province. The saline soilin Da’an area belongs to carbonate (hydrogen) saline soil. With the bad physical and chemicalproperties and high PH value, the soil highly riches in salt and its composition is complex.Na+takes high proportion in its Cation, while HCO-3takes much of its Anion. In addition, theion species, such as Cl-, SO2-2++4, Mg, Ca2and K+
     ,are fully complete. The adverseengineering natures of melt sinking and salt expansion of the salt soil cause road diseases likethe differential settlement of highway subgrade, expansion, road frost boiling and frostheaving damage, etc. Besides, the ions of CO2-3, HCO-3, SO2-4, Cl-affects the buildings, roads,bridges, dams, lateral canals, etc. Meanwhile, the harsh climate and many externalenvironmental factors (such as freeze-thaw cycles, dry-wet cycles, salt corrosion, etc.) result in damages and corrosion of the concrete materials and lead to degradation of concretestructure and threatening the duration and safety of such concrete structures.
     The domestic and overseas scholars have been studying the durability of concrete underdifferent environmental conditions, but their more attention is offered on the problems aboutconcrete durability under the effect of single factor like freeze-thaw cycle, chloride saltcorrosion, sulfate corrosion, and dual factor of salt corrosion and freeze-thaw. Study objectsare focused on the city roads and bridges by scattering the deicing salt, concrete engineeringcoastal areas and offshores or in the salt lake regions. Thorough studies are made onfreeze-thaw failure mechanism of concrete and chlorine salt erosion. While, few studies areengaged in concrete durability under the effect of complex factors in season frozen zones andlack of the corresponding literature and research achievements.
     In this thesis, the soil samples obtained from Da’an saline soil area are analyzed to definethe composition of soluble salt in order to make single and multi-salt erosion solution.Combining with the environment and climate features in the saline soil area of the west ofJilin, the thesis designs the test conditions of concrete durability. Considering the actualconstruction requirements of concrete projects and the engineering application of mixtureratio of concrete, the thesis designs five groups of mix ratio concrete specimens at the samestrength grade including normal concrete, fly ash concrete, air-entraining concrete, prismconcrete specimen with dimensions of40mm×40mm×160mm. The above five specimens areused to conduct four kinds of tests of salt solution soak, salt erosion and dry-wet cycling, salterosion and freeze-thaw cycling under the condition of multi-salt environment. The contrasttests are made as well under the condition of single salt environment on the basis ofevaluation norms of the mass and dynamic elastic modulus of concrete. Meanwhile, differentmeans such as physical and electron microscopic scanning, ultrasonic testing are used to studythe concrete behaviors under various test conditions including mechanism analysis,macroscopic phenomena, microcosmic structure, reduction laws of mass and dynamic elasticmodulus and influencing factors to concrete damages. Based on the testing results, the graycorrelation and rough set theories are applied to determine the correlation degree betweeninfluencing factors and concrete durability and the weight coefficients of factors. MATLABprogram is used to establish the evaluation models and suitable conditions, so that attenuation rule of dynamic elastic modulus of concrete can be evaluated under different environmentconditions.
     The main research content of this thesis is as follows:
     1. In actual engineering projects, many concrete structures are corroded by a variety ofsoluble salts because of lying long-term in the saline soil or ground water. In this thesis, thesalt soaking method is used to imitate the damage and changeable laws of concrete which iseroded by soluble salt over a long period of time. Test results show that the exposed part ofconcrete in multi-salt solution grows “mildew” due to the salt crystallization. Normal concreteand fly ash concrete are relatively serious, while air-entraining concrete shows better. It alsoshows that the lower air content, the smaller dosage of fly ash is, the higher multi-salt solutionconcentration, the more serious salt crystallization is. Little changes are found on theappearance, mass and dynamic modulus of elasticity of the concrete soaking in water. But forthe concrete in multi-salt solution, the rate of mass loss shows the change from reduction togrowth. The greater multi-salt solution concentration, the faster mass loss of concrete is. Ratesof mass loss from large to small in turn are normal concrete, fly as concrete and air-entrainingconcrete. Relative dynamic elastic modulus of the concrete long-term soaking in multi-saltsolution appears growth at first and declines later. The higher multi-salt solution concentration,the faster decline of relative dynamic elastic modulus is. Both fly ash concrete andair-entraining concrete can improve concrete the resistance ability against salt corrosion,while the air-entraining concrete can mostly improve that.
     Through the contrast experiments on single salt soaking, the loss degree of the concretemass influenced by each salt ranks as NaCl> Na2SO4> NaHCO3> Water. The loss degree ofrelative dynamic elastic modulus of concrete influenced by each salt ranks as Na2SO4>NaHCO3> NaCl> Water.
     2. Dry-wet alternate effect is one of the important factors to affect the durability of theconcrete structures which are frequently suffering from the environment of changeabletemperature and humidity and under the condition of salt corrosion. The degree of concretedamage under the environment of salt corrosion is more serious than that in wet environmentpersistently. Through the tests of multi-salt or single salt erosion and dry-wet cycling, it isfound that the loss of concrete mass and dynamic modulus of elasticity is related to many factors such as types of salt, salt solution concentration, dry-wet cycle times, air content, thedosage of fly ash, etc. At the early stage of test, the mass of specimen increases to some extent.And then with the increasing times of dry-wet cycling, mass loss begins to speed up. Seriousconcrete spalling is found at20mm to40mm above the solution surface, and some specimenseven break at this part. The dynamic elastic modulus of concrete shows growth firstly andthen downward after reaching certain cycles. When the concentration of salt solution isexceeding26%, the dynamic elastic modulus of concrete does not show ascent stage, damageof concrete is faster and more serious. Both the air-entraining concrete and fly ash concreteare capable of improving the resistance to the damages of salt corrosion and dry-wet cycling.But the resistance of air-entraining concrete to salt corrosion and dry-wet cycling is betterthan fly ash concrete.
     Through the contrast tests of single salt and dry-wet circulation, the influence degree ofeach dissolved salt in the saline soil on the mass and dynamic modulus of elasticity ofconcrete ranks as NaHCO3> Na2SO4> NaCl> Water.
     3. By rapid freezing method, the thesis draws the following conclusion: under the actionof double factors of multi-salt erosion and freeze-thaw cycles, frost damage of concrete in saltsolution occurs much more serious than concrete in water, and the higher concentration of saltsolution is, the more serious damage of the concrete has. Introducing air-entraining agent intoconcrete does improve concrete resistance against frost damage, the higher the air content is,the better the concrete resistance against the salt frost is. For the low strength concrete, it issuggested to improve concrete resistance to the salt frost by increasing the air content. WhileFly ash concrete has not shown good frost resistance and salt frost resistance, even worse thanordinary concrete. Therefore it is unfavorable to use fly ash concrete into the concreteengineering where freeze-thaw and salt freezing damage easily happens.
     Each kind of single salt erosion solution has different influence on concrete resistanceagainst salt frost. Chloride salt mainly causes concrete spalling from the surface to inside.Sulfate salt makes concrete frozen and broken in the middle of the specimen, while concreteon the surface does not fall off seriously. The concrete damaged by soda salt combines thedamages features of chloride and sulfate salt, which concrete breaks in the middle part andseriously spalls on the surface.
     4. Considering the particularity and rigors of the climate and environment in the westernsaline-alkali soil distribution in Jilin Province, the concrete engineering is extremelyvulnerable to environmental factors such as salt corrosion, freeze-thaw, dry-wet alternatingaction together.
     In this paper, concrete durability tests under the condition of multiple factors action suchas salt corrosion, freeze-thaw cycling, and dry-wet cycling are conducted. The test resultsshow: the mass loss and dynamic elastic modulus decay very quickly. Durability of concreteis closely related with its mixing ratio, the type of salt, its concentration of salt solution, andtimes of cycle. The resistance to salt corrosion, freeze-thaw, dry-wet action of air-entrainingconcrete is much better than fly ash concrete and ordinary concrete. The higher the saltsolution concentration, the more serious the concrete damage, and it obviously decreases thetimes of dry-wet action. The damage of concrete becomes even more serious with thedecreasing times of salt corrosion, freeze-thaw and dry-wet cycling.
     Concrete damage under the environment of multi-salt after freeze-thaw and dry-wetcycle is earlier and more seriously than the action of single freeze-thaw or dry-wet cycle. Theserious degradation of concrete performance is resulted from the cooperation of multi-salterosion, freeze-thaw, and dry-wet cycle. The various actions affect each other, and promoteeach other. While the damage of multifactor with salt erosion, freeze-thaw, and dry-wet cycleis not simple adding together.
     5. After analysis of the damage mechanism to concrete, salt erosion is an importantfactor to cause the degradation of concrete performance. The concrete demage caused by saltsincludes two aspects: chemical erosion damage and physical damage of salt crystallization.
     Under the condition of long-time soaking in multi-salt solution, the physical damage ofsalt crystallization is easier to implement in normal temperature environment. The saltschemical erosion to concrete is a long and slow process and can not complete within a shorttime, but it will be involved after long time.
     Under the action of double factors of salt corrosion and dry-wet cycle, physicalcrystallization damage of various salts is a major cause to the degradation of concreteperformance. Under the environment of harmful salts presence, salt corrosion and freeze-thawcycle have the positive effects to concrete, lowering both the freezing point and freeze-thaw damage. In addition, they can promote the development of crystallization pressure producedby salt crystals and osmotic pressure produced by salt concentration difference and ice-watersaturated vapor pressure difference. They can also make the negative effect of concreteexpansion and cracking. Continued salt erosion and freeze-thaw cycle exists overlappingdamage effects, which makes the negative effect greater than the positive effect gradually. Theperformance of concrete will deteriorate continuously, and eventually destroyed. While thesituation of concrete is more complicate under the action of salt corrosion, freeze-thaw, anddry-wet alternate action. All kinds of damage factors accumulate the concrete damage, and htconcrete damage effects of all kind of salts promote each other and influence each other, butcan not be regarded as the simple accumulation of each salt action.
     6.From the test results in this paper, the influence factors of concrete durability isclassified into:①external factors, such as dry-wet alternate action, freeze-thaw cycle, saltscorrosion, corrosion time, etc.;②internal factors, such as water-cement ratio of concrete, Porestructure of concrete, whether with mixed additives, and type of additive, etc. On the whole,environment condition factors have a great influence on the durability of concrete, that is, theworse of the environment determines the worse damage to concrete. Therefore, the harshenvironment determines the degree of concrete durability.
     7.By using the grey correlation theory, we can evaluate the various factors to influencethe durability of concrete, correlation degree between the various factors and mass loss ranksas freeze-thaw and dry-wet cycling times> dry-wet circling times> freeze-thaw cycling times>multi-salt concentration> air content> soaking time> fly ash content. In addition, thecorrelation degree between the various factors and dynamic elastic modulus decay ranks asfreeze-thaw and dry-wet cycling times> dry-wet circling times> freeze-thaw cycling times>air content> multi-salt concentration> fly ash content> soaking time. Among them, thevalue of associate degree between the air content and mass loss(γ=-0.738) or dynamic elasticmodulus loss(γ=-0.755) is minus, which shows that the influence of the air content on theloss of mass and dynamic elastic modulus is larger, the greater of air content is, the loss ofmass and dynamic modulus of elasticity is smaller. Therefore, in order to improve thedurability of concrete under the action of various environmental factors, the amount ofair-entraining agent in the concrete can be added more.
     By using the rough set theroy, we can determine the important degree of seven influencefactors to the loss of mass and dynamic modulus of elasticity, and the two rules are same. Theimportant degree ranks as freeze-thaw and dry-wet cycle, dry-wet cycle, freeze-thaw cycle,multi-salt concentration, air content, soaking time, fly ash content. The weight coefficients ofseven influence factors to the mass loss are0.2743、0.2012、0.1805、0.1273、0.0822、0.0813、0.0532respectively; and the weight coefficients of seven influence factors to the loss ofdynamic modulus of elasticity are0.2975、0.1913、0.1743、0.1158、0.0846、0.0703、0.0662respectively.
     In this paper, there are two norms, the loss rate of mass and dynamic elastic modulus, toevaluate the concrete damage. The value and change range of these two norms is so big thatthey are processed and compared through being put in the same coordinate system. TheDynamic elastic modulus are selected as the main evaluation index of concrete durabilitybecause it can more accurately and intuitively reflect the deterioration process of concreteperformance, timely and effective forecast failure behavior of concrete under the action ofdifferent environmental factors.The MATLAB program is applied to stablish the evaluationmodels and their application conditions, which can be used to evaluate and predict thedurability of concrete under different environmental condtions.
引文
[1] FHWA. High Performance Concrete (HPC) for Bridges[J]. Promotion Materials,1990:43-47.
    [2]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6.
    [3]洪定海.盐污染环境下混凝土结构钢筋腐蚀破坏的局部修复[J].建筑材料学报,1998(2):164-169.
    [4]黄士元,蒋家奋,杨南如,周兆桐.近代混凝土技术[M].西安:陕西科学技术出版社,1997:171-178.
    [5]李金玉.必须重视我国水工混凝土建筑物的耐久性[J].大坝与安全,1990(1):19-30.
    [6]郭荣泰,周嘉宁等.寒区路桥结构水泥混凝土耐久性状况调查报告.黑龙江省交通厅,2008.10.
    [7] Michel Pigeon, Jacques Marchand, Richard Pleau. Frost Resistant Concrete[J].Construction and Building Materials.1996,(10):339-348.
    [8]孙洪伟,王德君,曲祖光等.季节性冻土地区人工湖岸船台桩基础“冻拔”现象的观测[J].长春工程学院学报,2007,8(4):1-4.
    [9]孙洪,曲祖光,王德君等.人工湖岸船台桩基础“冻拔”防治措施的提出和实验[J].长春工程学院学报,2008,9(1):4-7.
    [10] Byeongchul Na, Ralph L. Webb. New Model for Frost Growth Rate[J]. InternationalJournal of Heat and Mass Transfer.2004,(47):925-936.
    [11] C. Andrade, J. Sarria, C. Alonso. Relative Humidity in the Interior of ConcreteExposed to Natural and Artificial Weathering[J]. Cement and Concrete Research.1999,(29):1249-1259.
    [12]“九五”国家重点科技攻关项目“重点工程混凝土安全性的研究”的专题之一“混凝土抗冻性的研究”总结报告.中国水利水电科学研究院,同济大学,2000.
    [13]赵卓,邢锋,曾力等.地下水中侵蚀性二氧化碳作用下的混凝土耐久性试验[J].硅酸盐学报,2013,41(2):224-229.
    [14]缪昌文,刘加平,慕儒,孙伟.混凝土抗除冰盐的剥落性能与机理研究[J].公路,2001,12:88-93.
    [15]毛立军.北京融雪剂请悠着点用.人民政协报,2006年3月20日第B01版.
    [16]洪乃丰.慎用氯盐除冰剂和防冻剂[J].低温建筑技术,1995,3:15.
    [17]李雪.氯盐类融雪剂对城区排污口水质及农作物种子发芽的影响[D].吉林大学硕士学位论文,2011.5.
    [18]洪乃丰.氯盐融雪剂是把“双刃剑”——浅议国外使用化冰盐的教训与经验田[J].城市减灾,2005,(4):19-21.
    [19]洪乃丰.氯盐类融雪剂的腐蚀危害与试验方法的讨论[J].工业建筑,2006,36(10):61-63.
    [20]王久良,王德库,梁龙等.融雪剂对混凝土抗冻耐久性的破坏性影响[J].吉林建材,2000,1:21-22,30.
    [21]王超,郭荣泰,杨全兵,等.水泥混凝土路面现场撒盐破坏试验研究[J].低温建筑技术,1999,(77):14-16.
    [22]田莹,张楠.盐水何时被叫停?[J].商业.资本,2006,(l):42-44.
    [23]洪乃丰.融雪剂及其对基础设施的腐蚀危害[J].建筑技术,2004,35(4):256-258.
    [24]郭琨.海洋手册[M].海洋出版社,1984:23.
    [25]蒋亚清.混凝土外加剂应用基础[M].化学工业出版社,2004,6:242-243.
    [26]钱淼.现代混凝土耐盐类侵蚀性能研究[J].山西建筑,2013,39(2):120-122.
    [27]张彭熹,张保珍,唐渊,等.中国盐湖自然资源及其开发利用[M].北京:科学出版社,1999.
    [28]余红发,孙伟,何庆勇.盐湖地区混凝土的耐久性研究Ⅲ——盐湖卤水类型对混凝土耐久性的影响[J].混凝土,2007(2):1-4.
    [29]宋彭生.盐湖及相关资源开发利用进展[J].盐湖研究,2000,8(2):33.
    [30]余红发,孙伟,武卫峰.普通混凝土在盐湖环境中的抗卤水冻蚀性与破坏机理研究[J].硅酸盐学报,2003,8:763-764
    [31] Scherer G W. Crystallization in pores [J]. Cement and Concrete Research,1999,29(8):1347-1358.
    [32] George W. Scherer. Stress from crystallization of salt [J]. Cement and ConcreteResearch,2004,34:1613-1624.
    [33] Setzer M J. Micro-Ice-Lens Formation in Porous Solid [J]. Journal of Colloid andInterface Science,2001,243:193-201.
    [34] Bresme F, Cámara L G. Computer simulation studies of Crystallization underconfinement condition[J]. Chemical Geology,2006,230:197-206.
    [35]王光辉,李志勇.北方地区路桥工程混凝土抗冻性研究[J].山西建筑,2007,33(8):322-323.
    [36]张颖,张粉芹.混凝土冻害的破坏机理及防治措施[J].山西建筑,2007,33(7):165-166.
    [37]马国庆,钱玉林.混凝土的冻害及其机理[J].常州工学院学报,2005,18(增刊):109-113.
    [38]黄孝蘅,许彩虹,王丽文.硬化混凝土中气泡性质对抗冻性影响的试验研究[J].中国港湾建设,2006,(3):14-17.
    [39] P. E. Grattan-Bellew. Microstructural Investigation of Deteriorated Portland CementConcretes[J]. Construction and Building Materials,1996,(10):3-16.
    [40]王军,陈静静,鞠泽青.盐害环境钢筋混凝土井壁腐蚀机理与类型研究[J].科学技术与工程,2013,13(6):1690-1694.
    [41]杨全兵,张树青等.混凝土除盐剥蚀破坏机制及材料设计原则[M].中国建材工业出版社,2001:36-40.
    [42] Richard Cantin and Michel Pigeon. Deicer Salt Scaling Resistance ofSteel-Fiber-Resistance Concrete[J]. Cement and Concrete Research.1996,(26):1639-1648.
    [43]孙文东.浅谈钢筋混凝土耐久性的影响因素及对策.工程技术,2012(3):43.
    [44] Rakesh Kumar, B. Bhattacharjee. Porosity, Pore Size Distribution and in Situ Strengthof Concrete. Cement and Concrete Research.2003,(33):55-61
    [45] D. Winslow, D. Liu. Pore Structure of Paste in Concrete. Cement and ConcreteResearch,1990,20(2):227-235
    [46] R. A. Helmuth. Capilary Size Restrictions on Ice Formation in Hardened PortlandCement Pastes[C]. Proceeding of the4th International Symposium on Chemistry ofCement. Washington,1960,2:855-860.
    [47]李金平,盛煜,丑亚玲.混凝土冻融破坏研究现状[J].路基工程,2007,(3):1-3.
    [48]陈联荣,黄士元.混凝土的抗冻性及其气泡结构[J].上海建材学院学报,1989,(4):50-52.
    [49]张德思,成秀珍.硬化混凝土气孔参数的研究[J].西北工业大学学报,2002,20(1):10-13.
    [50]李俊毅.硬化混凝土气泡间距系数的临界值[J].港口工程,1997,(3):27-29.
    [51] A R Collins. The destruction of concrete by frost[J]. Journals of Institute of CivilEngineering,1944,23:29-41.
    [52] M. Pigeon, C. Talbot, J. Marchand and H. Hornain. Surface Microstructure andScaling Resistance of Concrete[J]. Cement and Concrete Research,1996,(26):1555-1566.
    [53] P.A.M.Basheer, E. Nolan. Near-Surface Moisture Gradients and in Situ PermeationTests[J]. Concrete and Building Materials,2001,(15):105-114.
    [54] Anders Lindvall. Chloride Ingress Data From Field and Laboratory Exposure-Influence of Salinity and Temperature[J]. Cement&Concrete Composite,2007(29):88-93..
    [55] Vesa Penttala,Fahim Al-Neshawy. Stress and strain state of concrete during freezingand thawing cycles[J]. Cement and Concrete Research,2002,32:1407-1420.
    [56] S. Chatterji. An explanation for the unsaturated state of water stored concrete[J].Cement and Concrete Composites,2004,26:75-79.
    [57] P. A. M. Basheer E. Nolan. Near-surface moisture gradients and in situ permeationtests[J]. Construction and Biulding Materials,2001,15:105-114.
    [58]邓德华.水泥基复合材料受冻融破坏其性能衰减耐久函数的探讨[J].武汉工业大学学报,1986,(3):273-280.
    [59]张士萍,邓敏,唐明述.混凝土冻融循环破坏研究进展[J].材料科学与工程学报,2008,12(6):990-994.
    [60]黄士元,蒋家奋,杨南如,周兆桐.近代混凝土技术[M].西安:陕西科学技术出版社,1997:171-178.
    [61]王智,黄煜镔,王绍东.当前国外混凝土耐久性问题及其预防措施综述[J].混凝土,2000,(1):52-57.
    [62] J.S. Kong,A.N. Ababneh,D.M. Frangopol,Y. Xi. Reliability Analysis of ChloridePenetration in Saturated Concrete[J]. Probabilistic Engineering Mechanics,2002,17:305-315.
    [63] S. Ahmad. Reinforcement Corrosion in Concrete Structures its Monitoring andService Life Prediction-A Review[J]. Cement&Concrete Composites,2003,(25):459-471.
    [64]秦宪明,颜超,赵娟,等.提高海工结构混凝土耐久性的原理和方法.建筑技术,2012,43(1):18-20.
    [65]洪乃丰.盐渍土对建筑物的腐蚀与防护[J].工业建筑,1998,28(1):5-8.
    [66] P梅泰.混凝土的结构、性能与材料[M].祝永年,沈威,陈志源译.上海:同济大学出版社,1991.
    [67]马孝轩,仇新刚,陈从庆.混凝土及钢筋混凝土土壤腐蚀数据积累及规律性研究[J].建筑科学,1998(1):7-12.
    [68]马孝轩.我国主要类型土壤对混凝土材料腐蚀性规律的研究[J].建筑科学,2003,12(6):56-57.
    [69]马孝轩.我国主要土壤对混凝土材料腐蚀性分类[J].混凝土与水泥制品,2003,12(6):6-7.
    [70]戴剑锋,刘晓红,郑克宇等.盐湖地区混凝土的腐蚀和防治[J].甘肃工业大学学报,2002,6(2):100-102.
    [71]余红发,刘连新,曹敬党等.东西部氯盐环境中混凝土的耐久性和服役寿命[J].沈阳建筑大学学报,2005,3(2):125-129.
    [72]杨全兵,黄士元.受冻地区混凝土的盐冻破坏[J].公路,1998,8:25-27.
    [73]杨全兵,张树青等.混凝土除盐剥蚀破坏机制及材料设计原则[M].中国建材工业出版社,2001:36-40.
    [74]韩素芳,等.混凝土工程病害与修补加固[M].海洋出版社,1996.
    [75]朱蓓蓉,杨全兵,黄士元.除冰盐对混凝土化学侵蚀机理研究[J].低温建筑技术,2000,(1).
    [76]姜双伦,姬立德,吴会强.混凝土的冻融破坏与外加剂[J].混凝土,2001,(2).
    [77]王玲,田稳苓,焦晓辉.混凝土受除冰盐侵蚀破坏机理及防治措施研究[J].低温建筑技术,2001,(3).
    [78]魏广和,慕儒.氯盐溶液与快速冻融共同作用下混凝土的性能[J].建筑技术,2001,(10).
    [79]缪昌文,刘加平,慕儒,孙伟.混凝土抗除冰盐的剥落性能与机理研究[J].公路,2001,(12).
    [80]王军强,刘文军.去冰盐破坏混凝土结构的机理及预防措施[J].徐州建筑职业技术学院学报,2002,(3).
    [81]黄士元,杨全兵.我国寒冷地区混凝土路桥结构的耐久性问题[A].陈肇元等,工程科技论坛土建结构工程的安全性与耐久性[C].北京:清华大学,2001,274~283.
    [82]陈少峰,孙立,李振宝.混凝土盐冻破坏的试验研究[J].公路,2006,4(4):216~219.
    [83] F. P. Browne and P. P. Cady. Durability of concrete[J]. ACI,1975:101-119.
    [84]杨全兵,吴学礼,黄士元.去冰盐对混凝土剥蚀的物理机理[J].上海建材学院学报,1991,12(4):341-346.
    [85]杨全兵,吴学礼,黄士元.去冰盐引起的混凝土的盐冻剥蚀破坏[J].黑龙江交通科技,2000:2-9.
    [86]张云清,余红发,王甲春.气泡特征对混凝土抗盐冻性能的影响[J].建筑科学与工程学报,2011,9(3):83-87.
    [87]杨全兵,吴学礼,黄士元.掺合料对混凝土抗盐冻剥蚀性能的影响[J].上海建材学院学报,1993,6(2):99-104.
    [88]杨全兵,吴学礼,黄士元.混凝土抗盐冻剥蚀性的影响因素[J].上海建材学院学报,1993,6(2):93-98.
    [89]杨全兵,吴学礼,黄士元.盐冻试验方法研究[J].上海建材学院学报,1993,6(2):182-186
    [90] Mehta P. K. Durability-Critical Issues for the Future[J]. Concrete International,1997,20(7):27-33.
    [91] Adam Neville. Consideration of durability of concrete structures:Past,Present,andfuture[J]. Materials and structures,2001,34(3):114-118.
    [92]吴中伟,廉慧珍.水泥基复合材料科学研究中的辩证思维[J].混凝土,2000(4).
    [93]吴中伟,廉惠珍.高性能混凝土[J].北京:中国铁道出版社,1999:218-219.
    [94]宋长春,何岩,邓伟.松嫩平原盐渍土壤生态地球化学[M].北京:科学出版社,2003:64-90.
    [95]李彬,王志春.松嫩平原苏打盐渍土碱化特征与影响因素[J].干旱区资源与环境,2006.11.
    [96]许艳争.松嫩平原不同盐分补给类型盐渍土的水盐运移规律研究[D].东北师大硕士论文,2008.6.
    [97]张晓平,李梁.吉林省大安市盐渍化土壤特征及现状研究[J].土壤通报,2001,6(32):26-30.
    [98]李晓军,李取生.松嫩平原西部土地利用变化及其盐渍化效应研究[J].干旱区资源与环境,2005.
    [99]李彬,王志春,梁正伟,迟春明.吉林省大安市苏打碱土盐化与碱化的关系[J].干旱地区农业研究,2007.2(2):151-155.
    [100]吉林省土地管理局.吉林省土地资源[M].北京:地质出版社,1994.
    [101]李彬,王志春,迟春明.吉林省大安市苏打盐碱土碱化参数与特征分析[J].生态与农村环境学报,2006,22(1):20-23,28.
    [102]张静.吉林省西部地区分散性季冻土的分散机理研究[D].吉林大学博士论文,2010.
    [103]Geiker M, Thaulow N, Ankersen P J. Assessment of Rapid Permeability Test ofConcrete with and without Mineral Admixture[C]. Bake J M ed.5th InternationalConference of Durability of Building Materials and Components, Brighton, UK,1990:493-502.
    [104]薄心诚,王勇威.高效活性矿物掺料与混凝土的高性能化[J].混凝土,2002,(2):3-6.
    [105]Dhir R K, Byars E A. PFA Concrete: Chloride Diffusion Rates[J]. Magazine ofConcrete Research,1993,45(162),1-9.
    [106]罗骐先,Bungeg J H.用纵波超声换能器测定混凝土表面波速和动弹性模量[J].南京水利科学研究院,1996,9(3):264-270.
    [107]肖海英,葛勇,张宝生,袁杰,季洪雷.浸泡方式对混凝土腐蚀性的研究[A].沿海地区混凝土结构耐久性及其设计方法[C].科技论坛与全国第六届混凝土耐久性学术交流会论文集,2004:147-151.
    [108]William G H,Bryant M.“Sulfate attack”or is it?[J]. Cement and Concrete Research,1999,29(5):789-791.
    [109]张亚梅,陈胜霞,高岳毅.浸-烘循环作用下橡胶水泥混凝土的性能研究[J].建筑材料学报,2005(12):665-671.
    [110]乔宏霞,何忠茂,周茗如等.干湿交替环境中混凝土的性能研究[J].粉煤灰综合利用,2008(1):3-6.
    [111]王琴,杨鼎宜,郑佳明.干湿交替环境下混凝土硫酸盐侵蚀的试验研究[J].混凝土,2008(6):29-31.
    [112]王琴.干湿循环条件下混凝土硫酸盐侵蚀试验研究[J].山西建筑,2010,11(32):156-158.
    [113]李金玉,曹建国.水工混凝土耐久性的研究与应用[J].北京:中国电力出版社,2004.
    [114]李金玉等.混凝土冻融破坏机理的研究[J].水利学报,1999,(1):41-49.
    [115]程红强.冻融对混凝土强度的影响[J].河南科学,2003,21(2):214-216.
    [116]商怀帅,宋玉普,覃丽坤.普通混凝土冻融循环后性能的试验研究[J].混凝土与水泥制品,2005,4(2):9-11.
    [117]金祖权,赵铁军、陈惠苏,等.海洋环境下裂缝混凝土氯盐腐蚀[J].中南大学学报,2012,43(7):2821-2826.
    [118]田冠飞,冷发光,张仁瑜,等.盐碱地区土壤对混凝土腐蚀规律和机理的研究[J].装备环境工程,2007,10(4):10-14.
    [119]E. M. Winkler. Stone:Properties, Durability in Man’s Envionment[J]. New York:Springer Verlag,1975:120.
    [120]张光辉.混凝土结构硫酸盐腐蚀研究综述[J].混凝土,2012(1):49-61.
    [121]罗建林.抗冻混凝土在重复荷载作用下的力学性能研究[D].哈尔滨工业大学工学硕士论文.2005:15-18.
    [122]2-马保国,高小建,何忠茂,等.混凝土在SO4和CO2-3共同存在下的腐蚀破坏[J].硅酸盐学报,2002,32(10):1219-1224.
    [123]易德生,郭萍.灰色理论与方法[M].北京:石油工业出版社,1992.
    [124]吕锋,刘翔,刘泉.七种灰色关联度的比较研究[J].武汉工业大学学报,2000,22(2):41-47.
    [125]黄裕新,吕波,施品贵.基于改进灰色关联度的权重确定方法[J].武汉科技学院学报,2004,17(3):72-75.
    [126]周秀文.灰色关联度的研究与应用[D].长春:吉林大学,2006.
    [127]曹明霞.灰色关联分析模型及其应用的研究[D].南京:南京航空航天大学,2007.
    [128]刘健勤.粗糙集理论及其最新进展[J].计算技术与自动化,1998,17(1):43-47.
    [129]赵文正,王富华.粗糙集和模糊集的比较研究[J].科技信息,2010(5):72-73.
    [130]张清华,王国胤,肖雨.粗糙集的近似集[J].软件学报,2012,23(7):1745-1759.
    [131]麦宏元,曾雪兰.粗糙集理论及应用研究综述[J].科技向导,2012,(8):157.
    [132]En-Wei Shi. Some Properties of the indisemibility relation in rough sets[J]. ChineseScience Bulletin,1990,35(23):338-341.
    [133]乔红霞,周茗如,朱彦鹏,何忠茂.盐渍土地区混凝土耐久性评价参数的设计和选取[J].工业建筑,2010,40(6):27-30.
    [134]王正林,龚纯,何倩.精通MATLAB科学计算[M].电子工业出版社,2009.8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700