西南桦人工群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展人工林已经成为中国林业发展的一个重要组成部分,既是保护天然林的重要措施,又作为一种增加森林资源有效的途径而成为中国所需木材的主要来源。大规模发展人工林会不会造成生态退化,需要开展翔实的基础研究提供评判依据。
     本研究选择典型的热带季节性雨林向山地季风常绿阔叶林过渡区的西双版纳北部普文试验林场为研究地点,以13年生西南桦人工群落为对象,并以地带性植被山地雨林和西南桦天然林作对照,使用野外样方调查、室内理化分析和数学统计等方法,从群落学特征、土壤理化性状、群落生物量与初级生产力、群落碳储存能力等方面进行对比研究,为科学回答发展人工林对土壤、物种多样性、生态系统功能的影响提供依据。通过研究得出以下结论:
     1)西南桦人工林的物种组成及外貌特征与次生裸地状况密切相关。在山地雨林采伐迹地上营造的西南桦人工林Ⅰ演替进展较快,有维管束植物109种,分属59科92属,其科属种数量组成明显高于在以黄牛木、余甘子、红水锦树等为优势种的次生林采伐迹地人工或天然更新的西南桦人工林Ⅱ(33科56属60种)和西南桦天然林(30科52属55种)。西南桦人工林Ⅰ与山地雨林的物种相似性系数为24.68%,外貌特征也具有一定的相似性,具有一定的演替趋同性。
     2)普文西南桦人工林植物区系热带北缘性质明显,为热带亚洲植物区系向东亚植物区系的过渡,随着演替进展西南桦人工群落热带分布成分具有增加趋势。普文西南桦人工群落以热带区系成分(2-5型)为主,热带性质明显,但无典型热带分布的科。随着西南桦人工林向地带性植被的演替进展,西南桦人工群落热带分布成分呈增加趋势,而温带成分逐渐减少。
     3)利用西南桦等先锋树种开展人工林造林,有利于群落及其结构和功能的快速恢复,并加速向地带性植被演替进程。由于发育时间较短,与地带性植被山地雨林比较,13年生西南桦人工林结构层次分化尚不明显,尤其是乔木层只有一层,为西南桦单优种。但灌木层、草本层和藤本植物却较为发达,且物种丰富度、多样性和均匀度指数也达到了较高水平,尤其是西南桦人工林Ⅰ已超过山地雨林。随着演替进展,西南桦人工林灌木层乔木幼树的发育,如西南桦人工林Ⅰ灌木层的披针叶楠、红梗润楠、短刺栲、刺栲、杯状栲、红果葱臭木、滇桂木莲、云树、高阿丁枫、滇谷木、南酸枣、思茅蒲桃等树种,将使西南桦人工林乔木层结构进一步分化,形成复层结构。与此同时,灌木层、草本层发育和凋落物层增加,促使人工群落物质循环和能量流动进一步加快,群落的物种组成日益丰富,生产力不断增加,群落功能也得以快速恢复,促进了群落演替。
     4)土壤的恢复与群落的进展演替相并行,不同采伐迹地更新的西南桦群落土壤理化性状存在较大差异,近自然的人工林经营方式有利于土壤恢复发育。西南桦人工林Ⅰ土壤(0-40cm)有机质、全氮、水解氮、全磷、速效磷、速效钾的含量分别达22.62 g.kg-1、40g.kg-1、243.87 g.kg-1、36.30 g.kg-1、0.56 g.kg-1、159.89g.kg-1,均显著高于或高于西南桦人工林Ⅱ和西南桦天然林。西南桦人工林Ⅰ表土层(0-20cm)容重和总孔隙度分别为1.235g.cm-3、52.381%,与西南桦人工林Ⅱ和西南桦天然林比较,表现出随群落结构复杂性和物种多样性增加土壤孔性状况逐渐变好的趋势,这说明了人工群落演替进展对土壤的孔性状况有较好的恢复作用。西南桦人工林Ⅰ表土层土壤砂粒、粗粉粒和细黏粒粒级分别为17.526%、22.136%和13.921%,与山地雨林的粒级比例和结构(25.704%、31.067%和24.948%)较为接近,进一步证明了群落对土壤的恢复作用随着演替进展而逐渐增强。
     5)随着西南桦群落演替进展,群落结构不断完善,土壤各养分之间的相关性随之增强。与山地雨林相比较,3种西南桦群落以西南桦人工林Ⅰ土壤养分之间的相关性最好。西南桦人工林Ⅰ的土壤养分之间的相关性除速效磷与其他养分之间的相关性稍差外(相关系数为0.285-0.581),其余土壤养分之间的相关系数均在0.5以上;西南桦人工林Ⅱ的土壤养分之间的相关性比西南桦人工林Ⅰ差,只有土壤有机质和全氮分别与其余养分之间显著相关,速效磷和速效钾分别与水解氮和全磷之间以及速效磷与速效钾之间都无显著相关关系;西南桦天然林土壤养分之间的相关性最差,土壤养分只有有机质与其他养分之间呈显著相关,其余指标之间虽然有部分有显著相关,但多数养分之间都不显著相关,甚至全磷与水解氮之间出现了负相关关系。
     6)有效态磷素的缺乏和酸性较强是影响西南桦群落林地土壤肥力的主要限制性因子,人工追施磷肥和改良土壤的酸碱度有利于加速西南桦群落的快速发育。3种西南桦群落有效磷含量低,仅为0.42mg-kg-1-1.07mg-kg-1,与全磷相差39.50-78.19倍;表土层土壤pH值为3.92-4.78,属强酸性土壤,磷素很快被土壤固定,导致速效磷长期处于严重贫瘠的状况,人工追施磷肥和改良土壤的酸碱度有利于加速西南桦群落的健康发育。
     7)西南桦群落恢复初期林,乔木层、灌木层和凋落物生物量随着演替进展呈快速增长趋势,草本层生物量呈下降趋势。随着乔木层单优种西南桦的快速生长和灌木层的发育,草本层生物量因林分郁闭度增加,呈下降趋势。
     8)西南桦人工林具有较高的生物量、净初级生产力和较强的固碳能力,开展抚育间伐有利于林分蓄积的持续增长,以提高西南桦人工林的生态效益。13年生西南桦人工林Ⅰ和西南桦人工林Ⅱ生物量分别为108.31t/hm2和83.62t/hm2,净初级生产力分别为19.99 t/hm2a和11.1t/hm2·a,年固碳量达3.87t/hm2和3.07 hm2,随着西南桦群落的快速发育,西南桦人工林林对光照和水肥的竞争更加强烈,适时地开展抚育间伐,将有利于林分蓄积的持续增长和结构优化。
     9)西南桦人工林表土层的物理性状在演替初期表现出先低后高的趋势,应加强西南桦人工林中幼林的抚育。在西南桦人工林演替初期,随着灌木层和草本层物种多样性与生物量增加,对养分需求的不断增加,导致表土层矿物质和有机质含量迅速下降,致使表土层容重增加和总孔隙度减少。加强对西南桦人工林中幼林的抚育,对人工植被和生物多样性的快速恢复是十分必要的。
Presently in China, cultivation of artificial forests has become an important content in forestry development. Artificial forest cultivation is not only a necessary measure for protecting natural forests, but also an effective way to produce timber. What are the impacts the scaled artificial forests imposed on ecological environment? Detailed studies were urgently needed.
     This study choosing Puwen experimental forest farm located at north part of Xishuangbanna as study site, which is the transition from typical tropical seasonal rain forest to montane monsoon evergreen broad-leaved forest, the artificial community of 13 years old Betula alnoides was selected as the study target, taking zonal vegetation type montane rain forest and Betula alnoides natural secondary forest as the control, adopting the methodology including field plot sampling, laboratory experiments and statistical analysis, comparative study was conducted from community characteristics, soil physical and chemical properties, community biomass, net primary productivity and carbon storage. The main results and conclusions are as follows.
     1) Species composition and physical characteristics of Betula alnoides plantation were closely related with the site status before planting. The Betula alnoides plantation coded I (BAP1) established on the cutting blank of montane rain forest had abundant diversity of the species and fast succession progresses). Totally 109 species (belong to 59 families and 92 genera) of vascular plant were recorded, which significantly exceeded those of Betula alnoides plantation codedⅡ(BAP2) (60 vascular bundle species,33 families, and 56 genera) and Betula alnoides natural forest (BANP) (55 vascular bundle species,30 families, and 52 genera) established on secondary forest cutting blank. Moreover, very abundant species composition (61 species) of shrub layer of was recorded in BAP1. The plant species'Jaccard similarity coefficient of BAP1 and tropical montane rain forest (TMRF) was 24.68%, characterized similar morphology and convergent character to a certainty.
     2) In Betula alnoides community in Puwen of Xishuangbanna, the tropical elements were dominant, characterized by the transition from tropical Asia to east Asia. With the succession progress, the tropical distribution elements present increasing trend. Dominated by areal types 2-5, it was obvious that the flora of Betula alnoides plantation in Puwen is of tropical in nature, characterized by absence of representative tropical distributed families. With the succession progress, the tropical distribution elements present increasing trend while temperate distribution elements decreasing.
     3) Choosing pioneer tree species such as Betula alnoides, is helpful for the quick restoration of both structure and function, and speeding up of succession to zonal vegetation type. Comparing with TMRF,13 years old Betula alnoides plantation did not show obvious layer differentiation, with only one tree layer of the species of Betula alnoides. However, the components of shrub layer, grass layer and lianas were all well developed, the species richness, diversity index and evenness index of BAP1 were higher than TMRF. As the succession progresses, the tree species presently in shrub layer such as Phoebe lanceolata, Machilus rufipes, Castanopsis echidnicarpa, Castanopsis hystrix, Castanopsis calathiformis, Dysoxylum binectariferum, Manglietia forrestii, Garcinia cowa, Altingia excels, Memecylom polyanthum, Choerospondias axillaries, Syzygium szemaoense, will further differentiate, promote the complication of structure and finally form multi-layer trees. Simultaneously, with the development of shrub, grass layer litter, the speed of matter cycle and energy flow in Betula alnoides plantation will further be increased, the function of community will be improved from both plant abundance and productivity, which is necessary for further community succession.
     4) Restoration of soil fertility was synchronous with the succession of plant community, the physical and chemical characteristics of soil in Betula alnoides communities established from different sites varied significantly. The basic indexes of Betula alnoides plantation coded I, namely organic matter, total N, valid N, total P, valid P, available K, were 22.62 g.kg-1、1.40 g.kg-1、243.87 g.kg-1、36.30 g.kg-1、0.56 g.kg-1、159.89 g.kg-1, these values were significantly higher than Betula alnoides II and natural Betula alnoides forest. The bulk density and general porosity of surface soil in Betula alnoides coded I plantation were 1.235 g.cm-3 and 52.381% respectively, which was better than BAP2 and BANF. In surface soil of Betula alnoides plantation coded I, the contents of sand, silt and clay were 17.526%,22.136% and 13.921% respectively, which were close to those of montane rain forest,25.704%,31.067% and 24.948% respectively.
     5) As the succession progressing and the improvement of community structure, the correlation between different soil nutrients became closer, and the soil fertility gained gradual recovery. Among all the three plant communities studied, BAP1 showed the best performance in nutrient correlation, except for the correlation between available P and other nutrients with the correlation coefficients ranged from 0.285 to 0.581. the correlation coefficients of other nutrients were higher than 0.5. As far as BAP2 was concerned, only organic matter and total N had significant correlation with other nutrients. The nutrient correlation of BANF was the poorest, only organic matter showed the significant correlation with other nutrients.
     6) Insufficient available Phosphorous and too acid soil were two restriction factors to the soil fertility of Betula alnoides plantation. P application and soil pH improvement were propitious for quick development of community. The contents of available P of three studies Betula alnoides communities ranged from 0.42mg-kg-1—1.07mg·kg-1 only, while soil pH values were 3.92—4.78. Available Phosphorous was easily fixed by soil. P application and soil pH improvement were necessary to health development of Betula alnoides plantation.
     7) In the early stage, as the progress of succession, the biomass of tree layer, shrub layer and litter showed the tendency of rapid growth, while that of grass layer showed the tendency of decrease. With development of tree layer and shrub layer, the biomass of grass layer was decreased due to the enhancement of canopy density.
     8) Betula alnoides plantation had promising biomass, net primary productivity and carbon fixation capability, timely tending and thinning were benefit for sustained increase of volume, so as to increase the ecological benefit of Betula alnoides plantation. The biomass of BAP1 and BAP2 were 108.31t/hm2 and 83.62t/hm2 while the net primary productivity were 19.99 t/hm2·a and 11.1 t/hm2·a, and the annual carbon fixation were 3.87t/hm2 and 3.07 hm2 respectively. With the development of Betula alnoides plantation, competition among water, light, and fertilizer will be stronger. Tending and thinning were necessary to volume increasement and structure optimization.
     9) In the early stage of succession, the physical properties in surface soil layer showed the tendency of degradation first and then recovery, tending was a very critical measure in management of young Betula alnoides plantation.
引文
Adejuwon J.O.,Ekanade O. A comparison of soil properties under different land use types in a part of the Nigerian cocoa belt[J]. Catena,1988,15:319-331.
    Bear F. E. Chemstry of the soil t[M]. New York:Rcinhod Press,1964:233-245.
    Blum W. E. H, Santeises A. A. A concept of sustainability and resilience based on soil function[A]. Greenland D J, Szabolcs I. Soil Resilience and Sustainable Land Use[C]. Wallingford, UK:CAB Internatinal,1994:535-542.
    Bossuyt B, Heyn M,Hermy M. Seed bank and vegetation composition of forest stands of varying age in centralBelgium:consequences for regeneration of ancient forest vegetation[J]. Plant Ecol,2002,162:33-48.
    Braun-Blanquet J., Pflanzensoziologie[M].3rd ed.Springer, Wien.1964.
    Connell J H. Diversity in tropical rain forests and coral reefs[J].. Science,1978, 199:1302-1310.
    Dixon R.K.1993.Forest sector carbon offset project:nearterm opportunities to mitigate greenhouse gas mission[J]. water,air and soil polution,70:561-577
    Doran, J. W., and T. B. Parkin. Defining and assessing soil quality[C]. Wisconsin: SSSA Special Publication Number 35,1994,3-21.
    FAO. Main Report of Global Forest Resources Assessment 2010[R].2010.
    Halpern C B, Spies T A. Plant species diversity in natural and managed forests of the Pacific Northwest[J]. Ecol Appl,1995,5:913-934.
    Hansen A J,Spies T A,Swanson F J,et al. Conserving biodiversity in managed forests[J]. Bio Sci,1991,41:382-392.
    Houghton JT,Meira Filho LG,Callander BA.1997.Greenhouse Gas Inventory workbook,International Panel on Climate Change(IPCC),Organizzation for Economic Co-operation and Development(OECD) and the International Energy Agency(IEA)[J].Paris,France,5:1-54.
    Larson, W. E., and F. J. Pierce. Conservation and enhancement of soil quality [C]. Bangkok:IBSRAM Proc.12(2).Int. Board for Soil Res. and Management,1991.
    Lasco RD,EStrella R,Corpuz EB.1998.Carbon dioxid sequestration potential of difference landuses in Mt.Makiting. Poster paper presented at the International Conference on Tropical forests and Climate hange.Manlia,Philippines.October 19-21.
    Lasco RD.1999.Quantitative estimation of carbon storage and sequestration of tropical forest esosystem[J].Professorial Chair Lecture.UPLB.College,Laguna.
    Lasco RD.2000.Forests and land use change in the Philippinrs and climate change mitigation[J].Mitigation and adaptation strategies for global change,5:81-97
    Leak W B, Smith M L. Long-term species and structural changes after cleaning young even-aged northern hardwoods in New Hampshire,USA[J]. Fore Ecol Management,1997,95:11-20.
    Lowery B.,Swan J.,Schumacher T.,et al. Physical properties of selected soils by erosion class[J]. Journal of Soil & Water Conservation,1995,50:306-311.
    Lugo AE,Brown S.1992.Tropical forests as sinks of atmospheric carbon[J]. Forest Ecology and Management,54:239-255.
    Mueller-dombois Dellenbergh. Aims and Methods of Vegetation[M]. New York: John Wiley&Sons,1974,139-147.
    Nagaike T, Kamitani T, Nakashizuka T. Plant species diversity in abandoned coppice forests in a temperate deciduous forest area of central Japan[J]. Plant Ecol, 2003,166:145-156.
    Odum E P. Fundamentals of ecology[M]. Philadelphia:Saunders Co.1971.
    Parr, J. F. R. I. Papendick, S. B. Homick, and R. E. Meyer. soil quality:Attributes and relationship to alterative and sustainable agriculture[J]. Am. J. Altern. Agric.1992, (7):5-11.
    Power, J. F., and R. J. K. Myers. The maintenance or improvement of farming systems in North America and Australia[C]. Saskatoon:Saskatchewan Inst of Penology,1989.
    RAUNKIAER C. The life forms of Plants and Statistical Plant Geography [M]. New York:Oxford University Press,1932,2-104.
    Schwilk D W, Keeley J E,Bond W J. The intermediate disturbance hypothesis does not explain fire and diversity pattern in fynbos[J]. Plant Ecol,1997,132:77-84.
    Sheil D. Long-term observations of rain forest succession, tree diversity and responses to disturbance[J]. PlantEcol,2001,155:183-199.
    Tabarelli M, Mantovani W. Gap-phase regeneration in a tropical montane forest:the effects of gap structure and bamboo species[J].2000, Plant Ecol, 148:149-155.
    Tilman D, Downing J A. Biodiversity and stability in grassland[J]. Nature,1994, 367:363-365.
    Whittaker R H. Communities and Ecosystems [M]. New York:Macmillan Company,1970,6-17.
    WILSON D S. Holism and reductionism in evolutionary ecology[J]. Oikos,1988, 53:269-273.
    Xue, Li. Nutrient cycling in a Chinese-fir(Cunninghamia lanceloata) stand on a poor site in Yishan, Guangxi [J]. For. Ecol. Manage.1996,89:115-123.
    Zeng Jie, Wang Zhongren, Zhou Shiliang. Allozyme variation and population genetic structure of Betula alnoides from Guangxi, China [J]. Biochemical Genetics, 2003,41 (3/4):61-76.
    Zeng Jie, ZhengHaishui, WengQijie. Betula alnoides——a valuable tree species for tropical and warm-subtropical areas[J]. Forest Farm and Community Tree Research Reports,1999,4:60-63.
    Zeng Jie, Zou Yuping, Bai Jiayu. Preparation of Total DNA from "Recalcitrant Plant Taxa"[J]. Acta Botanica Sinica,2002,44 (6):694-697.
    Zeng Jie, Zou Yuping, Bai Jiayu. RAPD analysis of genetic variation in natural populations of Betula alnoides from Guangxi, China[J]. Euphytica,2003,134 (1): 33-41.
    白永飞,李凌浩,黄建辉,等.内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响[J].植物学报,2001,43(3):280-287.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    北京林业大学.土壤学(上册)[M].北京:中国林业出版社,2001.
    北京农业大学.定量分析[M].上海:上海科学技术出版社,1982.
    毕波,陈强,周跃华,等.西南桦优良家系苗期选择的研究[J].广西林业科学,2005,34(2):58-62.
    边巴多吉,郭泉水,次柏,等.西藏冷杉原始林林隙对草本植物和灌木树种多样性的影响[J].应用生态学报,2004,15(2):191-194.
    曹志洪.继承传统土壤学成果、促进现代土壤学发展[J].中国基础科学,2000(2):11-16.
    曹志洪,史学正.提高土壤质量是实现我国粮食安全保障的基础[J].科学新闻周刊,2001,(46):9-10.
    陈光升,钟章成.重庆缙云山常绿阔叶林群落物种多样性与土壤因子的关系[J].应用与环境生物学报,2004,10(1):12-17.
    陈国彪.福建漳州西南桦种源家系试验初报[J].福建林业科技,2005,32(3):78-81.
    陈宏伟刘永刚冯弦,等.云南西双版纳西南桦人工林群落结构初步研究[J].广西林业科学,1999,28(3):118-126.
    陈宏伟,冯弦,刘永刚,等.西双版纳几种人工幼林的生物量研究[J].云南林业科技,2002,3:19-22.
    陈宏伟,李江,孟梦,等.云南热带山地三种阔叶人工林群落林下植物生活型谱比较[J].亚热带植物科学,2004,33(4):42-44.
    陈宏伟,李江,周彬,等.西南桦人工林与山地雨林的群落学特征比较[J].植物学通报2006,23(2):169-176.
    陈宏伟,刘永刚,冯弦,等.西南桦人工林群落物种多样性特征研究[J].广西林业科学,2002,32(1):5-11.
    陈宏伟,刘永刚,冯弦.西南桦人工林群落取样面积探讨[J].云南林业科技,1999,3:24-27.
    陈宏伟,孟梦,李江,等.西双版纳山地阔叶人工林林下植物多样性特征比较[J].热带林业,2004,32(3):22-24.
    陈灵芝,任继凯,鲍显诚.北京西山人工油松林群落学特征及生物量的研究[J].植物生态学与地植物学报,1984,8(3):173-181.
    陈强,周跃华,常恩福,等.西南桦优树选择的研究[J].浙江林学院学报,2005,22(3):291-295.
    陈伟,施季森,方镇坤,等.西南桦不同种源扦插生根能力比较[J].南京林业大学学报,2004,28(4):29-33.
    陈勇.基于木材安全的中国林产品对外依存度研究[D].北京:中国林业科学研究院,2008.
    党承林,吴兆录.季风长绿阔叶林短刺栲群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2):95-107.
    丁圣彦,宋永昌.常绿阔叶林植被动态研究进展[J].生态学报,2004,24(8):1769-1779.
    董厚德,唐炯炎.辽东山地“乱石窖”植被演替规律的初步研究[J].植物生态学与地植物学丛刊,1965,1:117-130.
    董亚杰,王雪峰,翟树臣,等.小兴安岭东北部植被组成的生活型及生活型谱分析[J].沈阳农业大学学报,1996,27(4):294-299.
    樊国盛,邓莉兰.西南桦组织培养研究[J].西南林学院学报,2000,20(3):147-151.
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    弓明钦,王凤珍,陈羽,等.西南桦对菌根的依赖性及其接种效应研究[J].林业科学研究,2001,13(1):8-14.
    郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学,2006,42(04):93-100.
    郭柯,郑度,李渤生.喀喇昆仑山-昆仑山地区植物的生活型组成[J].植物生态学报,1998,22(1):51-59.
    郭文福,黎明,曾杰.西南桦种源(家系)联合试验苗木生长观察[J].广西林业科学,2005,34(2):63-68.
    郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例[J].地理学报,2001,56(4):447-455.
    郭正刚,刘慧霞,孙学刚,等.白龙江上游地区森林植物群落物种多样性的研究[J].植物生态学报,2003,27(3):388-395.
    郭志坤.西南桦人工林群落生态学特征研究[J].林业调查规划,2004,29(增刊):256-261.
    韩美丽,李雪生,陆荣生.西南桦离体培养再生系统研究[J].广西农业科学,2002(3):122-123.
    黄镜光,冯益谦.西南桦人工栽培试验初报[J].林业科学研究,1991,4(增刊):99-103.
    黄清麟,李元红.福建中亚热带天然阔叶林与人工林对比评价I.水土资源的保持与维护[J].山地学报,2000,18(1)::69-75.
    江洪.东灵山植物群落生活型谱的比较研究[J].植物学报,1994,36(11):884—894.
    蒋端生,曾希柏,张杨珠,陈建国.土壤质量管理—Ⅰ.土壤功能与质量[J].湖南农业科学,2008,(5)86-89.
    蒋云东,陈宏伟,王达明,等.西双版纳几种人工林土壤通透性能研究[J].云南林业科技,1998,1:62-66.
    蒋云东,陈宏伟,王达明.云南热区4种人工纯林土壤理化性状分析[J].云南林业科技,1998,4:69-74.
    蒋云东,王达明,邱琼,等.7种热带阔叶树种的苗木施肥试验[J].云南林业科技,2003,2:11-16.
    蒋云东,王达明,杨德军,等.热区几种阔叶树种的育苗基质和容器规格研究[J].云南林业科技,2003,4:19-23.
    金则新.浙江天台山常绿阔叶林次生演替序列群落物种多样性[J].浙江林学院学报,2002,19(2):133-137.
    兰兰,王立新.人工林在我国林业建设中的意义[J].黑龙江科技信息,2007,(13):139.
    劳家柽.土壤农化分析手册[M].北京:农业出版社,1988.
    雷波,包维楷,贾渝,等.不同坡向人工油松幼林下地表苔藓植物层片的物种多样性与结构特征[J].生物多样性,2004,12(4):410-418.
    黎明,卢志芳.西南桦嫁接培育技术[J].林业实用技术,2005(6):25.
    李根前,王波,聂新军,等.西南桦人工幼林生长与立地条件的关系[J].西南林学院学报,2001,21(3):129-132.
    李江,陈宏伟,冯弦.云南热区几种阔叶人工林C储量的研究[J].广西植物,2003,23(4)294-298
    李莲芳,刘永刚,孟梦,等.西双版纳普文实验林场西南桦人工林的生长研究[J].西部林业科学,2006,32(4):1-13.
    李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981,34-50.
    李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83.
    廖涵宗.壳斗科八个树种个体生产量调查初报[J].林业实用技术,1988(1):14-17.
    林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    林鹏.植物群落学[M].上海:上海科技出版社,1983.
    刘庆,黎云祥,周立华.青海湖北岸植被特征研究[J].东北师大学报(自然科学版),1995,1:93-99.
    刘强,彭少麟,毕华.热带亚热带森林叶凋落物交互分解的研究[J].中山大学学报:自然科学版,2004,43(4):86-89.
    刘世梁,傅伯杰,刘国华,等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,37(1):137-143.
    刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究[J].东北林业大学学报,1990,18(2):40-46.
    刘守江,苏智先,张霞,等.陆地植物群落生活型研究进展[J].四川师范学院学报(自然科学版),2003,24(2):155-159.
    刘晓冰,邢宝山,Stephen J. Herbert土壤质量及其评价指标[J].农业系 统科学与综合研究,2002,18(2):109-112.
    刘英,曾炳山,裘珍飞,等.西南桦以芽繁芽组培快繁研究[J].林业科学研究,2003,16(6):715-719.
    陆树刚,成晓.滇东南老君山自然保护区蕨类物种多样性研究[J].云南植物研究1995,17(4):415-419.
    陆树刚.滇东南花果大箐及其附近地区蕨类区系研究[J].云南大学学报(自然科学版),1994,16(3):272-275.
    陆树刚.中国蕨类植物区系大纲[A].植物研究进展[M].北京:高等教育出版社,施普林格出版社,2004,6:29-41.
    倪健,丁圣彦.模拟植物多样性的大尺度分布:从气候和生产力推知的一种可能性[J].植物生态学报,2002,26(5):568-574.
    潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):1-14.
    彭闪江,黄忠良,徐国良,等.生境异质性对鼎湖山植物群落多样性的影响[J].广西植物,2003,23(5):391-398.
    彭少麟.生产力与生物多样性之间的相互关系研究概述[J].生态科学,2000,19(1):1-9.
    彭少麟,方炜.鼎湖山植被演替过程中椎栗和荷木种群的动态[J].植物生态学报,1995,16(1):111-115.
    彭少麟.广东亚热带森林群落的生态优势度[J].生态学报,1987,7(1): 36-42.
    彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996.
    彭少麟.森林群落稳定性与动态测度[J].广西植物,1987,7(1):67-72.
    秦仁昌,傅书遐,王铸豪,等.中国植物志(第二卷)[M].北京:科学出版社,1959:1-326.
    秦仁昌.中国蕨类植物科属的系统排列和历史来源[J].植物分类学报,1978,16(3):1-19.
    邱波.生产力与生物多样性关系研究进展[J].生态科学,2003,22(3):265-270.
    曲仲湘,文振旺.琅琊山林木现况分析[J].植物学报,1953,3:349-369.
    曲仲湘,吴玉树,王焕校,等.植物生态学[M].北京:高等教育出版社,1983.
    任海,蔡锡安,饶兴权,等.植物群落的演替理论[J].生态科学,2001,20(4):59-67.
    桑卫国,马克平,陈灵芝.2002.暖温带落叶阔叶林碳循环的初步测算[J].植物生态学报,22(6):21-26.
    沈显生.从地带性植物群落生活型谱讨论安徽植被带的划分[J].安徽大学学报(自然科学版),1999,23(3):103-108.
    沈泽昊,张新时,金义兴.三峡大老岭森林物种多样性的空间格局分析及其地形解释[J].植物学报,2000,42(6):620-627.
    盛炜彤.我国人工林生产力长期保持问题[J].林业科技管理,1999,(3):23-26.
    施国政,周铁烽,曾杰,等.海南岛西南桦的地理分布及其种质资源现状[J].热带林业,2004,32(3):45-47.
    孙启武.西南桦人工林土壤质量变化及其苗期施肥效应与营养诊断[D].北京:中国林业科学研究院,2006.
    孙向阳.土壤学[M].北京:中国林业出版社,2006.
    陶建平,臧润国.海南霸王岭热带山地雨林林隙幼苗和幼树动态规律的研究)[J].林业科学,2004,40(3):33-38.
    汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J].生态学杂志,2001,20(4):55-60.
    王伯荪,马曼杰.鼎湖山自然保护区森林群落的演变[J].热带亚热带森林生态系统研究,1982,(1):142-156.
    王伯荪,彭少麟.鼎湖山森林群落分析Ⅱ.物种联结性[J].中山大学学报(自然科学版),1983,4:27-35.
    王伯荪,彭少麟.鼎湖山森林群落分析Ⅳ.相似性与聚类分析[J].中山大学学报(自然科学版),1985,1:31-38.
    王伯荪,彭少麟.鼎湖山森林群落分析V.线性演替系统与预测[J].中山大学学报(自然科学版),1985,4:75-80.
    王伯荪,彭少麟.鼎湖山森林群落分析Ⅷ.生态优势度[J].中山大学学报(自然科学版),1986,2:93-97.
    王达明,陈宏伟,刘永刚,等.西双版纳人工林可持续经营研究[J].云南林业科技,2002,3:2-13.
    王达明,冯弦,王庆华,等.西南桦人工林生长过程研究[J].广西林业科学,2003,32(1):17-19.
    王达明.1996.西南桦造林技术研究[A].云南省林业科学院.热区造林树种研究论文集[C].昆明:云南科技出版社.
    王达明.1996.西双版纳普文试验林场自然条件[A].云南省林业科学院.热区造林树种研究论文集[C].昆明:云南科技出版社.
    王国宏,周广胜.甘肃木本植物区系生活型和果实类型构成式样与水热因子的相关分析[J].植物研究,2001,21(3):448-455.
    王国宏.再论生物多样性与生态系统的稳定性[J].生物多样,2002,10(1):126-134.
    王凌晖,韦原莲,丁允辉,等.植物生长调节剂对西南桦苗木生长的影响[J].广西植物,2002,22(5):458-462.
    王庆华,陈玉培,郑海水,等.不同西南桦种源的苗期变异性研究[J].云南林业科技,1999(1):41-48.
    王微,陶建平,李宗峰,等.卧龙自然保护区亚高山针叶林林隙特征研究[J].应用生态学报,2004,15(11):1989-1993.
    王卫斌,郑海水,景跃波,等.云南热区4种乡土阔叶树种人工林营建技术研究[J].西部林业科学,2007,36(1):10-15.
    王卫斌.西南桦人工群落特征研究[J].西部林业科学,2006,35(3):8-13.
    王卫斌.西南桦生物学特性及发展前景[J].福建林业科技,2005,32(4)175-179.
    王卫斌,张劲峰.西南桦人工林培育技术实用手册[M].昆明:云南科技出版社,2004.
    王效科,冯宗伟,欧阳志云.2001.中国森林生态系统的植物C贮量和碳密度的研究[J].应用生态学报,12(1):13-16.
    王永健,陶建平,彭月.陆地植物群落物种多样性研究进展[J].广西植物,1998,26(4):406-411.
    翁启杰,曾杰,郑海水.西南桦育苗技术研究[J].林业实用技术,2004,5:20—22.
    吴兆洪,秦仁昌.中国蕨类植物科和属[M].北京:科学出版社,1991.
    吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报,2000,22(3):405-410.
    吴兆洪,朱家木冉,杨纯瑜.中国现代及化石蕨类植物科属辞典[M].北京:中国科技出版社,1992.
    吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究,2003,25(3):245-257.
    吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991,增刊Ⅳ:1-139.
    熊毅,李庆逵.中国土壤(第二版)[M].北京:科学出版社,1987.
    吴征镒,周浙昆,孙航,等.种子植物分布区类型及其起源和分化[M].昆明:云南科技出版社,2006.
    许再富,朱华,王应祥,等.澜沧江下游/湄公河上游片断热带雨林物种多样性动态[J].植物生态学报,2004,28(5):585-593.
    熊东红,贺秀斌,周红艺.土壤质量评价研究进展[J].世界科技研究与发展,2005,27(1):71-75.
    熊文愈,骆林川.植物群落演替研究概述[J].生态学进展,1989,6(4):229-235.
    薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    严岳鸿,易绮斐,黄忠良,等.广东古兜山自然保护区蕨类植物多样性对植被不同演替阶段的生态响应[J].生物多样性,2004,12(3):339-347.
    杨斌,赵文书,陈建文,等.西南桦容器苗苗木分级研究[J].云南林业科技,2003,2:17—-21.
    杨承栋.杉木人工林地力衰退的原因机制及其防治措施[J].世界林业研究,1997,4:34-39.
    杨龙.梵净山黔稠林的结构与动态[J].植物生态学与地植物学丛刊,1983,3:204-214.
    杨绍增,王瑞荣,王达明.马尖相思人工混交林试验初报[J].云南林业科技,1996,(2):31-39.
    杨万勤,钟章成,陶建平,等.缙云山森林土壤酶活性与植物多样性的关系[J].林业科学,2001,37(4):124-128.
    于顺利,陈灵芝,马克平.东北地区蒙古栎群落生活型谱比较[J].林业科学,2000,36(3):118-121.
    于顺利,蒋高明.土壤种子库的研究进展及若干研究热点[J].植物生态学报,2003,27(4):552-560.
    云南省林业科学院.热区造林树种研究论文集[M].昆明:云南科技出版社,1996:99-105.
    云南省林业科学院.云南主要树种造林技术[M].昆明:云南人民出版社,1985.
    云南省林业厅.云南省木材战略储备生产基地规划(2011—2020年))[R].2011.
    云南省林业厅.云南省珍贵用材林基地建设规划(2011-2020年))[R].2011.
    曾锋,邱治军,许秀玉.森林凋落物分解研究进展[J].生态环境学报,2010,19(1):239-243.
    曾杰,郭文福,赵志刚,等.我国西南桦研究的回顾与展望[J].林业科学研究,2006,19(3):379-384.
    曾杰,王中仁,周世良,等.广西区西南桦天然居群遗传多样性的研究[J].植物生态学报,2003,27(1):66-72.
    曾杰,翁启杰,郑海水.西南桦种子贮藏试验[J].林业科学研究,2001,14(4):430-434.
    曾杰,郑海水,甘四明,等.广西区西南桦天然居群的表型变异[J].林业科学,2005,41(2):59-65.
    曾杰,郑海水,翁启杰.我国西南桦的地理分布与适生条件[J].林业科学研究,1999,12(5):479-484.
    曾觉民.西双版纳普文的山地雨林及其生态演替[J].云南林业科技,2002,101(4):11-16.
    曾觉民.西双版纳热带人工林群落结构及生态功能恢复的研究[J].云南林业科技,2002,3:23-45.
    曾庆波,李意德,陈步峰,等.热带森林生态系统研究与管理(M).中国林业出版社:北京,1997.
    张华,张甘霖.土壤质量指标和评价方法[J].2001(6):326-330.
    张桃林,潘剑君,赵其国.土壤质量研究进展与方向[J].1999,1:1-7.
    张裕农,王达明,杨绍增,等.西双版纳普文热带树木园建设专题报告[J].云南林业科技,2000(增刊):16-19.
    张云飞,乌云娜,杨持.草原植物群落物种多样性与结构稳定性之间的相关性分析[J].内蒙古大学学报自然科学版),1997,28(3):419-423.
    赵志刚,曾杰,郭丽云,等.西南桦嫁接试验初报[J].林业科技,2006,31(1):18-19.
    郑海水,黎明,汪炳根,等.西南桦造林密度与林木生长的关系[J].林业科学研究,2003,16(1):81-86.
    郑海水,曾杰,翁启杰.西南桦育苗基质选择试验初报[J].林业科技通讯,1998(10):23—-25.
    郑海水,曾杰.西南桦的特性及其在福建的发展潜力[J].福建林业科技,2004,31(1):85-89.
    郑海水,曾杰,翁启杰,等.西南桦的栽培技术[J].林业科学研究,2001,14(6):668-673.
    中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学出版社,1978.
    周灿芳.植物群落动态研究进展[J].生态科学,2000,19(2):53-59.
    朱华,赵崇奖,王洪,等.思茅菜阳河自然保护区植物区系研究—兼论热带亚洲植物区系向东亚植物区系的过渡[J].植物研究,2006,26(1):39-52.
    朱守谦,杨业勤.贵州亮叶水青冈林的结构与动态[J].植物生态学与地植物学丛刊,1985,3:183-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700