细菌胞外聚合物与土壤固相界面作用机理及其环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌胞外聚合物(EPS)是细菌生长代谢过程中分泌的生物大分子聚合物的总称。EPS与土壤固相的界面作用深刻影响着生物膜的形成、细胞的迁移、矿物的溶解和生物成矿、土壤的形成等诸多地球化学过程,其在重金属等污染物富集中的重要作用也日益受到关注。本文以土壤中常见细菌的EPS和典型矿物、采集并提取的地带性土壤(棕壤)各粒级土壤颗粒为供试材料,基于化学分析方法,综合运用DLVO理论、等温滴定量热(ITC)、扫描电镜(SEM)、傅立叶红外光谱(FTIR)和X-射线吸收精细结构谱(XAFS)等手段,研究了EPS在土壤颗粒和矿物表面的吸附行为和作用机理。表征了6种细菌EPS生物化学性质,考查了它们在针铁矿表面的吸附及其对Cu(Ⅱ)的吸附能力,从统计学角度分析了EPS生物化学性质与吸附的相关性,获得如下主要结果:
     (1)比较了枯草芽孢杆菌EPS在土壤不同粘土矿物和氧化物表面的吸附行为和作用机理。EPS主要组分为多糖和蛋白质,含量分别为437.6±11.8mg g-1和249.1±3.3mg g-1,并含有少量的核酸(9.9±0.2mg g-1)。EPS含有的官能团分别是羧基(pKa=4.58±0.33)、磷酸基(pKa=6.49±0.18)、氨基或羟基(pKa=9.11±0.41)。蒙脱石、高岭石和针铁矿对EPS-C、-N和-P的等温吸附趋势均能较好地拟合Langmuir方程。蒙脱石对EPS-C的吸附量分别是针铁矿和高岭石4.8倍和8.9倍,对EPS-N的吸附量分别是针铁矿和高岭石8.9倍和16.2倍。针铁矿对EPS-P的吸附量大约是蒙脱石和高岭石的5倍。因此,含有EPS-C和-N的多糖和蛋白质等组分主要被蒙脱石优先吸附,而含有EPS-P的核酸组分则优先吸附于针铁矿表面。EPS在针铁矿表面的吸附亲和力最高,高岭石次之,蒙脱石最小。EPS在矿物表面的吸附随着pH的降低和离子强度的升高而升高,吸附与EPS和矿物表面zeta电位密切相关,静电力主导EPS在矿物表面的吸附。结合FTIR结果可知,除了静电力之外,氢键参与了EPS在蒙脱石和高岭石表面的吸附,配位交换也是针铁矿选择吸附EPS组分的作用力之一。
     (2)联用DLVO理论、ITC、SEM、FTIR和XAFS技术,结合化学平衡吸附,揭示了恶臭假单胞菌EPS与粘土矿物和氧化物的界面作用机理。恶臭假单胞菌EPS中多糖、蛋白质和核酸的含量分别为532.2±7.0mg g-1、152.2±1.8mg g-1和9.2±0.2mg g-1。随着pH3.0升高到9.0,蒙脱石、高岭石和针铁矿对EPS各元素的吸附百分比均呈下降趋势,这一现象符合DLVO理论,表明静电力主导了EPS在矿物表面的吸附。同时,DLVO理论作用势能估算结果表明,其它引力作用如氢键、疏水作用和共价键也参与了EPS在蒙脱石(pH≥3.0)、高岭石(pH≥5.0)和针铁矿(pH≥9.0)表面的吸附。SEM结果显示,体系pH为7.0时,相比EPS-蒙脱石和EPS-高岭石复合体,EPS-针铁矿复合体结构更加紧密,这与针铁矿等温吸附EPS-C、-N和-P的拟合亲和力参数K均高于蒙脱石和高岭石的现象一致。EPS在矿物表面的吸附是一个放热过程(△Had=-0.02~-12.34Jg-1),这种负吸附焓变是由除静电力外的多种作用力(如氢键、疏水作用和共价键)共同参与作用的结果。FTIR结果证实了EPS在粘土矿物表面吸附过程中有氢键的形成,针铁矿吸附EPS时形成了P-OFe配位键。XAFS明确了EPS中磷酸基团与针铁矿表面内圈络合物的配位信息,结果表明,pn较低时磷酸基团与针铁矿表面羟基为单齿配位,随着pH升高时逐渐转变为双齿配位。
     (3)考查了不同土壤颗粒对EPS的吸附及离子强度对吸附的影响。恶臭假单胞菌EPS在土壤颗粒表面的吸附可用Langmuir方程定量描述。EPS主要吸附在土壤粘粒表面,有机质的存在阻碍了EPS在土壤颗粒表面的吸附。来源于EPS中蛋白质等分子的EPS-C和-N组分主要被在土壤中的粘粒优先吸附,其中对EPS-N的选择性更强,粉粒和砂粒优先吸附含EPS-C的组分,如多糖等分子。体系pH为6.0时,随着NaCl和CaCl2浓度从0mM增加到30mM, EPS-C和_N在土壤颗粒表面的吸附百分比显著增加,继续增加离子浓度,吸附增加趋势趋于平缓。然而,土壤颗粒对EPS-P的吸附百分比随着离子浓度的增加呈下降的趋势。DLVO理论能够解释土壤粒级和有机质对EPS吸附的影响,以及EPS-C和-N吸附随离子强度变化的趋势,但不能解释离子强度对EPS-P在土壤颗粒表面吸附的影响,这说明EPS-P在土壤颗粒表面的吸附机制不同于EPS-C和_N。
     (4)全面表征了不同来源EPS的生物化学性质,查明了决定EPS在矿物表面吸附及对重金属固定的关键因子。6种细菌EPS中,多糖和蛋白质含量合计占EPS总质量的65%-86%,多糖与蛋白质含量比在0.14-6.81之间:官能团总量在7.61±0.39mmol g-1至34.78±0.38mmol g-1范围内,平均为23.5±0.66mmol g-1;平均分子量在2.19×104g m01-1至3.51×105g mol-1之间;表面均带负电荷,等效直径在525.9-1701nm范围内。EPS在针铁矿表面的吸附都可用Langmuir模型来描述,与其它5种EPS相比S. suis EPS在针铁矿表面的吸附吸附量较大,并呈不同的吸附趋势。聚合物分子间的作用可能使S. suis EPS在针铁矿表面发生多层吸附。EPS在针铁矿表面的吸附与EPS的大分子组成密切相关,尤其是蛋白质含量决定了EPS在针铁矿表面的吸附量。不同细菌EPS对Cu(Ⅱ)的吸附差异非常明显,吸附量最高可达830.6mg g-1。EPS团聚颗粒的等效粒径是影响EPS对Cu(Ⅱ)的重要因素。
Growth and metabolism of bacteria are accompanied by the production of extracellular polymeric substances (EPS), which are complex mixtures of various biomacromolecules. The interactions of EPS with soil solid interface have significant effects on many geochemical processes such as biofilm formation, the migration of bacterial cells, mineral dissolution, biomineralization and forming of soil. The important role of EPS in heavy metals accumulation in soil or aquatic environments has also received growing concern. The adsorption and binding mechanism of EPS from bacteria on Brown soil particles or minerals such as montmorillonite, kaolinite and goethite were studied using batch adsorption experiments, Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, isothermal titration calorimetry (ITC), scanning electron microscopy (TEM), fourier transform infrared spectrumscopy (FTIR) and X-ray Absorption Fine Structure (XAFS). Biochemical properties of EPS from six bacteria and their correlation with adsorption on goethite and adsorption for Cu(Ⅱ) were statistically investigated. The major results were summarized as follows:
     (1) EPS from Bacillus subtilis are composed dominantly of polysaccharides (437.6±11.8mg g-1) and proteins (249.1±3.3mg g-1), with nucleic acids (9.9±0.2mg g-1) as minor constituents. EPS contain three functional groups which correspond to carboxyl (pKa=4.58±0.33), phosphoryl (pKa=6.49±0.18) and amino or hydroxyl (pKa=9.11±0.41). The adsorption of EPS-C,-N and-P on montmorillonite, kaolinite and goethite conform to Langmuir equation quite well. The amount of EPS-C adsorption on montmorillonite was4.8and8.9-fold greater than that on goethite and kaolinite, respectively. EPS-N adsorption on montmorillonite was also far greater than that on goethite (8.9-fold) and kaolinite (16.2-fold). However, EPS-P adsorbed by goethite was about5-times greater than that by montmorillonite and kaolinite. Therefore, EPS-C and-N constituents (from proteins) are mainly adsorbed by montmorillonite and EPS-P constituents (from nucleic acids) are predominantly adsorbed by goethite. Goethite shows the highest affinity to EPS among the examined clay minerals and iron oxide. An increase in the concentration of cations and/or a decrease in the pH favored EPS adsorption on minerals. Combining with the FTIR result, hydrogen bonding and the electrostatic interaction are the main forces governing the adsorption of EPS on clay minerals. Besides these interaction forces, chemical bonding interactions (ligand exchange) also contribute to selective fractionation of EPS adsorption on goethite.
     (2) The binding characteristics of EPS from Pseudomonas putida on clay mineral and oxide were studied using a combination of DLVO theory, ITC, SEM, FTIR, XAFS and batch adsorption experiments. Extracted EPS from P. putida consist of polysaccharides (532.2±7.0mg g-1), proteins (152.2±1.8mg g-1) and nucleic acids (9.2±0.2mg g-1). A marked decrease in the adsorption of EPS on montmorillonite, kaolinite and goethite was observed with the increase of pH from3.0to9.0. This phenomenon conforms to DLVO theory and showed that electrostatic forces dominate the adsorption of EPS on mineral surfaces. Hydrogen bond, hydrophobic and covalent may also participate in the adsorption of EPS on montmorillonite (pH≥3.0), kaolinite (pH≥5.0) and goethite (pH≥9.0). SEM showed more firm structrue for EPS-goethite complex than EPS-montmorillonite and EPS-kaolinite complexes at pH7.0, which was in accordance with the higher K value of goethite of adsorption EPS-C,-N and-P than that of montmorillonite and kaolinite. Adsorption of EPS on minerals surfaces were exothermic (AHad=-0.02~-12.34J g-1), and governed by combination of forces such as hydrogen bond, hydrophobic and covalent interaction in addition to electrostatic force. The hydrogen bond between EPS and clay minerals were confirmed by FTIR, as well as P-OFe coordination bond between EPS and goethite. XAFS showed that phosphate groups of EPS can manly form monodentate inner-sphere complexes with Fe centers on the goethite surface at low pH, while gradually changed to the bidentate inner-sphere complexes as pH rising.
     (3) The adsorption of EPS from P. putida on soil particles could be quantitatively described with Langmuir isotherm equation. EPS are mainly adsorbed by fine soil particles, however organic matter hinder the adsorption of EPS on soil particles. EPS-N moieties mainly from proteins are adsorbed preferentially on clay, and EPS-C moieties predominantly from polysaccharides are adsorbed selectively by silt and sand. The mass fraction of EPS-C, and-N adsorbed on soil particles increased in the presence of0-30mM Na+or Ca2+and remained constant or increased slightly with continuously increasing ionic concentration at pH6.0. In contrast, the adsorption of EPS-P on soil particles was on the decline with the increase of NaCl and CaCl2. DLVO theory can explain the effects of size fraction and organic matter on the absorption of EPS, also predict the adsorption of EPS-C and-N trend with ionic strength. However this theory failed to explain the influence of ionic concentration on adsorption of EPS-P, indicated that the binding mechanism of EPS-P on soil particles was different to EPS-C and-N.
     (4) The biochemical properties of EPS extracted from different bacteria were characterized in order to charigy the key factors controlling EPS adsorption on minerals and heavy metal binding. Polysaccharides and protein accounted for65%-86%of EPS composition, and the ratios of polysaccharides and protein were0.14-6.81. The total function group contents were from7.61±0.39mmol g-1to34.78±0.38mmol g-1, with an average of23.5±0.66mmol g-1. Mw values of six EPS were from2.19×104g mol"1to3.51×105g mol-1. The equivalent diameter of EPS was in the range of525.9to1701nm, with negatively charged surface. Adsorption of EPS on goethite can be well described by Langmuir model. The adsorbed amount of EPS from S. suis on goethite was far greater than the other EPS, and showed a different trend of adsorption, indicating that polymeric interaction promoted multilayer adsorption of EPS from S. suis on goethite. Adsorption of EPS on goetihte showed a significant correlation with the macromolecular composition of EPS, especially the content of protein. Adsorption of Cu(Ⅱ) by EPS differed markedly, and Cu(II) adsorption capacity was up to830.6mg g-1. The equivalent diameter of EPS was the key factor affecting adsorption of Cu(Ⅱ).
引文
1.方临川.重金属与细菌-土壤活性颗粒微界面互作的分子机制.[博士学位论文].武汉:华中农业大学图书馆,2011
    2.蒋代华.细菌在粘土矿物及土壤颗粒表面的吸附研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    3.李建武,肖能.生物化学实验原理与方法.北京:北京大学出版社,1994
    4.李学垣.土壤化学.北京:高等教育出版社,2001
    5.龙向宇.胞外聚合物及其表面性质对活性污泥絮凝沉降性能的影响研究.[博士学位论文].重庆大学,2008
    6.潘响亮,王建龙,张道勇.硫酸盐还原菌混合菌群胞外聚合物对Cu2+的吸附和机理.水处理技术,2005a,31:25-28
    7.潘响亮,王建龙,张道勇,王凡.硫酸盐还原菌混合菌群胞外聚合物对Zn2+的吸附和机理.环境科学研究,2005b,18:53-55
    8.荣兴民.细菌与土壤粘粒矿物相互作用的热力学研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    9.宋梁平.生物化学与分子生物学实验教程.北京:高等教育出版社,2003.16-17
    10.吴华勇,黄巧云,蔡鹏,梁巍,荣兴民.原子力显微镜技术在固相表面细菌吸附研究中的应用.应用与环境生物学报,2010,16:596-602
    11.吴涓,李清彪.黄孢原毛平革菌吸附铅离子机理的研究.环境科学学报,2001,21:291-295
    12.熊毅主编.土壤胶体.北京:科学出版社,1983
    13.杨航,李敏.表面络合模式在天然体系中的应用研究进展.环境科学与技术,2012,2:189-193
    14.杨敏,豆小敏,张昱.固液界面吸附机制与模型.环境科学学报,2006,26:1581-1585
    15.钟文杰,贺博,李征,韦世强.USTCXAFS 2.0软件包.中国科学技术大学学报:2001,31:328
    16. Abu-Lail NI, Camesano TA. Role of ionic strength on the relationship of biopolymer conformation, DLVO contribution, and steric interactions to bioadhesion of Pseudomonas putida KT2442. Biomacromolecules,2003,4:1000-1012
    17. Acosta MP, Valdman E, Leite S, Battaglini F, Ruzal S. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World Journal of Microbiology and Biotechnology,2005,21:1157-1163
    18. Antelo J, Avena M, Fiol S, Lopez R, Arce F. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. Journal of Colloid and Interface Science,2005,285:476-486
    19. Atkinson R, Posner A, Quirk JP. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. The Journal of Physical Chemistry,1967,71: 550-558
    20. Aylmore LAG, Quirk JP. Domain or turbostratic structure of clays. Nature,1960,187: 1046-1048.
    21. Azeredo J, Visser J, Oliveira R. Exopolymers in bacterial adhesion:interpretation in terms of DLVO and XDLVO theories. Colloids and Surfaces B:Biointerfaces,1999, 14:141-148
    22. Bajpai A, Rajpoot M, Mishra D. Studies on the Adsorption of Sulfapyridine at the Solution-Alumina Interface. Journal of Colloid and Interface Science,1997,187: 96-104
    23. Balcke GU, Kulikova NA, Hesse S, Kopinke F-D, Perminova IV, Frimmel FH. Adsorption of humic substances onto kaolin clay related to their structural features. Soil Science Society of America Journal,2002,66:1805-1812
    24. Barja BC, Tejedor-Tejedor MI, Anderson MA. Complexation of methylphosphonic acid with the surface of goethite particles in aqueous solution. Langmuir,1999,15: 2316-2321
    25. Beech I, Cheung CS. Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. International Biodeterioration & Biodegradation,1995,35: 59-72
    26. Bhaskar P, Bhosle NB. Bacterial extracellular polymeric substance (EPS):a carrier of heavy metals in the marine food-chain. Environment International,2006,32:191-198
    27. Bin Z, Baosheng S, Min J, Taishi G, Zhenghong G. Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged MBR. Desalination,2008,227:286-294
    28. Blasie CA, Berg JM. Kinetics and thermodynamics of copper (Ⅱ) binding to Apoazurin. Journal of the American Chemical Society,2003,125:6866-6867
    29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    30. Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, Visscher PT. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiology Ecology,2009,67:293-307
    31. Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology,2006,59:1229-1238
    32. Brown MJ, Lester JN. Comparison of bacterial extracellular polymer extraction methods. Applied and Environmental Microbiology,1980,40:179-185
    33. Brunk CF, Jones KC, James TW. Assay for nanogram quantities of DNA in cellular homogenates. Analytical Biochemistry,1979,92:497-500
    34. Burdman S, Jurkevitch E, Soria-Diaz ME, Serrano AMG, Okon Y. Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS microbiology Letters,2000,189:259-264
    35. Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal,1956,62: 315
    36. Buswell C, Herlihy Y, Marsh P, Keevil C, Leach S. Coaggregation amongst aquatic biofilm bacteria. Journal of Applied Microbiology,1997,83:477-484
    37. Cagnasso M, Boero V, Franchini MA, Chorover J. ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces. Colloids and Surfaces B-Biointerfaces,2010,76:456-467
    38. Cai P, Huang QY, Zhang XW, Chen H. Binding and transformation of extracellular DNAin soil. Pedosphere,2005,15:16-23
    39. Cai P, Huang Q, Jiang D, Rong X, Liang W. Microcalorimetric studies on the adsorption of DNAby soil colloidal particles. Colloids and Surfaces B:Biointerfaces, 2006a,49:49-54
    40. Cai P, Huang Q, Zhang X. Microcalorimetric studies of the effects of MgCl2 concentrations and pH on the adsorption of DNA on montmorillonite, kaolinite and goethite. Applied Clay Science,2006b,32:147-152
    41. Cai P, Huang Q, Zhang X, Chen H. Adsorption of DNA on clay minerals and various colloidal particles from an Alfisol. Soil Biology and Biochemistry,2006c,38: 471-476
    42. Camesano TA, Logan BE. Probing bacterial electrosteric interactions using atomic force microscopy. Environmental Science & Technology,2000,34:3354-3362
    43. Chatellier X, Fortin D. Adsorption of ferrous ions onto Bacillus subtilis cells. Chemical Geology,2004,212:209-228
    44. Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme and Microbial Technology,2006,38:237-245
    45. Cox JS, Smith DS, Warren LA, Ferris FG Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environmental Science & Technology,1999,33:4514-4521
    46. Czajka DR, Lion LW, Shuler ML, Ghiorse WC. Evaluation of the utility of bacterial extracellular polymers for treatment of metal-contaminated soils:Polymer persistence, mobility, and the influence of lead. Water Research,1997,31:2827-2839
    47. D'Abzac P, Bordas F, Van Hullebusch E, Lens PN, Guibaud G. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Applied Microbiology and Biotechnology,2010,85:1589-1599
    48. Davis JA, Meece DE, Kohler M, Curtis GP. Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochimica et Cosmochimica Acta,2004,68:3621-3641
    49. Decho AW. Microbial biofilms in intertidal systems:an overview. Continental Shelf Research,2000,20:1257-1273
    50. Decho AW, Visscher PT, Reid RP. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,219:71-86
    51. Demarse NA, Killian MC, Hansen LD, Quinn CF. Determining Enzyme Kinetics via Isothermal Titration Calorimetry. Enzyme Engineering,2013,978:21-30
    52. Denisov N, Chtcheglova L, Sekatskii S, Dietler G. Covalent attachment of proteins to calcite surface for the single molecule experiments. Colloids and Surfaces B: Biointerfaces,2008,63:282-286
    53. Denkhaus E, Meisen S, Telgheder U, Wingender J. Chemical and physical methods for characterisation of biofilms. Microchimica Acta,2007,158:1-27
    54. Dreywood R. Qualitative test for carbohydrate material. Industrial & Engineering Chemistry Analytical Edition,1946,18:499-499
    55. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry,1956,28: 350-356
    56. Eboigbodin KE, Biggs CA. Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules,2008,9:686-695
    57. Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A. Bacterially induced mineralization of calcium carbonate:the role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis,2007,13:42-50
    58. Esparza-Soto M, Westerhoff P. Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research,2003,37:2301-2310
    59. Fang HH, Jia X. Extraction of extracellular polymer from anaerobic sludges. Biotechnology Techniques,1996,10:803-808
    60. Fang LC, Huang QY, Wei X, Liang W, Rong XM, Chen WL, Cai P. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresource Technology,2010,101:5774-5779
    61. Fang LC, Wei X, Cai P, Huang QY, Chen H, Liang W, Rong XM. Role of extracellular polymeric substances in Cu(Ⅱ) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresource Technology,2011,102:1137-1141
    62. Fein JB, Daughney CJ, Yee N, Davis TA. A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochimica et Cosmochimica Acta,1997,61: 3319-3328
    63. Flemming HC. The perfect slime. Colloids and Surfaces B:Biointerfaces,2011,86: 251-259
    64. Flemming HC, Neu TR, Wozniak DJ. The EPS matrix:the "house of biofilm cells". Journal of Bacteriology,2007,189:7945-7947
    65. Flemming HC, Wingender J. The biofilm matrix. Nature Reviews Microbiology, 2010,8:623-633
    66. Flemming HC, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs)--Part Ⅰ:Structural and ecological aspects. Water Science and Technology,2001,43:1
    67. Fourest E, Roux JC. Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology and Biotechnology,1992,37: 399-403
    68. Fr(?)lund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research,1996,30: 1749-1758
    69. Frank BP, Belfort G. Polysaccharides and sticky membrane surfaces:critical ionic effects. Journal of Membrane Science,2003,212:205-212
    70. Franklin MJ, Ohman DE. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. Journal of Bacteriology,1993,175:5057-5065
    71. Frings CS, Fendley TW, Dunn RT, Queen CA. Improved determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clinical Chemistry,1972,18:673-674
    72. Gomez-Suarez C, Pasma J, van der Borden AJ, Wingender J, Flemming H-C, Busscher HJ, van der Mei HC. Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. Microbiology, 2002,148:1161-1169
    73. Gavrilescu M. Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences,2004,4:219-232
    74. Gehrke T, Telegdi J, Thierry D, Sand W. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Applied and Environmental Microbiology,1998,64:2743-2747
    75. Gong AS, Bolster CH, Benavides M, Walker SL. Extraction and analysis of extracellular polymeric substances:Comparison of methods and extracellular polymeric substance levels in Salmonella pullorum SA 1685. Environmental engineering science,2009,26:1523-1532
    76. Goodwin J, Forster C. A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics. Water Research,1985,19: 527-533
    77. Gregory J. Approximate expressions for retarded van der Waals interaction. Journal of Colloid and Interface Science,1981,83:138-145
    78. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models. Environmental Science & Technology,1994,28:38-46
    79. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta, 1995,59:219-229
    80. Guibal E, Roulph C, Le Cloirec P. Uranium biosorption by a filamentous fungus Mucor miehei pH effect on mechanisms and performances of uptake. Water Research, 1992,26:1139-1145
    81. Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere,2005,59:629-638
    82. Guibaud G, Van Hullebusch E, Bordas F, d'Abzac P, Joussein E. Sorption of Cd (Ⅱ) and Pb (Ⅱ) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains:modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology,2009,100:2959-2968
    83. Guine V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet J-P, Martins J. Zinc sorption to three gram-negative bacteria:Combined titration, modeling, and EXAFS study. Environmental Science & Technology,2006,40:1806-1813
    84. Guo M, Chorover J. Transport and fractionation of dissolved organic matter in soil columns. Soil Science,2003,168:108-118
    85. Gustafsson JP, Persson I, Kleja DB, Van Schaik JW. Binding of iron (Ⅲ) to organic soils:EXAFS spectroscopy and chemical equilibrium modeling. Environmental Science & Technology,2007,41:1232-1237
    86. Ha J, Gelabert A, Spormann AM, Brown Jr GE. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis:Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochimica et Cosmochimica Acta,2010,74:1-15
    87. Hanna A, Berg M, Stout V, Razatos A. Role of capsular colonic acid in adhesion of uropathogenic Escherichia coli. Applied and Environmental Microbiology,2003,69: 4474-4481
    88. He H, Yang D, Yuan P, Shen W, Frost RL. A novel organoclay with antibacterial activity prepared from montmorillonite and Chlorhexidini Acetas. Journal of Colloid and Interface Science,2006a,297:235-243
    89. He Y, Xu J, Wang H, Ma Z, Chen J. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environmental Research,2006b,101: 362-372
    90. Henao L, Mazeau K. The molecular basis of the adsorption of bacterial exopolysaccharides on montmorillonite mineral surface. Molecular Simulation,2008, 34:1185-1195
    91. Hermansson M. The DLVO theory in microbial adhesion. Colloids and Surfaces B: Biointerfaces,1999,14:105-119
    92. Hiemenz PC. Electrophoresis and other electrokinetic phenomena. In:Lagowski JJ eds., Principles of Colloid and Surface Chemistry. New York:Marcel Dekker,1977. 452-487
    93. Higgins MJ, Novak JT. Dewatering and settling of activated sludges:The case for using cation analysis. Water Environment Research,1997:225-232
    94. Hogg R, Healy T, Fuerstenau D. Mutual coagulation of colloidal dispersions. Transaction of the Faraday Society,1966,62:1638-1651
    95. Huang HM, Chen WY, Ruaan RC. Microcalorimetric studies of the mechanism of interaction between designed peptides and hydrophobic adsorbents. Journal of Colloid and Interface Science,2003,263:23-28
    96. Huang QY, Liang W, Cai P. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloids and Surfaces B:Biointerfaces, 2005,45:209-214
    97. Hwang G, Kang S, El-Din MG, Liu Y. Impact of an extracellular polymeric substance (EPS) precoating on the initial adhesion of Burkholderia cepacia and Pseudomonas aeruginosa. Biofouling,2012,28:525-538
    98. Iyer A, Mody K, Jha B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Marine Pollution Bulletin,2004,49:974-977
    99. Jia C, Li P, Li X, Tai P, Liu W, Gong Z. Degradation of pyrene in soils by extracellular polymeric substances (EPS) extracted from liquid cultures. Process Biochemistry,2011,46:1627-1631
    100.Jorand F, Boue-Bigne F, Block J, Urbain V. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Science and Technology,1998,37: 307-315
    101.Joshi PM, Juwarkar AA. In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental Science & Technology,2009,43:5884-5889
    102.Jucker B, Harms H, Hug S, Zehnder A. Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds. Colloids and Surfaces B:Biointerfaces,1997,9:331-343
    103.Korstgens V, Flemming H, Wingender J, Borchard W. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water science and technology:a journal of the International Association on Water Pollution Research,2001,43:49
    104.Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW, Ghiorse WC. Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environmental Microbiology,2001,3:774-784
    105.Karlsson T, Persson P. Coordination chemistry and hydrolysis of Fe (Ⅲ) in a peat humic acid studied by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta,2010,74:30-40
    106.Karlsson Tr, Persson P, Skyllberg U, Morth C-M, Giesler R. Characterization of iron (Ⅲ) in organic soils using extended X-ray absorption fine structure spectroscopy. Environmental Science & Technology,2008,42:5449-5454
    107.Kazy SK, Sar P, Singh S, Sen AK, D'Souza S. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain:synthesis, chemical nature and copper binding. World Journal of Microbiology and Biotechnology,2002,18:583-588
    108.Khan SS, Mukherjee A, Chandrasekaran N. Interaction of colloidal silver nanoparticles (SNPs) with exopolysaccharides (EPS) and its adsorption isotherms and kinetics. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011a,381:99-105
    109.Khan SS, Srivatsan P, Vaishnavi N, Mukherjee A, Chandrasekaran N. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. Journal of Hazardous Materials,2011b,192: 299-306
    110.Kim HN, Walker SL, Bradford SA. Macromolecule mediated transport and retention of Escherichia coli 0157:H7 in saturated porous media. Water Research,2010,44: 1082-1093
    111.Kim S-Y, Kim J-H, Kim C-J, Oh D-K. Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnology Letters,1996,18: 1161-1164
    112.King R, Forster C. Effects of sonication on activated sludge. Enzyme and Microbial Technology,1990,12:109-115
    113.Kubicki J, Schroeter L, Itoh M, Nguyen B, Apitz S. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochimica et Cosmochimica Acta,1999,63:2709-2725
    114.Kwon KD, Vadillo-Rodriguez V, Logan BE, Kubicki JD. Interactions of biopolymers with silica surfaces:Force measurements and electronic structure calculation studies. Geochimica et Cosmochimica Acta,2006,70:3803-3819
    115.La Force MJ, Fendorf S. Solid-phase iron characterization during common selective sequential extractions. Soil Science Society of America Journal,2000,64:1608-1615
    116.Laspidou CS, Rittmann BE. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research,2002,36: 2711-2720
    117.Li X, Yang S. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research,2007,41:1022-1030
    118.Liu H, Fang HH. Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology,2002,95:249-256
    119.Liu X, Eusterhues K, Thieme J, Ciobota V, Hoschen C, Mueller CW, Kuesel K, Kogel-Knabner I, Roesch P, Popp J. STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite. Environmental Science& Technology,2013,47:3158-3166
    120.Liu XM, Sheng GP, Luo HW, Zhang F, Yuan SJ, Xu J, Zeng RJ, Wu JG, Yu HQ. Contribution of Extracellular Polymeric Substances (EPS) to the Sludge Aggregation. Environmental Science & Technology,2010,44:4355-4360
    121.Liu Y, Yang C-H, Li J. Influence of extracellular polymeric substances on Pseudomonas aeruginosa transport and deposition profiles in porous media. Environmental Science & Technology,2007,41:198-205
    122.Loaec M, Olier R, Guezennec J. Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Research,1997,31:1171-1179
    123.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biological Chemistry,1951,193:265-275
    124.Lu Q, Wang J, Faghihnejad A, Zeng H, Liu Y. Understanding the molecular interactions of lipopolysaccharides during E. coli initial adhesion with a surface forces apparatus. Soft Matter,2011,7:9366-9379
    125.Lux R, Li Y, Lu A, Shi W. Detailed three-dimensional analysis of structural features of Myxococcus xanthus fruiting bodies using confocal laser scanning microscopy. Biofilms,2004,1:293-303
    126.Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens,2009, 5:e1000354
    127.Mao Y, Daniel LN, Whittaker N, Saffiotti U. DNA binding to crystalline silica characterized by Fourier-transform infrared spectroscopy. Environmental Health Perspectives,1994,102:165
    128.Marshall K, Stout R, Mitchell R. Mechanism of the initial events in the sorption of marine bacteria to surfaces. Journal of General Microbiology,1971,68:337-348
    129.Martinez RE, Smith DS, Kulczycki E, Ferris FG. Determination of Intrinsic Bacterial Surface Acidity Constants using a Donnan Shell Model and a Continuous pKa Distribution Method. Journal of Colloid and Interface Science,2002,253:130-139
    130.Matsuyama T, Nakagawa Y. Surface-active exolipids:analysis of absolute chemical structures and biological functions. Journal of Microbiological Methods,1996,25: 165-175
    131.Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC. The role of intermolecular interactions:studies on model systems for bacterial biofilms. International Journal of Biological Macromolecules,1999,26:3-16
    132.Mikkelsen LH, Keiding K. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Research,2002,36:2451-2462
    133.Morillo JA, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sanchez M. Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Current Microbiology,2006,53:189-193
    134.Neu TR. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews,1996,60:151
    135.Neu TR, Marshall KC. Bacterial polymers:physicochemical aspects of their interactions at interfaces. Journal of Biomaterials Applications,1990,5:107-133
    136.Neu TR, Marshall KC. Microbial "footprints"—a new approach to adhesive polymers. Biofouling,1991,3:101-112
    137.Ngwenya BT, Sutherland IW, Kennedy L. Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains. Applied Geochemistry,2003,18:527-538
    138.Nielsen PH, Jahn A. Extraction of EPS. In:Wingender J, Neu TR, Flemming HC eds., Microbial extracellular polymeric substances:characterization, structure and function. Berlin Heidelberg:Springer-Verlag,1999.49-72
    139.Ohno T, Chorover J, Omoike A, Hunt J. Molecular weight and humification index as predictors of adsorption for plant- and manure-derived dissolved organic matter to goethite. European Journal of Soil Science,2007,58:125-132
    140.Omoike A, Chorover J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis:Aqueous chemistry and adsorption effects. Biomacromolecules, 2004,5:1219-1230
    141.Omoike A, Chorover J. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochimica et Cosmochimica Acta,2006,70:827-838
    142.Omoike A, Chorover J, Kwon KD, Kubicki JD. Adhesion of bacterial exopolymers to alpha-FeOOH:Inner-sphere complexation of phosphodiester groups. Langmuir,2004, 20:11108-11114
    143.Ozdemir G, Ceyhan N, Manav E. Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Bioresource Technology,2005,96:1677-1682
    144.Pal A, Paul A. Microbial extracellular polymeric substances:central elements in heavy metal bioremediation. Indian journal of microbiology,2008,48:49-64
    145.Pan X, Liu J, Zhang D, Chen X, Song W, Wu F. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge:A fluorescence quenching study. Journal of Colloid and Interface Science,2010,345: 442-447
    146.Parikh SJ, Chorover J. Infrared spectroscopy studies of cation effects on lipopolysaccharides in aqueous solution. Colloids and Surfaces B-Biointerfaces,2007, 55:241-250
    147.Parikh SJ, Chorover J. ATR-FTIR study of lipopolysaccharides at mineral surfaces. Colloids and Surfaces B-Biointerfaces,2008,62:188-198
    148.Paul JH, Jeffrey WH. Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Applied and Environmental Microbiology,1985,50:431-437
    149.Perry IV TD, Klepac-Ceraj V, Zhang XV, McNamara CJ, Polz MF, Martin ST, Berke N, Mitchell R. Binding of harvested bacterial exopolymers to the surface of calcite. Environmental Science & Technology,2005,39:8770-8775
    150.Persson P, Nilsson N, Sjoberg S. Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. Journal of Colloid and Interface Science,1996,177: 263-275
    151.Pulsawat W, Leksawasdi N, Rogers P, Foster L. Anions effects on biosorption of Mn (Ⅱ) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnology Letters,2003,25:1267-1270
    152.Raunkjaer K, Hvitved-Jacobsen T, Nielsen PH. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Research,1994,28:251-262
    153.Ravat C, Dumonceau J, Monteil-Rivera F. Acid/base and Cu (Ⅱ) binding properties of natural organic matter extracted from wheat bran:Modeling by the surface complexation model. Water Research,2000,34:1327-1339
    154.Riding R. Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms. Sedimentology,2000,47:179-214
    155.Rijnaarts HH, Norde W, Bouwer EJ, Lyklema J, Zehnder AJ. Bacterial adhesion under static and dynamic conditions. Applied and Environmental Microbiology,1993, 59:3255-3265
    156.Riou-Cavellec M, Serre C, Robino J, Nogues M, Greneche J, Ferey G Hydrothermal synthesis, powder structural determination, and magnetic study of the novel hydrated iron diphosphonate [Fe2(H2O)2(O3P-CH2-PO3H)2](H2O)2 or MIL-13. Journal of Solid State Chemistry,1999,147:122-131
    157.Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzalez-Munoz MT, Rodriguez-Gallego M. Bacterially mediated mineralization of vaterite. Geochimica et Cosmochimica Acta,2007,71:1197-1213
    158.Rong X, Chen W, Huang Q, Cai P, Liang W. Pseudomonas putida adhesion to goethite:Studied by equilibrium adsorption, SEM, FTIR and ITC. Colloids and Surfaces B:Biointerfaces,2010,80:79-85
    159.Rose J, Manceau A, Bottero J-Y, Masion A, Garcia F. Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO4 ions.1. Fe K-edge EXAFS study. Langmuir,1996,12:6701-6707
    160.Rose J, Manceau A, Masion A, Bottero J-Y. Structure and mechanisms of formation of FeOOH (NO3) oligomers in the early stages of hydrolysis. Langmuir,1997,13: 3240-3246
    161.Salehizadeh H, Shojaosadati S. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research,2003,37:4231-4235
    162.Sand W, Gehrke T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (Ⅲ) ions and acidophilic bacteria. Research in Microbiology,2006,157:49-56
    163.Schollenberger C, Simon R. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Science,1945,59:13
    164.Sheng G-P, Yu H-Q, Li X-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:A review. Biotechnology Advances,2010,28:882-894
    165.Sheng G-P, Yu HQ, Yue ZB. Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Applied Microbiology and Biotechnology,2005a,69:216-222
    166.Sheng GP, Yu HQ, Yu Z. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology,2005b,67:125-130
    167.Shimao M. Biodegradation of plastics. Current Opinion in Biotechnology,2001,12: 242-247
    168.Smith P, Krohn RI, Hermanson G, Mallia A, Gartner F, Provenzano M, Fujimoto E, Goeke N, Olson B, Klenk D. Measurement of protein using bicinchoninic acid. Analytical Biochemistry,1985,150:76-85
    169.Staudt C, Horn H, Hempel D, Neu T. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnology and Bioengineering,2004,88:585-592
    170.Stotzky G Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality,2000,29:691-705
    171.Stumm W. Chemistry of the solid-water interface:processes at the mineral-water and particle-water interface in natural systems. New York:John Wiley & Son Inc.,1992.
    172.Suci P, Frolund B, Quintero E, Weiner R, Geesey G Adhesive extracellular polymers of hyphomonas MHS-3:Interaction of polysaccharides and proteins. Biofouling, 1995,9:95-114
    173.Szytula A, Burewicz A, Dimitrijevic Z, Krasnicki S, Rzany H, Todorovic J, Wanic A, Wolski W. Neutron Diffraction Studies of α-FeOOH. physica status solidi (b),1968, 26:429-434
    174.Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J. Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiological Research,2005,160:165-176
    175.Toner B, Manceau A, Marcus MA, Millet DB, Sposito G. Zinc sorption by a bacterial biofilm. Environmental Science & Technology,2005,39:8288-8294
    176.Tong M, Zhu P, Jiang X, Kim H. Influence of natural organic matter on the deposition kinetics of extracellular polymeric substances (EPS) on silica. Colloids and Surfaces B:Biointerfaces,2011,87:151-158
    177.Torsvik V,Ovreas L. Microbial diversity and function in soil:from genes to ecosystems. Current Opinion in Microbiology,2002,5:240-245
    178.Tourney J, Ngwenya BT, Mosselmans J, Tetley L, Cowie GL. The effect of extracellular polymers (EPS) on the proton adsorption characteristics of the thermophile Bacillus licheniformis S-86. Chemical Geology,2008,247:1-15
    179.Tsai YS, Lin FY, Chen WY, Lin CC. Isothermal titration microcalorimetric studies of the effect of salt concentrations in the interaction between proteins and hydrophobic adsorbents. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002,197:111-118
    180.Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters,2003,223:287-292
    181.Turner BF, Fein JB. Protofit:A program for determining surface protonation constants from titration data. Computers & Geosciences,2006,32:1344-1356
    182.Ubbink J, Schar-Zammaretti P. Colloidal properties and specific interactions of bacterial surfaces. Current Opinion in Colloid & Interface Science,2007,12:263-270
    183.Van Benschoten JE, Young WH, Matsumoto MR, Reed BE. A nonelectrostatic surface complexation model for lead sorption on soils and mineral surfaces. Journal of Environmental Quality,1998,27:24-30
    184.Van der Mei H, Meijer S, Busscher H. Electrophoretic mobilities of protein-coated hexadecane droplets at different pH. Journal of Colloid and Interface Science,1998, 205:185-190
    185.Vandevivere P, Kirchman DL. Attachment stimulates exopolysaccharide synthesis by a bacterium. Applied and Environmental Microbiology,1993,59:3280-3286
    186.Vadillo-Rodriguez V, Busscher HJ, Norde W, de Vries J, van der Mei HC. Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. Journal of Colloid and Interface Science,2004,278: 251-254
    187.Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E. Isothermal titration calorimetry. Current Protocols in Cell Biology,2004:17.18.11-17.18.24
    188.Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules,2009,14:2535-2554
    189. Wang F, Chen J, Forsling W. Modeling sorption of trace metals on natural sediments by surface complexation model. Environmental Science & Technology,1997,31: 448-453
    190.Wang LL, Wang LF, Ren XM, Ye XD, Li WW, Yuan SJ, Sun M, Sheng GP, Yu HQ, Wang XK. pH Dependence of Structure and Surface Properties of Microbial EPS. Environmental Science & Technology,2012,46:737-744
    191.Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular Microbiology,1999,34:586-595
    192. Welch S, Taunton A, Banfield J. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal,2002,19:343-367
    193.Wilkinson J. The extracellular polysaccharides of bacteria. Bacteriological Reviews, 1958,22:46
    194.Wingender J, Neu TR, Flemming H-C. What are bacterial extracellular polymeric substances? In:Wingender J, Neu TR, Flemming HC eds., Microbial extracellular polymeric substances:Characterization, structures and function. Berlin Heidelberg: Springer-Verlag,1999.1-18
    195.Wu MY, Sendamangalam V, Xue Z, Seo Y. The influence of biofilm structure and total interaction energy on Escherichia coli retention by Pseudomonas aeruginosa biofilm. Biofouling,2012,28:1119-1128
    196.Xue W, He H, Zhu J, Yuan P. FTIR investigation of CTAB-Al-montmorillonite complexes. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2007,67:1030-1036
    197.Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environmental Microbiology,2011,13:1705-1717
    198.Yee N, Fein JB, Daughney CJ. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption. Geochimica et Cosmochimica Acta,2000,64:609-617
    199. Yuan S-J, Sun M, Sheng G-P, Li Y, Li W-W, Yao R-S, Yu H-Q. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity. Environmental Science & Technology,2010,45:1152-1157
    200.Zabinsky S, Rehr J, Ankudinov A, Albers R, Eller M. Multiple-scattering calculations of x-ray-absorption spectra. Physical Review B,1995,52:2995
    201.Zhou L, Zhou S, Zhan X. Sorption and biodegradability of sludge bacterial extracellular polymers in soil and their influence on soil copper behavior. Journal of Environmental Quality,2004,33:154-162
    202.Zhou P, Yan H, Gu B. Competitive complexation of metal ions with humic substances. Chemosphere,2005,58:1327-1337
    203.Zhu JY, Yang P, Li BM, Zhang JX, Huang QX. Microcalorimetric studies of interaction between extracellular polymeric substance and sulfide minerals. Transactions of Nonferrous Metals Society of China,2008,18:1439-1442
    204.Zhu PT, Long GY, Ni JR, Tong MP. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts. Environmental Science & Technology,2009,43:5699-5704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700