不同畦长和畦宽灌溉对小麦耗水特性和产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高产冬小麦品种济麦22为材料,于2009~2013年连续4个小麦生长季,在山东兖州小孟镇史家王子村(35°24′N,116°24′E)进行大田试验,研究不同畦长和畦宽灌溉对小麦耗水特性和产量的影响,为小麦节水高产栽培提供理论依据。
     2009~2010年生长季试验设置1.0m、1.5m和2.0m3个畦宽处理,分别用W10、W15和W20表示;每个畦宽设置10m、20m、40m和60m4个畦长处理,分别用L10、L20、L40和L60表示。各处理均在小麦拔节期和开花期灌水。
     2010~2011年生长季试验设置1.0m、1.5m、2.0m和2.5m4个畦宽处理,分别用W10、W15、W20和W25表示;每个畦宽设置10m、20m、40m、60m、80m和100m6个畦长处理,分别用L10、L20、L40、L60、L80和L100表示。各处理均在拔节期灌水,由于本生长季开花期降水,土壤含水量达到小麦开花期预定土壤目标含水量标准,故开花期未灌水。
     2011~2012和2012~2013年生长季试验设置1.5m、2.0m和2.5m3个畦宽处理,分别用W15、W20和W25表示;每个畦宽设置40m、60m、80m和100m4个畦长处理,分别用L40、L60、L80和L100表示。各处理均在拔节期灌水,开花期土壤含水量达到预定土壤目标含水量标准,故开花期未灌水。
     1不同畦长灌溉对小麦耗水特性和产量的影响
     1.1不同畦长灌溉对小麦耗水特性的影响
     W10条件下,L80总耗水量、灌水量及其占总耗水量的比例和拔节至开花期耗水量与拔节期、开花期和灌浆期棵间蒸发量显著低于L100处理;开花期平均土壤相对含水量显著高于L40、L20和L10处理。W15条件下,L80总耗水量、拔节期、开花期和灌浆期棵间蒸发量显著低于L100处理;拔节期和开花期耗水量和耗水模系数显著低于其他处理;开花期平均土壤相对含水量与L100无显著差异,显著高于其他处理。W20条件下,L80总耗水量、拔节至开花期耗水模系数显著低于其他处理;拔节期、开花期和灌浆期棵间蒸发量为L80和L60显著低于其他处理;开花期平均土壤相对含水量与L60和L100无显著差异,显著高于其他处理。W25条件下,L80总耗水量显著低于L100处理,拔节至开花期耗水模系数显著低于其他处理;灌浆期棵间蒸发量显著低于L100处理;开花期平均土壤相对含水量与L60无显著差异,显著高于其他处理。表明,L80处理开花期土壤相对含水量较高,拔节至开花期耗水模系数和拔节期、开花期和灌浆期棵间蒸发量较低,总耗水量较低,有利于节水。
     1.2不同畦长灌溉对小麦碳代谢的影响
     W10和W15条件下,L80灌浆中后期旗叶净光合速率、磷酸蔗糖合成酶活性、超氧化物歧化酶活性和可溶性蛋白含量与L100无显著差异,显著高于其他处理;成熟期干物质积累量与开花后干物质输入籽粒量及其对籽粒产量的贡献率显著高于L40、L20和L10处理。
     W20和W25条件下,L80灌浆中后期旗叶净光合速率、磷酸蔗糖合成酶活性、超氧化物歧化酶活性和可溶性蛋白含量显著高于其他处理;成熟期干物质积累量与开花后干物质输入籽粒量及其对籽粒产量的贡献率与L60无显著差异,显著高于其他处理。表明,L80处理有利于小麦旗叶在灌浆中后期保持较高的光合能力,促进开花后干物质的积累及其向籽粒中分配。
     1.3不同畦长灌溉对小麦氮代谢的影响
     W10和W15条件下,L80成熟期氮素积累量与L100无显著差异,显著高于其他处理;开花前营养器官贮藏氮素转运量及其对籽粒氮素的贡献率显著高于L40、L20和L10处理。W20条件下,L80成熟期氮素积累量与L60无显著差异,显著高于其他处理;开花后氮素吸收量及其对籽粒氮素的贡献率显著高于其他处理。W25条件下,L80成熟期氮素积累量显著高于其他处理;开花后氮素吸收量及其对籽粒氮素的贡献率与L60无显著差异,显著高于L20、L40和L100处理。表明,L80处理有利于小麦对氮素的吸收积累和向籽粒中的转运。
     1.4不同畦长灌溉对小麦籽粒产量和水分利用效率的影响
     W10和W15条件下,L80籽粒产量与L60无显著差异,显著高于L10、L20和L40,水分利用效率显著高于L100处理。W20条件下,L80籽粒产量和水分利用效率显著高于其他处理。W25条件下,L80籽粒产量显著高于其他处理,水分利用效率显著高于L10、L20和L100处理。表明,畦宽2.0m条件下,L80获得最高的籽粒产量和水分利用效率,是本试验条件下节水高产的最优处理。
     2不同畦宽灌溉对小麦耗水特性和产量的影响
     2.1不同畦宽灌溉对小麦耗水特性的影响
     各畦长处理条件下,W20处理拔节至开花期耗水量和耗水模系数最低,开花至成熟期耗水量和耗水模系数最高,对60~140cm深层土壤贮水的消耗量较高。W20总耗水量、灌水量及其占总耗水量的比例显著低于其他处理。开花期土壤相对含水量为L10条件下,W20显著高于W10处理; L20、L40、L60和L80条件下,W20显著高于其他处理;L100条件下,W20与W10、W15无显著差异,显著高于W25处理。表明,W20拔节至开花期耗水少,开花期土壤相对含水量较高,总耗水量少,有利于节水。
     2.2不同畦宽灌溉对小麦碳代谢的影响
     各畦长条件下,W20处理灌浆中后期旗叶净光合速率、磷酸蔗糖合成酶活性、超氧化物歧化酶活性和可溶性蛋白含量最高,成熟期干物质积累量和开花后干物质输入籽粒量及其对籽粒产量的贡献率显著高于其他处理。表明,W20处理有利于延缓旗叶衰老,有利于开花后干物质积累及干物质向籽粒中转移,为高产奠定物质基础。
     2.3不同畦宽灌溉对小麦氮代谢的影响
     各畦长条件下,成熟期氮素积累量W20处理最高。L10、L20和L40条件下,开花期营养器官贮藏氮素转运量及其对籽粒氮素的贡献率W20显著高于其他处理,L60、L80和L100条件下开花后氮素吸收量及其对籽粒氮素的贡献率显著高于其他处理。W20处理促进了小麦拔节后对0~120cm土层土壤硝态氮的吸收。表明,W20有利于小麦对土壤氮素的吸收利用,植株氮素积累量及其向籽粒中的转移较高。
     2.4不同畦宽灌溉对小麦籽粒产量和水分利用效率的影响
     各畦长条件下,W20畦内各区间籽粒产量分布较均匀,平均籽粒产量和水分利用效率显著高于其他处理。表明W20处理有利于提高籽粒产量和水分利用效率,是本试验条件下兼顾高产与节水的最优畦宽处理。
A field experiment was conducted in Shiwang village (35°24′N,116°24′E), Yanzhou,Shandong during the2009to2013growing seasons using the high-yielding winter wheatcultivar Jimai22as test material. The objective of this experiment was to study the effects ofdifferent field border length and width for irrigation on water consumption characteristics andgrain yield of wheat, and to provide theoretical basis for water-saving and high-yieldingcultivation of wheat.
     During the2009to2010wheat growing season, three field border widths wereestablished. These field border widths were1.0(W10),1.5(W15) and2.0m (W20). Undereach field border width, four field border lengths were installed, namely,10(L10),20(L20),40(L40) and60m (L60). All treatments were irrigated at jointing and anthesis stages.
     During the2010to2011wheat growing season, four field border widths wereestablished. These field border widths were1.0(W10),1.5(W15),2.0(W20) and2.5m(W25). Under each field border width, six field border lengths were installed, namely,10(L10),20(L20),40(L40),60(L60),80(L80) and100m (L100). All treatments wereirrigated at jointing stage. The soil water content reached the expected amount because ofprecipitation at anthesis stage, so no irrigation was performed at this stage.
     During the2011to2012and2012to2013wheat growing seasons, three field borderwidths were established. These three field border widths were1.5(W15),2.0(W20) and2.5m (W25). Under each field border width, four field border lengths were installed, namely,40(L40),60(L60),80(L80) and100m (L100). All treatments were irrigated at jointing stage.No irrigation was performed at anthesis stage because of the soil water content at this stage.
     1Effect of field border length for irrigation on water consumption characteristics andyield of wheat
     1.1Effect of field border length for irrigation on water consumption characteristics ofwheat
     Under the condition of W10treatment, the total water consumption, irrigation amount,ratio of irrigation amount to total water consumption, water consumption from jointing toanthesis and evaporation amount at jointing, anthesis and grain-filling stages of L80treatmentwere significantly lower than those of L100. The average relative soil water contents of L80were significantly higher than those of L40, L20and L10. Under the condition of W15 treatment, the total water consumption and evaporation amount at jointing, anthesis andgrain-filling stages of L80treatment were significantly lower than those of L100. The waterconsumption from jointing to anthesis and its percentage of L80were significantly lower thanthose of other treatments. The average relative soil water content of L80was not differentfrom that of L100, but significantly higher than those of other treatments. Under the conditionof W20treatment, L80treatment resulted in the lowest total water consumption andpercentage of water consumption from jointing to anthesis. The evaporation amount atjointing, anthesis and grain-filling stages of L80was not different from that of L60, butsignificantly lower than those of other treatments. The average relative soil water content ofL80was not different from those of L60and L100, but significantly higher than those of othertreatments. Under the condition of W25treatment, the total water consumption of L80treatment was significantly lower than that of L100. The percentage of water consumptionfrom jointing to anthesis of L80was significantly lower than those of other treatments. Theevaporation amount at grain-filling stage of L80was significantly lower than that of L100.The average relative soil water content of L80was not different from that of L60, butsignificantly higher than those of other treatments. These results indicate that the averagerelative soil water content of L80was higher, whereas the percentage of water consumptionfrom jointing to anthesis, evaporation amount at jointing, anthesis and grain-filling stages andtotal water consumption were lower. These trends were beneficial for water saving.
     1.2Effects of field border length for irrigation on carbon metabolism of wheat
     Under the conditions of W10and W15treatments, during the mid-and late grain-fillingstages, the net photosynthetic rate, SPS activity, SOD activity and soluble protein content ofthe flag leaf of L80were not different from those of L100, but significantly higher than thoseof other treatments. Dry matter accumulation, dry matter distribution to grain and contributionto grain after anthesis of L80treatment were significantly higher than those of L40, L20andL10.
     Under the conditions of W20and W25treatments, during the mid-and late grain-fillingstages, the net photosynthetic rate, SPS activity, SOD activity and soluble protein content ofthe flag leaf of L80showed the highest values. Dry matter accumulation, dry matterdistribution to grain and contribution to grain after anthesis of L80treatment were notdifferent from those of L60, but significantly higher than those of other treatments. Theseresults indicate that L80had favourable effects on photosynthetic ability during the mid-andlate grain-filling stages, and was beneficial for improving accumulation and translocationafter anthesis.
     1.3Effects of field border length for irrigation on nitrogen metabolism of wheat
     Under the conditions of W10and W15treatments, the amount of nitrogen accumulatedat maturity stage of L80was not different from that of L100, but significantly higher thanthose of other treatments. The amount of nitrogen translocated and its contribution to grainnitrogen of L80were higher than those of L40, L20and L10. Under the condition of W20treatment, the amount of nitrogen accumulated at maturity stage of L80was not different fromthat of L60, but significantly higher than those of other treatments. The amount of nitrogenabsorbed after anthesis and its contribution to grain nitrogen of L80showed the highest values.Under W25condition, the amount of nitrogen accumulated at maturity stage of L80showedthe highest value. The amount of nitrogen absorbed after anthesis and its contribution to grainnitrogen of L80were not different from those of L60, but significantly higher than those ofL20, L40and L100. These results indicate that L80had favourable effects on increasingnitrogen accumulation, and was beneficial for improving the translocation of nitrogen.
     1.4Effects of field border length for irrigation on grain yield and water use efficiency ofwheat
     Under the conditions of W10and W15treatments, the grain yield of L80was notdifferent from that of L60, but significantly higher than those of L10, L20and L40. The wateruse efficiency of L80was significantly higher than that of L100. Under the condition of W20treatment, the grain yield and water use efficiency of L80showed the highest values. Underthe condition of W20treatment, the grain yield of L80showed the highest value. The wateruse efficiency of L80was significantly higher than those of L10, L20and L100. These resultsindicate that L80obtained the highest grain yield and water use efficiency under the conditionof W20treatment. Thus, L80was the optimal field border length for irrigation in our study.
     2Effect of field border width for irrigation on water consumption characteristics andyield of wheat
     2.1Effect of field border width for irrigation on water consumption characteristics ofwheat
     Under the same border length condition, W20treatment showed the lowest percentage ofwater consumption from jointing to anthesis but the highest water consumption from anthesisto maturity and its percentage. Soil water consumption in the60cm to140cm soil layer ofW20treatment was higher than those of other treatments. The total water consumption,irrigation amount and ratio of irrigation amount to total water consumption of W20treatmentwere significantly lower than those of other treatments. Under L10condition, the averagerelative soil water content at anthesis of W20treatment was significantly higher than that of W10. W20treatment showed the highest values under the conditions of L20, L40, L60andL80. Under the condition of L100, W20treatment showed no difference with W10and W15,but was significantly higher than W25. These results indicate that W20treatment resulted inlow water consumption from jointing to anthesis and high average relative soil water contentat anthesis. Moreover, the total water consumption of W20was low. These trends werebeneficial for water saving.
     2.2Effects of field border width for irrigation on carbon metabolism of wheat
     Under the same border length condition, during the mid-and late grain-filling stages, thenet photosynthetic rate, SPS activity, SOD activity and soluble protein content of the flag leafof W20showed the highest values. Dry matter accumulation at maturity and dry matteraccumulation and its contribution to grain after anthesis of W20treatment were significantlyhigher than those of other treatments. These results indicate that W20treatment hadfavourable effects on photosynthetic ability during the mid-and late grain-filling stages, andimproved accumulation and translocation after anthesis.
     2.3Effects of field border width for irrigation on nitrogen metabolism of wheat
     Under the same border length condition, the amount of nitrogen accumulated at maturitystage of W20showed the highest value. Under the conditions of L10, L20and L40, theamount of nitrogen translocated and its contribution to grain nitrogen of W20were higherthan those of other treatments. Under the conditions of L60, L80and L100, the amount ofnitrogen accumulated after anthesis and its contribution to grain nitrogen of W20showed thehighest values. W20treatment absorbed more NO3––N content at the0cm to120cm soillayer. These results indicate that W20had favourable effects on the utilisation of soil nitrogen,and improved the accumulation and translocation of nitrogen.
     2.4Effects of field border width for irrigation on grain yield and water use efficiency ofwheat
     Under the same border length condition, the grain yield of W20treatment was moreuniformly distributed in different regions of the same border than that of other treatments. Theaverage grain yield and water use efficiency of W20treatment were significantly higher thanthose of other treatments. These results indicate that W20treatment resulted in the highestgrain yield and water use efficiency, and could be the optimal field border width for watersaving and high yield in this study.
引文
陈子明,袁锋明,姚造华,周春生,傅高明,宋永林,李小平.北京潮土NO3--N在土壤中的移动特点及其淋失动态[J].植物营养与肥料学报,1995,1(2):71-79.
    崔振岭,陈新平,张福锁,石立委,李俊良.不同灌溉畦长对麦田灌水均匀度与土壤硝态氮分布的影响[J].中国生态农业学报,2006,14(3):82-85.
    邓振镛,张强,王强,张谋草,王润元,倾继祖,王鹤龄,徐金芳.黄土高原旱塬区土壤贮水量对冬小麦产量的影响[J].生态学报,2011,31(18):5281-5290.
    杜太生,康绍忠,王振昌,王峰,杨秀英,苏兴礼.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报,2007,33(12):1982-1990.
    范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21.
    范雪梅,戴廷波,姜东,荆奇,曹卫星.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71–77.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学2005,38(6):1132-1141.
    方保停,郭天财,王晨阳,何盛莲.限水灌溉对冬小麦灌浆期旗叶叶绿素荧光动力学参数及产量的影响[J].干旱地区农业研究,2007,25(1):116-119.
    房全孝,陈雨海,李全起,于舜章,余松烈,董庆余,罗毅,于强,欧阳竹.灌溉对冬小麦灌浆期光合产物供应和转化及有关酶活性的影响[J].作物学报,2004,30(11):1113-1118.
    高亚军,李生秀,李世清,田霄鸿,王朝辉,郑险峰,杜建军.施肥与灌水对硝态氮在土壤中残留的影响[J].水土保持学报,2006,19(6):61-64.
    郭天财,方保停,王晨阳,李鸿斐.水分调控对小麦旗叶叶绿素荧光动力学参数及其产量的影响[J].干旱地区农业研究,2005,23(2):6-10.
    何照范.粮油籽粒品质及其分析技术[M].北京:中国农业科学出版社,1985.
    胡继超,曹卫星,姜东,罗卫红.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320.
    胡梦芸,张正斌,徐萍,董宝娣,李魏强,李景娟.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(10):1711-1719.
    胡梦芸,张正斌,徐萍,董宝娣,李魏强,李景娟.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(11):1884-1891.
    黄彩霞,柴守玺,赵德明,李志贤,常磊,王婷.不同水分处理对冬小麦产量和水分利用效率的影响[J].草业学报,2010,19(5):196-203.
    惠海滨,林琪,刘义国,张家斌,张洪生,翟延举.灌水量和灌水期对超高产小麦灌浆期光合特性及产量的影响[J].西北农业学报,2012,21(8):77-83.
    居辉,兰霞.不同时期灌溉对冬小麦物质积累与分配的影响[J].干旱地区农业研究,2000,18(4):66-71.
    居辉,兰霞,李建民,周殿玺,苏宝林.不同灌溉制度下冬小麦产量效应与耗水特征研究[J].中国农业大学学报,2000,5(5):23-29.
    李彩霞,马三力.小麦的需水规律[J].农业与技术,2005,25(4):68-69.
    李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,119-121.
    李建民,王璞,周殿玺,兰林旺.对小麦灌溉制度对土壤贮水利用的影响[J].中国农业生态学报,1999,7(4):23-26.
    李建民,王璞,周殿玺,兰林旺.灌溉制度对冬小麦耗水及产量的影响[J].生态农业研究,1999,7(4):23-26.
    李久生,饶敏杰.地面灌溉水流特性及水分利用率的田间试验研究[J].农业工程学报,2003,19(3):54-58.
    李绍飞,王仰仁,孙书洪,梁小宏.不同节水灌溉方案对冬小麦用水效率及效益的影响[J].节水灌溉,2011(3):1-5.
    李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2):240-242.
    李益农,许迪,李福祥.田面平整精度对畦灌性能和作物产量影响的试验研究[J].水利学报,2000,(12):82-87.
    李迎春,张超英,庞启华,任茂琼.干旱胁迫下小麦在不同生育时期的耐旱性研究[J].西南农业学报,2008,21(3):621-624.
    李运生,王菱,刘士平,王吉顺.土壤-根系界面水分调控措施对冬小麦根系和产量的影响[J].生态学报,2002,22(10):1680-1687.
    刘恩科,梅旭荣,龚道枝,严昌荣,庄严.不同生育时期干旱对冬小麦氮素吸收与利用的影响[J].植物生态学报,34(5):555-562.
    刘庚山,郭安红,任三学,安顺清,林日暖,赵花荣.人工控制有限供水对冬小麦根系生长及土壤水分利用的影响[J].生态学报,2003,23(11):2342-2352.
    刘洪禄,杨培岭.畦灌田面行水流动的模型与模拟[J].中国农业大学学报,1997,2(4):66-72.
    刘荣花,朱自玺,方文松,邓天宏,赵国强.冬小麦根系分布规律[J].生态学杂志,2008,27(1):2024-2027.
    刘彦军.灌水量灌水时间对麦田耗水量及小麦产量的影响[J].河北农业科学,2003,7(2):6-11.
    刘增进,李宝萍,李远华,崔远来.冬小麦水分利用效率与最优灌溉制度的研究[J].农业工程学报,2004,20(4):58-63.
    吕殿青,同延安,孙本华, OveEmteryd.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.
    吕金印,山仑,高俊凤,覃凤云,杨淑慎.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干早地区农业研究,2003,21(2):77-81.
    马东辉,赵长星,王月福,吴钢,林琪.施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响[J].生态学报,2008,28(10):4896-4901.
    宁东峰,李志杰,孙文彦,马卫萍,黄绍文,赵秉强.节水灌溉对黄淮海地区冬小麦水分消耗与光合特性的影响[J].植物营养与肥料学报,2010,16(4):852-858.
    秦红灵,高旺盛,马月存,马丽,尹春梅.两年免耕后深松对土壤水分的影响[J].中国农业科学,2008,41(1):78-85.
    秦欣,刘克,周丽丽,周顺利,鲁来清,王润政.华北地区冬小麦-夏玉米轮作节水体系周年水分利用特征[J].中国农业科学,2012,45(19):4014-4024.
    屈会娟,李金才,沈学善,魏凤珍,王成雨,郅胜军.种植密度和播期对冬小麦兰考矮早八干物质和氮素积累与转运的影响[J].作物学报,2009,35(1):124-131.
    全国农业技术推广服务中心.土壤分析技术规范.第二版.北京:中国农业出版社,2006:47-49.
    史学斌,马孝义.关中西部畦灌优化灌水技术要素组合的初步研究[J].灌溉排水学报,2005,24(2):39-43.
    孙宏勇,刘昌明,张永强,张喜英.微型蒸发器测定土壤蒸发的试验研究[J].水利学报,2004,35(8):114-118.
    谭念童,林琪,姜雯,刘义国,李玲燕.限量灌溉对旱地小麦旗叶光合特性日变化和产量的影响[J].中国生态农业学报,2011,19(4):805-811.
    王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J].应用生态学报,2004,15(8):1339-1343.
    王晨阳,马冬云,郭天财,朱云集,王华岑,冯伟.不同水、氮处理对小麦淀粉组成及特性的影响[J].作物学报,2004,30(8):739-744.
    王京,史学斌,宋玲,庞秀明,李守存.畦田水流特性及灌水质量的分析[J].中国农村水利水电,2005,(6):4-7.
    王小彬,蔡典雄,张志田,高绪科.稳态水流下肥料氮的运移[J].植物营养与肥料学报,1996,2(2):110-115.
    王征宏,邓西平,刘立生,赵紫平.干旱对不同冬小麦旗叶光合产物供应能力的影响[J].西北农林科技大学学报(自然科学版),2009,37(5):81-88.
    吴金芝,黄明,李友军,陈明灿,付国占.灌溉对弱筋小麦豫麦50籽粒淀粉积累及其相关酶活性的影响[J].麦类作物学报,2009,29(5):872-877.
    武玉叶,李德全,赵世杰,邹琦.土壤水分胁迫下小麦叶片渗透调节与光合作用[J].作物学报,1999,25(6):752-758.
    谢香文,孟凤轩,李忠华,钟新才,刘红,郭谨.三工河流域典型灌溉条件下畦田长度对灌水质量的影响[J].新疆农业科学,2004,41(6):439-441.
    薛绪掌,王志敏.全量基肥不同灌溉制度对小麦生长发育和耗水的影响[J].干旱区资源与环境,2004,18(2):141-146.
    阳晓原,范兴科,冯浩,姜珊,廖凯.低定额畦灌技术参数研究[J].水土保持研究,2009,16(2):227-230.
    杨玫,孙西欢.畦灌水流特性与灌水效率的田间试验研究[J].太原理工大学学报,2007,38(6):543-546.
    杨晓琳,宋振伟,王宏,石全红,陈阜,褚庆全.黄淮海农作区冬小麦需水量时空变化特征及气候影响因素分析[J].中国生态农业学报,2012,20(3):356-362.
    于纪玉.节水灌溉技术[M].郑州:黄河水利出版社,2007.
    於建新.植物生理学实验手册[M].上海:科学技术出版社,1985,148-150.
    袁新民,同延安,杨学云,李晓林,张福锁.灌溉与降水对土壤NO3--N累积的影响[J].水土保持学报,2000,14(3):71-73.
    张利.水浇地冬小麦耗水规律研究[J].土壤通报,1994,25(4):149-151.
    张寄阳,孙景生,肖俊夫,李晓东,刘小飞,申孝军.灌水控制下限对冬小麦产量及水分利用效率的影响[J].中国农学通报,2005,21(11):387-391.
    张其德,刘合芹,张建,李建民.限水灌溉对冬小麦旗叶某些光合特性的影响[J].作物学报,2000,26(6):869-873.
    张秋英,李发东,高克昌,刘孟雨,欧国强.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报,2005,25(6):1184-1190.
    张胜全,方保停,王志敏,周顺利,张英华.春灌模式对晚播冬小麦水分利用及产量形成的影响[J].生态学报,2009,29(4):2035-2044.
    张胜全,方保停,张英华,周顺利,王志敏.冬小麦节水栽培三种灌溉模式的水氮利用与产量形成[J].作物学报,2009,35(11):2045-2054.
    张岁歧,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究,1995,2(1):31-35.
    张旭东,柯晓新,杨兴国,万信.甘肃河东小麦需水规律及其分布特征[J].干旱地区农业研究,1999,17(1):39-44.
    张永平,王志敏,王璞,赵明.冬小麦节水高产栽培群体光合特征[J].中国农业科学,2003,36(10):1143-1149.
    张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报,2003,22(2):1-4.
    赵辉,戴廷波,姜东,荆奇,曹卫星.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响[J].应用生态学报,2007,18(2):333-338.
    赵广才,何中虎,刘利华,杨玉双,张艳,李振华,张文彪.肥水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学,2004,37(3):351-356.
    郑和祥,史海滨,程满金,朱敏, José Manuel Goncalves.畦田灌水质量评价及水分利用效率分析[J].农业工程学报,2009,25(6):1-6.
    朱艳,缴锡云,王维汉,王树仿.畦灌土壤入渗参数的空间变异性及其对灌水质量的影响[J].灌溉排水学报,2009,28(3):46-49.
    Ahmadi A, Baker D A. Effects of abscisic acid (ABA) on grain filling processes in wheat[J].Plant Growing Regulation,1999,28:187-197.
    Behera S K, Panda R K. Effect of fertilization and irrigation schedule on water and fertilizersolute transport for wheat crop in a sub-humid sub-tropical region[J]. Agriculture,Ecosystems and Environment,2009,130:141-155.
    Clemmens A J, El-Haddad Z, Strelkoff T S. Assessing the potential for modern surfaceirrigation in Egypt[J]. Trans of the ASAE,1999,42:995-1008.
    Djumaniyazova Y, Sommer R, Ibragimov N, Ruzimov J, Lamers J, Vlek P. Simulating wateruse and N response of winter wheat in the irrigated floodplains of NorthwestUzbekistan[J]. Field Crops Research,2010,116:239-251.
    Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism indeveloping kernels of two inbreds of maize[J]. Plant Physiology,1988,86:1013-1019.
    Dong B D, Shi L, Shi C H, Qiao Y Z, Liu M Y, Zhang Z B. Grain yield and water useefficiency of two types of winter wheat cultivars under different water regimes[J].Agricultural Water Management,2011,99:103-110.
    Fang Q X, Ma L, Green T R, Yu Q, Wang T D, Ahuja L R. Water resources and water useefficiency in the North China Plain: Current status and agronomic managementoptions[J]. Agricultural Water Management,2010,97:1102-1116.
    Fang Q X, Ma L, Yu Q, Ahuja L R, Malone R W, Hoogenboom G. Irrigation strategies toimprove the water use efficiency of wheat-maize double cropping systems in NorthChina Plain[J]. Agricultural Water Management,2010,97:1165-1174.
    Galbiati G L, Savi F. Effectiveness of border irrigation: a case study[J]. Journal ofAgricultural Engineering Research,1997,66:157-167.
    Hornbuckle J W, Christen E W, Faulkner R D. Use of SIRMOD as a quasi real time surfaceirrigation decision support system[J]. Journal of Irrigation and Drainage Engineering,2006,15:217-223.
    Hornbuckle J W. Modeling furrow irrigation on tiled drained soils using SIRMOD in theMurrumbidgee irrigation area[J]. Prentice Hall Inc,1999,25:25-31.
    Huang Y L, Chen L D, Fu B J, Huang Z L, Gong J. The wheat yields and water-use efficiencyin the Loess Plateau: straw mulch and irrigation effects[J]. Agricultural WaterManagement,2005,72:209-222.
    Jiang J, Huo Z L, Feng S Y, Zhang C B. Effect of irrigation amount and water salinity onwater consumption and water productivity of spring wheat in Northwest China[J]. FieldCrops Research,2012,137:78-88.
    Kang S Z, Zhang L, Liang Y L, Hu X T, Cai H J, Gu B J. Effects of limited irrigation on yieldand water use efficiency of winter wheat in the Loess Plateau of China[J]. AgriculturalWater Management,2002,55:203-216.
    Kibe A M, Singh S, Kalra N. Water-nitrogen relationships for wheat growth and productivityin late sown conditions[J]. Agricultural Water Management,2006,84:221-228.
    Kong F L, Cai W T, Shi L G, Chen F. The Characteristics of Annual Water Consumption forWinter Wheat and Summer Maize in North China Plain[J]. Procedia Engineering,2012,28:376-381.
    Krishna P, Ahmad M, John P, Mina D, Paul L. Mineral nitrogen dynamics in irrigatedrice-wheat system under different irrigation and establishment methods and residuelevels in arid drylands of Central Asia[J]. European Journal of Agronomy,2013,47:65-76.
    Kumar S, Sharma P K, Anderson S H, Saroch, K. Tillage and rice-wheat cropping sequenceinfluences on some soil physical properties and wheat yield under water deficitconditions[J]. Open Journal of Soil Science,2012,2:71-81.
    Li J M, Inanaga S, Li Z H, Eneji A E. Optimizing irrigation scheduling for winter wheat in theNorth China Plain[J]. Agricultural Water Management,2005,76:8-23.
    Liu H S, Li F M. Root respiration, photosynthesis and grain yield of two spring wheat inresponse to soil drying. Plant Growing Regulation[J],2005,46:233-240.
    Miranzadeh H, Emam Y, Pilesj P, Seyyedi H. Water use efficiency of four dryland wheatcultivars under different levels of nitrogen fertilization[J]. Journal of AgriculturalScience and Technology,2011,13:843-854.
    Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of is factors whichcontribute to efficiency of nitrogen utilization[J]. Agronomy Journal,1982,74:562-564.
    Niculcea M, Martinez-Lapuente L, Guadalupe Z, Manuel S D, Morales F, Ayestaran B,Antolin M C. Effects of water-deficit irrigation on hormonal content and nitrogencompounds in developing berries of Vitis vinifera L. cv Tempranillo[J]. Journal of PlantGrowth Regulation,2013,32:551-563.
    Nielsen D C, Vigil M F. Legume green fallow effect on soil water content at wheat plantingand wheat yield[J]. Agronomy Journal,2005,97:684-689.
    Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheatunder stressed conditions[J]. Agricultural Water Management,2003,63:37-56.
    Papakosta D K, Gagianas A A. Nitrogen and dry matter accumulation, translocation, andlosses for Mediterranean wheat during grain filling[J]. Agronomy Journal,1991,83,864-870.
    Przulj N, Momcilovic V. Genetic variation for dry matter and nitrogen assimilation andtranslocation in two-rowed spring barley II. Nitrogen translocation[J]. European Journalof Agronomy,2001,15:255-265.
    Qiu G Y, Wang L M, He X H, Zhang X Y, Chen S Y, Chen J, Yang Y H. Water use efficiencyand evapotranspiration of winter wheat and its response to irrigation regime in the northChina plain[J]. Agricultural and Forest Meteorology,2008,148:1848-1859.
    Raine S R, Walker W R. A design and management tool to improve surface irrigationefficiency[J]. Trans of the ASAE,2004,10:19-23.
    Shangguan Z P, Shao M A, Dyckmans J. Effects of nitrogen nutrition and water deficit on netphotosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Journal of PlantPhysiology,2000,156:46-51.
    Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance,yield and WUE of winter wheat in the North China Plain [J]. Agricultural WaterManagement,2006,85:211-218.
    Tan W, Liu J, Dai T B, Jing Q, Cao W X, Jiang D. Alterations in photosynthesis andantioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J].Photosynthetica,2008,46:21-27.
    Tong Y A, Emteryd O, Lu D Q, Grip H. Effect of organic manure and chemical fertilizer onnitrogen uptake and nitrate leaching in a Eum-orthic anthrosols profile[J]. NutrientCycling Agroecosystems,1997,48:225-229.
    Tsai-Mei Ou-Lee, Setter T L. Enzymes of increased temperature in apical regions of Maizeears on starch-synthesis enzymes and accumulation of sugars and starch[J]. PlantPhysiology,1985,79:852-855.
    Wardlaw I F, Willenbrink J. Carbonhydrate stronge and mobilization by the culm of wheatbetween heading and grain maturity: The relation to sucrose synthase andsucrose-phosphate synthase[J]. Australian Journal of Plant Physiology,1994,21:251-271.
    Xu Z Z, Yu Z W, Wang D. Nitrogen translocation in wheat plants under soil water deficit[J].Plant and Soil,2006,280:291-303.
    Xu Z Z, Yu Z W, Wang D, Zhang Y L. Nitrogen accumulation and translocation for winterwheat under different irrigation regimes[J]. Journal of Agronomy&Crop Science,2005,191:439-449.
    Xue Q W, Zhu Z X, Musick J T, Stewart B A, Dusek D A. Root growth and water uptake inwinter wheat under deficit irrigation[J]. Plant and Soil,2003,257:151-161.
    Xue Q W, Zhu Z X, Musick J T, Stewart B A, Dusek D A. Physiological mechanismscontributing to the increased water-use efficiency in winter wheat under deficitirrigation[J]. Journal of Plant Physiology,2006,163:154-164.
    Zhang B C, Li F M, Huang G B, Cheng Z Y, Zhang Y L. Yield performance of spring wheatimproved by regulated deficit irrigation in an arid area[J]. Agricultural WaterManagement.2006,79:28-42.
    Zhu A N, Zhang J B, Zhao B Z, Cheng Z H, Li L P. Water balance and nitrate leaching lossesunder intensive crop production with Ochric Aquic Cambosols in North ChinaPlain[J]. Environment international,2005,31:904-912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700