黄淮海平原土壤节肢动物对耕作和施肥的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业由于其巨大的土地面积,被认为是世界生物多样性损失最为严重的领域之一。通过对不同耕作方式和施肥处理等农田管理对土壤节肢动物群落的影响调查,结果表明:
     (1)不同耕作方式和秸秆还田处理对土壤节肢动物群落具有显著的影响,免耕有助于提高土壤节肢动物群落多样性。秸秆还田提高了群落优势度,降低了群落的均匀度,显著增加了群落的丰富度。耕作方式对土壤节肢动物群落的影响主要表现为间接作用,它与土壤层次和秸秆还田之间均有显著的交互作用。
     免耕加秸秆还田提高了Onychiurus armatus的数量,而秸秆还田与翻耕处理的交互作用显著提高了Proisotoma minuta和Lepidocyrtus pallidus的种群密度。免耕有助于提高Folsomides famarensis和Folsomides parvulus,特别是Sminthurinus sp.和Bourletiella sp.的数量密度,Pongeiella sp.则在翻耕条件下更大。甲螨亚目对耕作和秸秆还田的响应不显著,翻耕和秸秆还田有利于提高中气门亚目的数量,前气门亚目表现为免耕高于翻耕,但其对秸秆的响应不明显。
     (2)不同施肥处理对土壤节肢动物群落丰富度和多样性有显著的影响。缺磷的NK处理和有机肥OM处理均增加了土壤节肢动物群落优势度,而PK处理下表现相反。土壤节肢动物群落的均匀度在不施肥CK处理下显著增加,有机肥OM处理则相反。施用有机肥或有机无机混合施用的OM和OMNPK处理具有最高的土壤节肢动物群落多样性,而施用氮肥的NPK处理对增加群落丰富度与多样性均没有明显的正效应,缺磷的NK处理群落多样性最低。
     Onychiurus armatus和Folsomides famarensis在施用有机肥或有机无机混施的OM和OMNPK处理下得到显著增长。蜱螨目与NPK和OMNPK处理有很好的正相关关系,特别是甲螨亚目,但甲螨亚目和前气门亚目均表现与有机肥OM处理没有显著相关性。缺磷的NK处理表现了对土壤节肢动物特别是弹尾目不利,其弹尾目密度低于不施肥CK处理。
     弹尾目棘跳科对氮肥表现了一定的负面响应,而蜱螨目甲螨亚目则一般随着氮肥用量的增加而增加,但存在氮肥用量的“阈值”(230 kg N·hm-2~250 kg N·hm-2)效应,高氮肥用量(≥230 kg N·hm-2)对蜱螨目中气门亚目和前气门亚目也有拟制作用。
Agriculture has been identified as one of the largest contributors to the loss of biodiversity worldwide because of the large land area designated to this practice. The effect of agricultural managements such as tillage regimes and fertilizations on soil arthropod community was studied, the results showed that:
     (1) The effect of tillage regimes and straw returning on soil arthropod community were significant, no-tillage increased Shannon-Weiner diversity index (H’) when compared with tillage treatment. Straw returning increased Simpson domination index (D), while Pilou evenness index (Js) was on the contrary. Patrick richness index (R) was elevated with increased straw returning. The effect of tillage regime on soil arthropod community was mainly indirect and presented that tillage regime was significantly interacted with soil layer and straw returning.
     Onychiurus armatus benifited from no-tillage plus straw returning, while tillage practices and concurrent straw returning intensively simulated Proisotoma minuta and Lepidocyrtus pallidus. No-tillage increased the population density of Folsomides famarensis and Folsomides parvulus, especially for Sminthurinus sp. and Bourletiella sp., while Pongeiella sp. had a higher population density in tillage plots compared with no-tillage plots. Oribatida was not significantly correlated with tillage regime or straw returning, while tillage plus straw returning increased Mesostigmata. Prostigmata had a higher density in no-tillage plots than tillage plots, but was little correlated with straw returning.
     (2) The richness and diversity indices of soil arthropod community were significantly impacted by fertilization treatments. Simpson domination index was increased in NK and OM treatment plots, while decreased in PK treatment plots. Pilou evenness in CK treatment plots was significantly increased and was also improved in PK and NK treatment plots, but it was contrary in OM treatment plots. The diversity of soil arthropod community (DG index) was the highest in OM and OMNPK treatment plots and the lowest in NK treatment plots. DG index was not significantly increased in NPK treatment plots.
     Population density of Onychiurus armatus and Folsomides famarensis was significantly increased by OM and OMNPK treatments. Three suborders (Oribatida, Mesostigmata and Prostigmata) of acari were all well correlated with NPK and OMNPK treatments, especially, Oribatida had a high population density in NPK and OMNPK treatment plots. Both of Oribatida and Prostigmata were little correlated with OM treatment. NK treatment had a very low population density of soil arthropod community, and a lower population density of collembolan even presented in NK plots than CK plots. Applied nitrogen fertilizer negatively impacted Onychiuridae, while positively impacted Oribatida. Increased Oribatida was limited when applied nitrogen fertilizer was higher than 250 kg N·hm-2, and both of Mesostigmata and Prostigmata was increased by applied nitrogen fertilizer at a certain extent, but were intensively constrained when higher than 230 kg N·hm-2.
引文
1.陈国孝,宋大祥.暖温带北京小龙门林区土壤动物的研究[J].生物多样性,2000, 8(1): 88-95.
    2.陈建秀,麻智春,严海娟,张峰.跳虫在土壤生态系统中的作用[J].生物多样性,2007,15(2):154-161.
    3.陈鹏,张一.长白山针阔混交林下的土壤动物群落的研究[J].Edaphologia,35: 35-49.
    4.陈小鸟,由文辉,易兰.浙江天童太白山不同海拔土壤动物的群落结构[J].生态学杂志,2009,28(2): 270-276.
    5.陈颖彪,殷秀琴.凉水地区不同林型土壤动物群落研究[M].上海师范大学学报(自然科学版),2000,29(2):79-84.
    6.邓晓保,邹寿青,付先惠,姚天全,盛才全,白智林.西双版纳热带雨林不同土地利用方式对土壤动物个体数量的影响[J].生态学报,2003,23(1):130-138.
    7.勾影波,苏永春.常熟理工学院学报(自然科学版)[J].2007,21(2): 57-62.
    8.焦向丽,朱教君,闫巧玲.辽东山区次生林生态系统大、中型土壤动物组成与季节动态[J].生态学报,2009,29(5):2631-2638.
    9.柯欣,赵立军,尹文英.三种乔木落叶分解过程中跳虫群落结构的演替[J].昆虫学报,2001a,44(2):221-226.
    10.柯欣,赵立军,尹文英.青冈林土壤跳虫群落结构在落叶分解过程中的变化[J].生态学报, 2001b, 21(6): 982-987.
    11.李安萍.太原市不同土地用途下土壤动物的分布研究[J].山西师范大学学报(自然科学版),2005,19(1):84-87.
    12.廖崇惠,陈茂乾.鼎湖山土壤动物研究I.区系组成及其特征[J].热带亚热带森林土壤动物研究,5:83-95.
    13.林英华,朱平,张夫道,等.吉林黑土区不同施肥条件下农田土壤动物组成及多样性变化[J].植物营养与肥料学报,2006a,12(3):412-419.
    14.林英华,朱平,张夫道,彭畅,高洪军,刘淑环.吉林黑土区不同施肥处理对农田土壤昆虫的影响[J].生态学报,2006b, 26(4):1122-1130.
    15.林英华,张夫道,杨学云,古巧珍,孙本华,马路军.黄土区不同施肥条件下农田土壤的动物群落结构[J].植物营养与肥料学报,2003,9(4):484-488.
    16.林英华,杨学云,张夫道,古巧珍,孙本华,马路军.长期施肥对黄土区农田土壤动物群落的影响[J].中国农业科学,2005,38(6):1213-1218.
    17.林英华,张夫道,杨学云.农田土壤动物与土壤理化性质关系的研究[J].中国农业科学,2004, 37(6):871-877.
    18.刘继亮,李锋瑞.坡向和微地形对大型土壤动物空间分布格局的影响[J].中国沙漠,2008,28(6):1104-1112.
    19.刘树堂,刘培利,韩晓日,隋方功,迟睿.长期定位施肥对无石灰性潮土生物环境影响研究[J].水土保持通报,2006,26(1):26-33.
    20.刘骅,林英华,王西和,谭新霞,张云舒.长期配施秸秆对灰漠土质量的影响[J].生态环境,2007,16(5):1492-1497.
    21.宁应之,沈韫芬.中国典型地带土壤原生动物:I.区系特征和物种分布,动物学报,1998a,44(1):5-9.
    22.宁应之,沈韫芬.中国典型地带土壤原生动物:II.生态学研究,动物学报,1998b,44(3):271-276.
    23.邱军,傅荣恕.土壤温湿度对甲螨和跳虫数量的影响[J].山东师范大学学报(自然科学版),2004,19(4):72-74.
    24.苏永春,勾影波,等.东北高寒地区土壤动物和微生物的生态特征的研究[J].生态学报,2001,21(10):1613-1619.
    25.王宗英,朱永恒,路有成.九华山土壤跳虫的生态分布[J].生态学报,2001,21(7):1142-1147.
    26.吴东辉,张柏,陈鹏.长春市不同土地利用生境土壤弹尾虫群落结构特征[J].生态学杂志,2006,25(2):180-184.
    27.吴玉红,蔡青年,林超文,等.四川紫色土丘陵区不同土地利用方式下中型土壤动物群落结构[J].生态学杂志,2009,28(2): 277-282.
    28.徐国良,莫江明,周国逸,彭少麟.土壤动物与N素循环及对N沉降的响应[J].生态学报,2003,23(11):2453-2463.
    29.徐国良,莫江明,周国逸.氮沉降对三种林型土壤动物群落生物量的影响[J].动物学研究,2005, 26 (6): 609-615.
    30.杨效东,刘宏茂,沙丽清,等.西双版纳2种热带雨林类型土壤节肢动物群落结构及分布特征[J].林业科学研究,2002,15(3):343-348.
    31.尹文英等著.中国亚热带土壤动物[M].北京:科学出版社,1992.
    32.尹文英等著.中国土壤动物检索图鉴[M].北京:科学出版社,1998.
    33.尹文英等著.中国土壤动物[M].北京:科学出版社,2000.
    34.张秀娟,杨晨利.洞庭湖环湖丘岗区土壤动物群落组成及分布[J].江西农业大学学报,2006,28(1):129-133.
    35.张庆宇,王志明,窦森.施肥对玉米田大型土壤动物群落的影响[J].环境昆虫学报,2008,30(2):108-114.
    36.张贞华.土壤动物[M].杭州:杭州大学出版社,1986.
    37.朱强根,朱安宁,张佳宝,张焕朝,张从志.黄淮海平原小麦保护性耕作对土壤动物总量和多样性的影响[J].农业环境科学学报,2009a,28(8):1766-1772.
    38.朱强根,朱安宁,张佳宝,张焕朝,黄平,张从志.黄淮海平原保护性耕作下玉米季土壤动物多样性[J].应用生态学报,2009b,20(10):2417-2423.
    39.朱强根,朱安宁,张佳宝,张焕朝,钦绳武,信秀丽.长期施肥对黄淮海平原农田中小型土壤节肢动物的影响[J].生态学杂志,2010a,29(1):69-74.
    40.朱强根,朱安宁,张佳宝,张焕朝,杨淑莉,王意锟.保护性耕作下土壤动物群落及其与土壤肥力的关系[J].农业工程学报,2010b,26(2):70-76.
    41. Alby T., Ferris J M., Ferris V R.. Dispersion and distribution of Pratylenchus scribneri and Hoplolaimus galeatus in soybean fields, J. Nematol., 1983, 15: 418-426.
    42. Alphei J., Bonkowski M., Scheu S.. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth, Oecologia, 1996, 106: 111-126.
    43. Alvarez T., Frampton G K., Goulson D.. Epigeic Collembola in winter wheat under organic, integrated and conventional farm management regimes. Agriculture, Ecosystems & Environment, 2001, 83: 95-110.
    44. Anas O., Reeleder R D.. Recovery of fungi and arthropods from sclerotia of Sclerotinia sclerotiorum in Quebec muck soils, Phytopathology, 1987, 77: 327-331.
    45. Anderson J M., Ineson P.. A soil microcosm system and its application to measurements of respiration and nutrient leaching, Soil Biol. Biochem., 1982, 14:415-416.
    46. Andrén O.. Soil mesofauna of arable land and its significance for decomposition of organic matter. Dissertation. Swedish University of Agricultural Sciences, Uppsala, 1984.
    47. Angers D A., Bolinder M A., Carter M R., Gregorich E G., Voroney R P., Drury C F., Liang B C., Simard R R., Donald R G., Beyaert R P., Marte J.. Impacts of tillage practices on organic carbon and nitrogen storage in cool humid soils of eastern Canada, Soil & Tillage Research, 1997, 41: 191-201.
    48. Athias F.. Données complémentaires surl’abondance et la distribution verticale des microarthropodes de la savane de Lamto (C?te d’Ivoire). Bulletin du Muséum d’Histoire Naturelle, 1975, 308: 1-28.
    49. Axelsen J A., Kristensen K T.. Collembola and mites in plots fertilized with different types of green manure, Pedobiologia, 2000, 44: 556-566.
    50. B??th E., Lohm U., Rosswall T., S?derstr?m B., Sohlenius B., Wiren A.. The effect of nitrogen and carbon supply on the development of soil populations and pine seedlings: a microcosm experiment, Oikos, 1978, 31: 153-163.
    51. Badjia C A., Guedesa R N C., Silva A A., et al.. Impact of deltamethrin on arthropods in maize under conventional and no-tillage cultivation, Crop Protection, 2004, 23: 1031-1039.
    52. Baird S M., Bernard E C.. Nematode population and community dynamics in soybean–wheat cropping and tillage regimes, J. Nematol., 1984, 16: 379-386.
    53. Bakonyi G.. Effects of Folsomia candida (Collembola) on the microbial biomass in a grassland soil, Biology and Fertility of Soils, 1989, 7: 138-141.
    54. Bardgett R D, Frankl J C, Whittaker J B.. The effects of agricultural practices on the soil biota of some upland grasslands, Agricultural Ecosystem and Environment, 1993a, 45: 25-45.
    55. Bardgett R D., Whittaker J B., Frankland J C.. The diet and food preferences of Onychiurus procampatus (Collembola) from upland grassland soils, Biology and Fertility of Soils, 1993b, 16: 296-298.
    56. Bardgett R D., Chan K F.. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems, Soil Biology and Biochemistry, 1999, 31: 1007-1014.
    57. Bardgett R D., Usher M B., Hopkins D W.. Biological Diversity and Function in Soils. Cambridge University Press, Cambridge, 2005.
    58. Barot S., Ugolini A., Brikci F B.. Nutrient cycling efficiency explains the long-term effect of ecosystem engineers on primary production, Functional Ecology, 2007, 21: 1-10.
    59. Bayer C., Martin-Neto L., Mielniczuk J., Dieckow J., Amado T J C.. C and N stocks and the role of molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in a subtropical Acrisol managed under no-tillage, Geoderma, 2006, 133: 258-268.
    60. Beare M H., Parmelee R W., Hendrix P F., Cheng W., Coleman D C., Crossley Jr D.A.. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems, Ecol. Monogr., 1992, 62: 569-591.
    61. Beare M H., Coleman D C., Crossley Jr D A., Hendrix P F., Odum E P.. A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling, Plant and Soil, 1995, 170: 5-22.
    62. Bengtsson G., Berden M., Rundgren S.. Influence of soil animals and metals on decomposition processes: a microcosm experiment, Journal of Environmental Quality, 1988, 17: 113-119.
    63. Berg M.. Decomposition, nutrient flow and food web dynamics in a stratified pine forest soil, Ph. D. Thesis, Vrije Universiteit, Amsterdam, 1997.
    64. Bertolani R., Sabatini M A., Mola L.. Effects of change in tillage practices in Collembola populations. In: Dallai, R. (ed.) 3rd Int. Sem. Apterygota, Siena, 1989, 291-297.
    65. Bongers T.. The maturity index: an ecological measure of environmental disturbances based on nematode species composition, Oecologia, 1990, 83: 14-19.
    66. Bongers T., Ferris H.. Nematode community structure as a biomonitor in environmental monitoring, Tree, 1999, 14: 224-228.
    67. Bossuyt H., Six J., Hendrix P F.. Rapid incorporation of fresh residue-derived carbon into newly formed microaggregates within earthworm casts, European Journal of Soil Science, 2004, 55: 393-399.
    68. Bossuyt H., Six J., Hendrix P F.. Protection of soil carbon by microaggregates within earthworm casts, Soil Biology and Biochemistry, 2005, 37: 251-258.
    69. Bossuyta H., Six J., Hendrix P F.. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon, Geoderma, 2006, 130: 14-25.
    70. Bott T L., Kaplan L A.. Potential for protozoan grazing of bacteria in stream beds dements, J N A m Benthos Soc, 1990, 9: 336-345.
    71. Bouche M B., Al-Addan F.. Earthworms, water infiltration and soil stability: some new assessments, Soil Biol. Biochem., 1997, 29: 441-452.
    72. Bradford M A., Jones T H., Bardgett R D., Black H I J., Boag B., Bonkowski M., Cook R., Eggers, T., Gange A C., Grayston S J., McCaig A E., Kandeler E., Newington J E., Prossesr J I., Set?l? H., Staddon P L., Tordoff G M., Tscherko D., Lawton J H.. Impacts of soil faunal community composition on model grassland ecosystems, Science, 2002, 298: 615-618.
    73. Brock C.. Einflu? verschiedener Bodentierarten auf wasserextrahierbare organische Kohlenstoffverbindungen, Diploma thesis, University of Munich, 1999.
    74. Brussaard L., Bouwman L A., Geurs M., Hassink J., Zwart K B.. Biomass, composition and temporal dynamics of soil organisms of a silt loam under conventional and integrated management, Netherlands Journal of Agricutural Science, 1990, 38: 283-302.
    75. Brussaard L., Faassen H G. van.. Effects of compaction on soil biota and soil biological processes. In: Soane, B.D., Ouwerkerk, C. van (eds) Soil Compaction in Crop Production. Elsevier Science B.V., Amsterdam, 1994, pp. 215-235.
    76. Cadet P., Debouzie D.. Evolution spatio-temporelle d’un peuplement de nématodes parasites de la canneàsucre, Revue de Nématologie, 1990, 13(1): 79-88.
    77. Cassel D K., Raczkowski C W., Denton H P.. Tillage effects on corn production and soil physical properties, Soil Science Society of American Journal, 1995, 59: 1436-1443.
    78. Chan, K.Y.. An overview of some tillage impacts on earthworm population abundance and diversity-implications for functioning in soils, Soil Tillage Res., 2001, 57: 179-191.
    79. Chiba S., Abe T., Aoki J., et al.. Studies on the productivity of soil animal in the Pasoh forest research, West Malaysia. I. Seasonal change in the density of soil mesofauna: Acari, Collembola and others, Science Reports of the Herosake University, 22(2): 87-124.
    80. Christiansen K.. Bionomics of Collembola, Annual Reviews of Entomology, 1964, 9: 147-178.
    81. Clarholm M.. Protozoan grazing of Bacteria in soil. Impact and importance, Microbial Ecology, 1981, 7: 343-393.
    82. Clarholm M.. Interactions of bacteria, protozoa and plant leading to mineralization of soil nitrogen, Soil Biology & Biochemistry, 1985, 17(2): 181-187.
    83. Cole L J., McCracken D I., Foster G N., Aitken, M.N.. Using Collembola to assess the risks of applying metal-rich sewage sludge to agricultural land in western Scotland, Agric. Ecosyst. Environ., 2001, 83: 177-189.
    84. Cole L., Dromph K M., Boaglio V., Bardgett R D.. Effect of density and species richness of soil mesofauna on nutrient mineralisation and plant growth, Biol. Fertil. Soils, 2004, 39: 337-343.
    85. Coleman J S.. Leaf development and leaf stress: increased susceptibility associated with sink-source transition, Tree Physiol., 1986, 2: 289-299.
    86. Coleman D C., Crossley Jr D A.. Fundamentals of Soil Ecology, Academic Press, San Diego, USA, 1996.
    87. Coleman D C., Fu S., Hendrix P F., Crossley Jr D A.. Soil foodwebs in agroecosystems: impacts of herbivory and tillage management, European Journal of Soil Biology, 2002, 38:21-28.
    88. Coleman D C., Whitman W B.. Linking species richness, biodiversity and ecosystem function in soil systems, Pedobiologia, 2005, 49: 479-497.
    89. Cookson W R., Beare M H., Wilson P E.. Effects of prior crop residue management on microbial properties and crop residue decomposition, Applied Soil Ecology, 1998, 7: 179-188.
    90. Co?teaux M M., Ogden G.. The growth of Tracheleuglypha dentata (Rhizopoda: Testacea) in clonal cultures under different trophic conditions, Microbial Ecology, 1988, 15: 81-93.
    91. Co?teaux M M., Mousseau M., Célérier M L., Bottner P.. Increased atmospheric CO2 and litter quality:decomposition of sweet chestnut litter with animal food webs of different complexities, Oikos, 1991, 61: 54-64.
    92. Cragg J B., Bardgett R D.. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes, Soil Biol. Biochem., 2001, 33: 2073-2082.
    93. Crouau Y., Gisclard C., Perotti P.. The use of Folsomia candida (Collembola: Isotomidae) in bioassays of waste, Appl. Soil Ecol., 2002, 19: 65-70.
    94. Crossley Jr D A., Witkamp M.. Forest soil mites and mineral cycling, Acarologia Fasc. H.S., 1964, 137-145.
    95. Crossley Jr D A., Mueller B R., Perdue J C.. Biodiversity of microarthropods in agricultural soils: relations to processes, Agriculture, Ecosystems & Environment, 1992, 40: 37-46.
    96. Culik M P., de Souza J L., Ventura J A.. Biodiversity of Collembola in tropical agricultural environments of Espírito Santo, Brazil, Applied Soil Ecology, 2002, 21: 49-58.
    97. Curry J P., Purvis G.. Studies on the influence of weeds and farmyard manure on the arthropod fauna of sugar beet, J. Life Sci. R. Dubl. Soc., 1982, 3: 397-408.
    98. Curry J P., Byrne D., Schmidt O.. Intensive cultivation can drastically reduce earthworm populations in arable land, Eur. J. Soil Biol., 2002, 38: 127-130.
    99. Demeure Y., Freckman D., Van Gundy S D.. Anhydrobiotic coiling of nematodes in soil, Journal of Nematology, 1979, 11 (2): 189-195.
    100. Demeure Y., Freckman D.. Recent advances in the study of anhydrobiotic nematodes, in Plant Parasitic Nematodes (eds B.M. Zuckerman and R.A. Rohde), Academic Press, New York, 1981, pp. 205-216.
    101. Denef K., Six J., Bossuyt H., Frey S D., Elliott E T., Merckx R., Paustian K.. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics, Soil Biology & Biochemistry, 2001, 33: 1599-1611.
    102. Derpsch R., Sidiras N., Roth C H.. Results of studies made from 1977 to 1984 to control erosion by cover crops and no-tillage techniques in Parana, Brazil, Soil Till. Res., 1986, 8: 253-263.
    103. DeRuiter P C., Moore J C., Zwart K B., Bouwman L A., Hassink J., Bloem J., DeVos J A., Marinissen J C Y., Didden W A M., Lebbink G., Brussaard L.. Simulation of nitrogen mineralisation in the belowground food webs in two winter wheat fields, J. Appl. Ecol., 1993, 30: 93-106.
    104. Dick W A., Durkalski J T.. No-Tillage production agriculture and carbon sequestration in a Typic Fragiudalf soil of Northeastern Ohio. In: Lal, R., Kimble, J.M., Follet, R.F., Stewart, B.A. (Eds.), Management of Carbon Sequestration in Soil. CRC Press, Boca Raton, Fl, USA, , 1998, pp. 59-71.
    105. Diez J A., De La Torre A I., Cartagena M C., Carballo M.,Vallejo A., et al.. Evaluation of the application of pig slurry to an experimental crop using agronomic and ecotoxicological approaches, J. Environ. Qual., 2001, 30: 2165-72.
    106. Dunger W., ?kologische Funktion der Tiere im Boden.. Wissenschaftliche Zeitschrift Ernst-Moritz-Arndt-Universit?t Greifswald, Mathematisch-naturwissenschaftliche Reihe, 1988, 37: 44-47.
    107. Eaton R J., Barbercheck M., Buford M.. Effects of organic matter removal, soil compaction, andvegetation control on Collembolan populations, Pedobiologia, 2004, 48: 121-128.
    108. Edwards C A., Heath G.. The role of soil animals in breakdown of leaf material. In: Doeksen, J., van der Drift, J. (Eds.), Soil Organisms. North-Holland Publishing Company, Amsterdam, 1963, pp. 75-84.
    109. Edwards C A., Lofty J R.. Biology of Earthworms, Chapman & Hall, London, 1977.
    110. Edwards C A.. Earthworms, soil fertility and plant growth. In: Dindal, D. (Ed.), Workshop on the Role of Earthworms in the Stabilization of Organic Residues, Beech Leaf Press, Kalamazoo, MI, 1981, pp. 61-85.
    111. Edwards C A., Lofty J R.. The effect of direct drilling and minimal cultivation on earthworm populations, Journal of Applied Ecology, 1982, 19: 723-734.
    112. Edwards W M., Shipitalo M J., Owens L B., Norton L D.. Effect of Lumbricus terrestris L. burrows on hydrology of continuous no-till corn fields, Geoderma, 1990, 46: 73-84.
    113. Edwards J H., Wood C W., Thurlow D L., Ruf M E.. Tillage and crop rotation effects on fertility status of a Hapludult soil, Soc. Sci. Soc. Am. J., 1992, 56: 1577-1582.
    114. Edwards W M., Shipitalo M J.. Consequences of earthworms in agricultural soils: aggregation and porosity. In: Edwards, C.A. (Ed.), Earthworm Ecology. Soil and Water Conservation Society. St. Lucie Press, Iowa, 1998, pp. 147-161.
    115. Ehlers W.. Observations on earthworm channels and infiltration on tilled and untilled loess soil, Soil Sci., 1975, 119: 242-247.
    116. Ehlers W., Claupein W. Approaches toward conservation tillage in Germany. In: Carter, M.R. (ed.) Conservation Tillage in Temperate Agroecosystems. Lewis Publ., Boca Raton, 1994, pp. 141-165.
    117. Ehrnsberger R., Butz-Strazny F.. Auswirkungen von unterschiedlicher Bodenbearbeitung (Grubber und Pflug) auf die Milbenfauna im Ackerboden. In: Ehrnsberger, R. (ed.) Bodenmesofauna und Naturschutz. Informationen zu Naturschutz und Landschaftspflege in Nordwestdeutschland 6, Verlag Günther Runge, Cloppenburg, 1993, pp. 188-208.
    118. Elliott E T., Coleman D C., Cole C V.. The influence of amoebae on the uptake of nitrogen by plant in gnotobiotic soil. In: Harley, J.R., Russell, R.S. (Eds.), The Soil-Root Interface. Academic Press, London, 1979, pp. 221-229.
    119. Enami Y., Shiraishi H., Nakamura Y.. Use of soil animals as bioindicators of various kinds of soil management in northern Japan, Jpn. Agr. Res. Quart., 1999, 33: 85-89.
    120. Epperlein J.. Development of the biological activity in different tillage systems. In: Garcia-Torres, L., Benites, J., Martinez-Vilela, A., Holgado-Cabrera, A. (Eds.), Conservation agriculture: environment, farmers, experiences, innovations, socio-economy, policy. Kluwer Academic Publishers, Dordrecht, 2003, pp. 387-393.
    121. Erwin D.. The geologic history of diversity. In: Szaro, R.C., Johnston, D.W. (Eds.), Biodiversity in Managed Landscapes, Oxford University Press, Oxford, 1996.
    122. Ettema C H., Bongers T.. Characterisation of nematode colonization and succession in disturbed soil using maturity index, Biol. Fertil. Soils, 1993, 16:79-85.
    123. Faber J H., Verhoef H A.. Functional differences between closely-related soil arthropods with respect todecomposition processes in the presence or absence of pine tree roots, Soil Biol. Biochem., 1991, 23: 15-23.
    124. Faber J H.. The interaction of Collembola and mycorrhizal roots in nitrogen mobilization in a Scots Pine forest soil. In: Veeresh, G. K., Rajagopal, D., Viraktamath, C. A. (eds) Advances in management and conservation of soil fauna. Oxford & IBH Publishers, New Delhi, 1991, pp. 507-515.
    125. Fabrizzi K P., García F O., Costa J L., Picone L I.. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina, Soil & Tillage Research, 2005, 81: 57-69.
    126. Fava F., Bertin L.. Use of exogenous specialised bacteria in the biological detoxification of a dump sitepolychlorobiphenyl-contaminated soil in slurry phase conditions, Biotechnol. Bioeng., 1999, 64: 240-49.
    127. Fava F., Digioia D., Marchetti L.. Role of the reactor configuration in the biological detoxification of a dump site polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions, Appl. Microbiol. Biotechnol., 2000, 53: 243-48.
    128. Fava F., Piccolo A.. Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil, Biotechnol. Bioeng., 2002, 77: 204-11.
    129. Fenton G R.. The soil fauna: with social reference to the ecosystem of forest soil, J. Anlm. Ecol., 1947, (16): 76-93.
    130. Ferreras L A., Costa J L., García F O., Pecorari C.. Effect of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern“Pampas”of Argentina, Soil & Tillage Research, 2000, 54: 31-39.
    131. Ferris H., Bongers T., de Goede R G M.. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept, Appl. Soil Ecol., 2001, 18: 13-29.
    132. Filser J., Fromm H., Nagel R., Winter K.. Bodentier- und Mikroorganismengesellschaften in einer heterogenen Agrarlandschaft. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 1993, 71: 507-510.
    133. Filser J., Krogh P H.. Colleagues Part 2: Decomposer food web interactions in a microcosm experiment with arable soil. In: Rusek, J. (ed) XIII International Colloquium on Soil Zoology. ?eskéBud?jovice, August 14–18 2000, Abstracts, ICARIS, Praha, 2000, pp. 103.
    134. Filser J., Mebes K H., Winter K., Lang A., Kampichler C.. Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change, Geoderma, 2002, 105: 201-222.
    135. Forsslund K H.. Studier over det large djurlivet Inordsvensk skogsmark, Medd. Skogsforsoksanst, 1945, 34(l): 1-283.
    136. Fox C A., Fonseca E J A., Miller J J., Tomlin A D.. The influence of row position and selected soil attributes on Acarina and Collembola in no-till and conventional continuous corn on a clay loam soil, Appled Soil Ecology, 1999, 13: 1-8.
    137. Frampton G K., van den Brink P J.. Influence of cropping on the species composition of epigeicCollembola in arable fields, Pedobiologia, 2002, 46: 328-337.
    138. Freckman D W., Ettema C H.. Assessing nematode communities in agroecosystems of varying human intervention, Agriculture, Ecosystems & Environment, 1993, 45: 239-261.
    139. Frische T.. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT), Environ. Pollut., 2003, 121: 103-130.
    140. Frey S D., Elliott E T., Paustian K.. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients, Soil Biology & Biochemistry, 1999, 31: 573-585.
    141. Friebe B.. Die Besiedlung von Ackerb?den durch die Meso- und Makrofauna in Abh?ngigkeit von der Bodenbearbeitung, Verhandlungen der Gesellschaft für ?kologie, 1990, 19: 246-252.
    142. Fromm H.. R?umliche und zeitliche Variabilit?t der Collembolenfauna und ihre Bedeutung für C- und N-Umsatz in einer Agrarlandschaft, FAM-Bericht 26, Shaker-Verlag, Aachen, 1998, pp. 1-190.
    143. Fu S., Coleman D C., Hendrix P F., Crossley Jr D A.. Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes, Soil Biology & Biochemistry, 2000a, 32: 1731-1741.
    144. Fu S., Cabrera M L., Coleman D C., Kisselle K W., Garrett C J., Hendrix P F., Crossley Jr D A.. Soil carbon dynamics of conventional tillage and no-till agroecosystems at Georgia Piedmont—HSB-C models, Ecological Modelling, 2000b, 131: 229-248.
    145. Gantzer C J., Anderson S H.. Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds. Soil & Tillage Research, 2002, 64: 101-111.
    146. Gao, M., Zhou, B.T., Wei, C.F., Xie, D.T., Zhang, L., 2004. Effect of tillage system on soil animal, microorganism and enzyme activity in paddy field. Chinese Journal of Applied Ecology 15, 1177-1181.
    147. Gardi C., Tomaselli M., Parisi V., Petraglia A., Santini C.. Soil quality indicators and biodiversity in northern Italian permanent grasslands, Eur. J. Soil Biol., 2002, 38: 103-110.
    148. Garrett C J., Crossley D A., Coleman D C., et al.. Impacts of the rhizosphere on soil microarthropods in agroecosystems on the Georgia piedmont, Applied Soil Ecology, 2001, 16: 141-148.
    149. Gisin H.. Okologrie and lebens gemeinseh aften der Collembollen in sehweizerisehen excursionsgebiet Basels, Rev. Suisse Zool., 1943, (50):131-224.
    150. González Fernádez P., Giraldéz J V., Fereres E., et al.. Is sunflower suited for zero tillage dry farming? In: Proceedings of the 12th International Sunflower Conference, vol. 1, Novi Sad., Yugoslavia, 1989, pp. 372-377.
    151. Gorres J H., Savin M C., Amador J A.. Soil micropore structure and carbon mineralization in burrows and casts of an anecic earthworm (Lumbricus terrestris), Soil Biology & Biochemistry, 2001, 33: 1881-1887.
    152. Griffiths B S., Ritz K., Wheatley R E.. Nematodes as indicators of enhanced microbiological activity in Scottish organic farming system. Soil Use Manage., 1994, 10: 20-24.
    153. Graham R C., Ervin J O., Wood H B.. Aggregate stability under oak and pine after four decades of soil development, Soil Sci. Soc. Am. J., 1995, 59: 1740-1744.
    154. Gudleifsson B E.. Impact of long term use of fertilizer on surface invertebrates in experimental plots in a permanent hayfield in Northern-Iceland, Agricultural Society of Iceland, 2002, 15: 37-49.
    155. Hammel J E.. Long-term tillage and crop rotation effects on bulk density and soil impedance in northern Idaho, Soil Science Society of American Journal, 1989, 53: 1515-1519.
    156. Hendrix P F, Parmelee R W, Crossley Jr. D A, et al. Detritus food webs in conventional and no-tillage agroecosystems. BioScience, 1986, 36:374-380.
    157. Hán?l L.. Soil nematodes in cambisol agroecosystems of the Czech Republic, Biol. Bratislava, 2003, 58: 205-216.
    158. Harris K K., Boerner R E J.. Effects of belowground grazing by collembola on growth, mycorrhizal infection, and P uptake of Geranium robertianum, Plant and Soil, 1990, 129: 203-210.
    159. Havlin J L., Kissel D E., Maddux L D., Claassen M M., Long J H.. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Science Society of American Journal, 1990, 54: 448-452.
    160. Haynes R.J., Tregurtha, R.. Effects of increasing periods under intensive arable vegetable production on biological, chemical and physical indices of soil quality, Biol. Fertil. Soils, 1999, 28: 259-266.
    161. Hedlund K., Boddy L., Preston C M.. Mycelial responses of the soil fungus, Mortierella isabellina, to grazing by Onychiurus armatus (Collembola), Soil Biol. Biochem., 1991, 23: 361-366.
    162. Hedlund K., Augustsson A.. Effects of enchytraeid grazing on fungal growth and respiration, Soil Biol. Biochem., 1995, 27: 905-910.
    163. Heemsbergen D A., Berg M P., Loreau M., van Hal J R., Faber J H., Verhoef H A.. Biodiversity effects on soil processes explained by interspecific functional dissimilarity, Science, 2004, 306: 1019-1020.
    164. Hendrix P.F., Edwards C.A.. Earthworms in agroecosystems: research approaches, in: C.A. Edwards (Ed.), Earthworm Ecology, second ed., CRC Press, Boca Raton, London, New York, 2004, pp. 287-295.
    165. Heneghan L., Coleman D C., Zou X., Crossley Jr D A., Haines B L.. Soil microarthropod contributions to decomposition dynamics: tropical–temperate comparisons of a single substrate, Ecology, 1999, 80: 1873-1882.
    166. Hill R L.. Long-term conventional and no-tillage effects on selected soil physical properties, Soil Science Society of American Journal, 1990, 54: 161-166.
    167. Hopkin S P.. Biology of the Springtails (Insecta: Collembola), Oxford: Oxford University Press, 1997.
    168. Hota P K., Pani S C., Senapati B K., et al.. Population dynamics and vertical distribution of soil nematodes in tropical irrigated upland and lowland rice fields, Pedobiologia, 1988, 32: 213-219.
    169. Horn R., Werner D., Baumgartl T., Winterot C.. Wirkungen technogener Druckbelastung auf die Spannungsverteilung und das Bodengefüge einer Schwarzerde aus L??. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1994, 157: 433-440.
    170. Hopkin S P.. Biology of the Springtails (Insecta: Collembola), Oxford University Press, Oxford, 2007, pp. 8-18.
    171. House G J., Parmelee R W.. Comparison of soil arthropods and earthworms from conventional and notillage agroecosystems, Soil Till. Res., 1985, 5: 351-360.
    172. Huang, L.X., Shen, S.H., 1996. Study of effects of soil animals on soil nutrients non-tillage ecosystem.Rural Eco-Environment 12, 8-10.
    173. Huang, X.X., Tang, X.H., Wei, C.F., Xie, D.T., 2007. Effect of Land Use Pattern on Soil Microbial Carbon of Purple Paddy Soil. Chinese Agricultural Science Bulletin 23, 250-254.
    174. Huhta V., Persson T., Set?l? H.. Functional implications of soil fauna diversity in boreal forests, Appl. Soil Ecol., 1998a, 10: 277-288.
    175. Huhta V., Set?l? H., Haimi J.. Leaching of N and C from birch leaf litter and raw humus with special emphasis on the influence of soil fauna, Soil Biol. Biochem., 1988b, 20: 875-878.
    176. Hussain I., Olson K R., Ebelhar S A.. Long-term tillage effects on soil chemical properties and organic matter fractions, Soil Science Society of American Journal, 1999, 63: 1335-1341.
    177. Hutcheon J A., Iles D R., Kendall D A.. Earthworm populations in conventional and integrated farming systems in the LIFE project (SW England) in 1990-2000, Annals of Applied Biology, 2001, 139: 361-372.
    178. Ingham R E., Trofymow J A., Ingham E R., Coleman D C.. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr., 1985, 55: 119-140.
    179. Irmler U.. Die Stellung der Bodenfauna im Stoffhaushalt schleswig-holsteinischer W?lder. Faunistisch-?kologische Mitteilungen Supplement 18, Wachholtz-Verlag, Neumünster, 1995.
    180. ISO. Soil quality-inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants, Rep. No. ISO 11267:1999(E). Geneva: Int. Stand. Organ., 1999, pp.16.
    181. Ivask M., Kuu A., Sizov E.. Abundance of earthworm species in Estonian arable soils, European Journal of Soil Biology, 2007, 1-4.
    182. Jensen T C., Leinaas H P., Hessen D O.. Age-dependent shift in response to food element composition in Collembola: contrasting effects of dietary nitrogen, Oecologia, 2006, 149: 583-592.
    183. Jentschke G., Bonkowski M., Godbold D.L., Scheu S.. Soil protozoa and forest tree growth: nonnutritional effects and interaction with mycorrhizae, Biol. Fertil. Soils, 1995, 20: 263-269.
    184. Johnson D., Krsek M., Wellington E M H., et al.. Soil invertebrates disrupt carbon flow through fungal networks, Science, 2005, 309:1047.
    185. Johnson-Maynard J L., Graham R C., Wu L., Shouse P J.. Modification of soil structural and hydraulic properties after 50 years of imposed chaparral and pine vegetation, Geoderma, 2002, 110: 227-240.
    186. Johnson-Maynard J L., Umiker K J., Guy S O.. Earthworm dynamics and soil physical properties in the first three years of no-till management, Soil & Tillage Research, 2007, 94: 338-345.
    187. Jonas J L., Wilsona G W T., Whiteb P M, et al.. Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils, Soil Biology & Biochemistry, 2007, 39: 2594-2602.
    188. Joose N G.. The formation and biological significance of aggregations in the distribution of Collembola, Netherlands Journal of Zoology, 1970, 20(3): 299-314.
    189. Jordan A D., Miles R J., Hubbard V C., Lorenz T.. Effect of management practices and cropping systems on earthworm abundance and microbial activity in Sanborn Field: a 115-year-old agricultural field, Pedobiologia, 2004, 48: 99-110.
    190. Joschko M., Sochtig W., Larink O.. Functional relationship between earthworm burrows and soil watermovement in column experiments, Soil Biol. Biochem., 1992, 24: 1545-1547.
    191. Kaczmarek M.. Collembola. In Górny, M. and Grüm, L., (eds), Methods in Soil Zoology. London: Elsevier, 1993, pp. 247-253.
    192. Kanazawa S.. The no-tillage cropping system as the agriculture for sustaining and environmental preservation—crop yields and soil characteristics (in Japanese), Jpn. J. Soil Sci. Plant Nutr., 1995, 66: 286-297.
    193. Kanazawa S.. The no-tillage cropping system as the agriculture for sustaining and environmental preservation—crop yields and soil characteristics (in Japanese), Jpn. J. Soil Sci. Plant Nutr., 1995, 66: 286-297.
    194. Kandeler E., Kampichler C., Joergensen R G., M?lter K.. Effects of mesofauna in a spruce forest on soil microbial communities and N cycling in field mesocosms, Soil Biol. Biochem., 1999, 31: 1783-1792.
    195. Kautz T., López-Fando C., Ellmer F.. Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain, Applied Soil Ecology, 2006, 33: 278-285.
    196. Ke X., Scheu S.. Earthworms, Collembola and residue management change wheat (Triticum aestivum) and herbivore pest performance (Aphidina: Rhophalosiphum padi), Oecologia, 2008, 157: 603-617.
    197. Ketterings Q M., Blair J M., Marinissen J C Y.. Effects of earthworms on soil aggregate stability and carbon and nitrogen storage in a legume cover crop agroecosystem, Soil Biol. Biochem., 1997, 29: 401-408.
    198. Killham K.. Soil Ecology, London: Cambridge University Press, 1994, pp. 242.
    199. Kitur B K., Phillips S R., Olson K R., Ebelhar S A.. Tillage effects on selected chemical properties of Grantsburg silt loam, Communications in Soil Science and Plant Analysis, 1994, 25: 225-246.
    200. Kladivko E J., Mackay A D., Bradford J M.. Earthworms as a factor in the reduction of soil crusting, Soil Sci. Soc. Am. J., 1986, 50: 191-196.
    201. Kladivko E J., Timmenga H J.. Earthworms and agricultural management. In: Box, J.E., Hammond, L.C.?Eds.., Rhizosphere Dynamics, AAAS Selected Symposium, 1990, pp. 192-216.
    202. Kladivko E J.. Tillage systems and soil ecology, Soil Tillage Res., 2001, 61: 61-76.
    203. Knight D., Elliott P W., Anderson J M., Scholefield D.. The role of earthworms in managed, permanent pastures in Devon, Engl. Soil Biol. Biochem., 1992, 24: 1511-1517.
    204. Kromp B.. Carabid beetle communities (Carabidae, Coleoptera) in biologically and conventionally farmed agroecosystems, Agric. Ecosyst. Environ., 1989, 27: 241-251.
    205. Kubiena W L.. L’estigation meroscopique de l’humus. Zweltforstwiri, 1943, (10):387-410.
    206. Kuikman P J., Jansen A G., van Veen J A., Zehnder A J B.. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants, Biol. Fertil. Soils, 1990, 10: 22-28.
    207. Kurcheva G F.. The role of invertebrates in the decomposition of oak litter. Sov. Soil Sci., 1960, 4: 360-365.
    208. Laakso J., Set?l? H.. Sensitivity of primary production to changes in the architecture of belowground food webs, Oikos, 1999a, 87: 57-64.
    209. Laakso, J., Set?l?, H.. Population and ecosystemlevel consequences of predation on microbial-feeding nematodes, Oecologia, 1999b, 120: 279-286.
    210. Lal R.. Conservation tillage for sustainable agriculture: tropics versus temperate environments, Advance in Agronomy, 1989, 42: 85-197.
    211. Lal R., Mahboubi A A., Faussey N R.. Long-term tillage and rotation effects on properties of a Central Ohio soil, Soil Science Society of American Journal, 1994, 58: 517-522.
    212. Lamarca C C.. Stubble Over the Soil, American Society of Agronomy, MA, USA, 1996.
    213. Lang A.. Invertebrate epigeal predators in arable land: population densities, biomass, and predator-prey interactions in the field with special reference to ground beetles and wolf spiders. FAM-Bericht 23, Verlag Shaker, Aachen, 1998, pp. 1-36.
    214. Lap? J., ?milauer P.. Multivariate Analysis of Ecological Data Using CANOCO, United Kingdom: Cambridge University Press, 2003.
    215. Larink, O.. Springtails and Mites: Important knots in the food web of soils. In: Benckiser, G. (ed.) Fauna in Soil Ecosystems. Marcel Dekker, Inc., New York, 1997, pp. 225-264.
    216. Lartey R T., Curl E A., Peterson C M.. Interactions of mycophagous Collembola and biological control fungi in the suppression of Rhizoctonia solani, Soil Biol. Biochem., 1994, 26: 81-88.
    217. Lavelle P.. Earthworm activities and the soil system, Biol. Fertil. Soils, 1988, 6: 237-251.
    218. Lavelle P., Bignell D., Lepage M.,Wolters V., Rober P., Ineson P., Heal O.W., Dhillion, S.. Soil function in a changing world: the role of invertebrate ecosystem engineers, Eur. J. Soil Biol., 1997, 33: 159-193.
    219. Lavelle P., Spain A V.. Soil Ecology, Kluwer Academic Publishers, New York, 2001.
    220. Lee K E.. Earthworms their Ecology and Relationships with Soils and Land Use. Academic Press, Sydney, 1985.
    221. Lee K E., Foster R C.. Soil fauna and soil structure, Aust. J. Soil Res., 1991, 29: 745-775.
    222. Lee Q., Widden P.. Folsomia candida, a ?fungivorous“collembolan, feeds preferentially on nematodes rather than soil fungi, Soil Biology and Biochemistry, 1996, 28: 689-690.
    223. Lenz R., Eisenbeis G.. Short-term effects of different tillage in a sustainable farming system on nematode community structure, Biol. Fertil. Soils, 2000, 31: 237-244.
    224. Liang W., Li Q., Jiang Y., Neher D A.. Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea, Northeast China. Appl. Soil Ecol., 2005, 29: 185-192.
    225. Liiri M., Set?l? H., Haimi J., Pennanen T., Fritze H.. Influence of cognettia sphagnetorum (Enchytraeidae) on birch growth and microbial activity, composition and biomass in soil with or without wood ash, Biology and Fertility of soils, 2001, 34(3): 185-195.
    226. Liiri M., Set?l? H., Haimi J., Pennanen T., Fritze H.. Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance, Soil Biol. Biochem., 2002, 34: 1009-1020.
    227. Limousin G., Tessier D.. Effects of no-tillage on chemical gradients and topsoil acidification, Soil & Tillage Research, 2007, 92: 167-174.
    228. Lindberg N., Persson T.. Effects of long-term nutrient fertilization and irrigation on the microarthropod community in a boreal Norway spruce stand, Forest Ecology and Management, 2004, 188(1-3): 125-135.
    229. Liphadzi K B., Al-Khatib K., Bensch C N., Stahlman P W., Dille J A., Todd T., Rice C W., Horak M J., Head G.. Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system, Weed Sci., 2005, 53: 536-545.
    230. Lofs-Holmin A.. Influence of agricultural practices on earthworms (Lumbricidae), Acta Agriciculturae Scandinavica, 1983a, 33: 225-234.
    231. Lofs-Holmin A.. Earthworm population dynamics in different agricultural rotations. In: Satchell, J.E. (Ed.), Earthworm Ecology, Chapman & Hall, University Press, Cambridge, 1983b, pp. 151-160.
    232. Logsdon S D., Allmaras R R., Wu L., Swan J B., Randall G W.. Macroporosity and its relationship to saturated hydraulic conductivity under different tillage practices. Soil Science Society of American Journal, 1990, 54: 1096-1101.
    233. Logsdon S D., Linden D R.. Interactions of earthworms with soil physical conditions influencing plant growth, Soil Science, 1992, 154: 330-337.
    234. Logsdon S D., Karlen D L.. Bulk density as a soil quality indicator during conversion to no-tillage, Soil & Tillage Research, 2004, 78: 143-149.
    235. López-Fando C., Almendros G.. Interactive effects of tillage and crop rotations on yield and chemical properties of soils in semi-arid central Spain. Soil & Tillage Research, 1995, 36: 45-57.
    236. López-Fando C., Dorado J., Pardo M T.. Effects of Zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain, Soil & Tillage Research, 2007, 95: 266-276.
    237. Loring S J., Snider R J., Robertson L S.. The effects of three tillage practices on Collembola and Acarina populations, Pedobiologia, 1981, 22: 172-184.
    238. Lupwayi N Z., Rice W A., Clayton G W.. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation, Soil Biology & Biochemistry, 1998, 30: 1733-1741.
    239. Macfadyen A.. Control of humidity of three funnel type extractors for soil arthropods, In: Murphy, P. (ed.), Progress in soil zoology, Butterworths, 1962, pp. 158-168.
    240. MacFadyen A.. The contribution of the fauna to the total soil metabolism. In: Doeksen, J., van der Drift, J. (Eds.), Soil Organisms. North Holland Publishing Company, Amsterdam, 1963, pp. 3-17.
    241. Maefadyen A.. Improved funnel-type extractors for soil arthropods, Journal Animal Ecology, 1961, 30: 171-184.
    242. Maggenti A R.. Revision of the genus Plectus (Nematoda: Plectidae). Proceedings of the Helminthological Society of Washington, 1961, 28: 138-166.
    243. Magurran A E.. Ecological Diversity and Its Measurement, New Jersey: Princeton University Press, 1988.
    244. Maire N., Borcard D., LaczkóE., Matthey W.. Organic matter cycling in grassland soils of the Swiss Jura mountains: biodiversity and strategies of living communities, Soil Biology and Biochemistry, 1999, 31: 1281-1293.
    245. Maplestone P A., Campbell R.. Colonization of roots of wheat seedlings by bacilli proposed as biocontrol agents against take-all, Soil Biol. Biochem., 1989, 21: 543-550.
    246. Maraun M., Alphei J., Beste P., Bonkowski M., Buryn R., Migge S., Peter M., Schaefer M., Scheu S.. Indirect effects of carbon and nutrient amendments on the soil meso- and microfauna of a beechwood, Biol. Fertil. Soils, 2001, 34: 222-229.
    247. Martin A.. Short- and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas on soil organic matter, Biology and Fertility of Soils, 1991, 11: 234-238.
    248. Mclaughlin A., Miineau P.. The impact of agricultural practices on biodiversity, Agriculture. Ecosystems & Environment, 1995, 55: 201-212.
    249. McQuaid B F., Olson G L.. Soil quality indices of Piedmont sites under different management systems. In: Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A. (Eds.), Soil processes and the carbon cycle. CRC Press, Boca Raton, Florida, 1998, pp. 427–434.
    250. Mebes K H., Filser J.. Does the species composition of Collembola affect nitrogen turnover? Applied Soil Ecology, 1998, 9: 241-247.
    251. Mebes K H.. Collembolengemeinschaften in Agrar?kosystemen: Steuerung durch Umweltfaktoren und Einflu? auf den Stoffumsatz. FAM-Bericht 33, Verlag Shaker, Aachen, ISBN 3-8265-4896-5, 1999.
    252. Mijangos I., Pérez R., Albizu I., Garbisu C.. Effects of fertilization and tillage on soil biological parameters Enzyme and Microbial Technology, 2006, 40: 100-106.
    253. Mikola J., Set?l? H.. Relating species diversity to ecosystem functioning: mechanistic backgrounds and experimental approach with a decomposer food web, Oikos, 1998a, 83: 180-194.
    254. Mikola J., Set?l? H.. Productivity and trophiclevel biomasses in a microbial-based soil food web, Oikos, 1998b, 82: 158-168.
    255. Minton N A.. Impact of conservation tillage on nematode populations, J. Nematol., 1986, 18: 135-140.
    256. Miyazawa K, Tsuji H, Yamagata M, Nakano H, Nakamoto T.. The effect of cropping systems and fallow managements on microarthropod populations, Plant Production Science, 2002, 5: 257-265.
    257. Miyazawa K., Tsuji H., Yamagata M., et al.. Response of soybean, sugar beet and spring wheat to the combination of reduced tillage and fertilization practices, Plant Prod. Sci., 2004, 7: 77-87.
    258. Miura F., Nakamotoa T., Kanedab S., Okanob S., Nakajimab M., Murakamib T.. Dynamics of soil biota at different depths under two contrasting tillage practices, Soil Biology & Biochemistry, 2008, 40(2): 406-414.
    259. Moore J C., Walter D E., Hunt H W.. Arthropod regulation of micro- and meso-biota in below- ground detrital food webs, Annu. Rev. Entomol., 1988, 33: 419-439.
    260. Nakamura Y.. The effect of soil management on the soil faunal makeup of a cropped andosol in central Japan, Soil Till. Res., 1988, 12: 177-186.
    261. Nakamoto T., Tsukamoto M., Activity of soil organisms in fields of maize grown with a white clover living mulch, Agriculture, Ecosystems & Environment, 2006, 115: 34-42.
    262. Neher D A.. Biological diversity in soils of agricultural and natural ecosystems. In: Olson, R.K., Francis, C., Kaffka, S. (Eds.), Exploring the Role of Diversity in Sustainable Agriculture. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison,Wisconsin, USA, 1995, pp. 55–72.
    263. Neher D A.. Nematode communities as ecological indicators of agroecosystem health. In: Stephen, R.G. (Ed.), Agroecosystem Sustainability—Developing Practical Strategies. CRC Press, 2001, pp. 105-119.
    264. Neutel A M., Heesterbeek J A P., de Ruiter P C.. Stability in real food webs: weak links in long loops, Science, 2002, 296(10): 1120-1123.
    265. Nuutinen V.. Earthworm community response to tillage and residue management on different soil types in southern Finland, Soil & Tillage Research, 1992, 23: 221-239.
    266. Oades J M.. Soil organic matter and structural stability, mechanisms and implications for management, Plant and Soil, 1984, 76: 319-337.
    267. Okada H., Harada H., Kadota I.. Application of diversity indices and ecological indices to evaluate nematode community changes after soil fumigation, Jpn. J. Nematol., 2004, 34: 89-98.
    268. Okada H., Harada H.. Effects of tillage and fertilizer on nematode communities in a Japanese soybean field, Applied Soil Ecology, 2007, 35: 582-598.
    269. Oorts K., Nicolardot B., Merckx R., Richard G., Boizard H.. C and N mineralization of undisrupted and disrupted soil from different structural zones of conventional tillage and no-tillage systems in northern France, Soil Biology & Biochemistry, 2006, 38: 2576-2586.
    270. Paoletti M G.. The role of earthworms for assessment of sustainability and as bioindicators, Agric. Ecosyst. Environ., 1999, 74, 37-155.
    271. Parmelee R W., Alston D G.. Nematode trophic structure in conventional and no-tillage agroecosystems, J. Nematol., 1986, 18: 403-407.
    272. Patten B C., Witkamp M.. Systems analysis of 134cesium kinetics in terrestrial microcosms. Ecology, 1967, 48: 813-824.
    273. Pearse, A. S.. Observations on the microfauna of the Duke forest, Eeol. Monogr., 1946, (16):127-160.
    274. Persson T., Lohm U.. Energetical significance of the annelids and arthropods in a Swedish grassland soil, Ecological Bulletins (Stockholm), 1977, 23: 1-211.
    275. Persson T.. Death and replacement of fine roots in a mature Scots Pine stand, Ecological Bulletins, 1980, 32: 252-260.
    276. Persson T., B??th E., Clarholm M., Lundkvist H., S?derstr?m B., Sohlenius B.. Trophic structure, biomass dynamics and carbon metabolism in a Scots pine forest, Ecol. Bull. (Stockholm), 1980, 32: 419-459.
    277. Persson T.. Role of soil animals in C and N mineralization, Plant and Soil, 1989, 115: 241-245.
    278. Peters R D., Sturz A V., Carter M R., Sanderson J B.. Developing disease-suppressive soils through crop rotation and tillage management practices, Soil Till. Res., 2003, 72: 181-192.
    279. Petersen H., Luxton M.. A Comparative analysis of soil fauna populations and their role in decomposition processes, Oikos, 1982, 39: 287-388.
    280. Petersen H. Effects of non-inverting deep tillage vs. conventional ploughing on collembolan populations in an organic wheat field, European Journal of Soil Biology, 2002, 38: 177-180
    281. Pfiffner L., M?der P.. Effects of biodynamic, organic and conventional production systems onearthworm populations. Entomological research in organic agriculture. Selected papers from the European Workshop, Austrian Federal Ministry of Science and Research, Vienna, Austria, 14–16 March, 1995, Biological Agriculture and Horticulture, 1997, 15: 3-10.
    282. Phillipson J.. (Ed.), Methods of Study in Quantitative Soil Ecology, Blackwell, Oxford, 1971.
    283. Ponge J F., Gillet S., Dubs F.. Collembolan communities as bioindicators of land use intensification, Soil Biol.Biochem., 2003, 35: 813-826.
    284. Pulleman M M., Marinissen J C Y.. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil, Geoderma, 2004, 120: 273-282.
    285. Qiu J., Fu R S.. The effects of temperature and soil water content for the number of Orbatida and Collembola. Journal of Shandong Normal University (Natural Science), 2004, 19: 72-74.
    286. Reeleder R D.. Alterations of fungal communities in integrated management of plant disease. In: Carroll, G.C., Wicklow, D.T. (Eds.), The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker Inc., New York, 1992, pp. 869–884.
    287. Reeleder R D., Miller J J., Ball Coelho B R., Roy R C.. Impacts of tillage, cover crop, and nitrogen on populations of earthworms, microarthropods, and soil fungi in a cultivated fragile soil, Applied Soil Ecology, 2006, 33: 243-257.
    288. Regin R., Mayra G., John L.. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza, Soil Biol. Brioche., 2002, 34(7): 923-932.
    289. Reinecke A J.. The influence of acclimation and soil moisture on the temperature preference of Eisenia rosea (Lumbricidae). In: Vanek, J. (Ed.), Proc. 5th Intl Colloq. Soil Zool., Prague, 1975.
    290. Ritz K., Trugill D L.. Utility of nematode community analysis as an integrated measure of the functional state of soils: perspectives and challenges—discussion paper, Plant Soil, 1999, 212: 1-11.
    291. Renaud A., Poinsot-Balaguer N., Cortet J., Petit J Le.. Iufluence of four soil maintenance practices on Collembola communities in a Medierranean vineyard, Pedobiologia, 2004, 48: 623-630.
    292. Roldán A., Caravaca F., Hernández M T., et al.. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico), Soil & Tillage Research, 2003, 72: 65-73.
    293. Rooney N., McCann K., Gellner G., et al.. Structural asymmetry and the stability of diverse food webs, Nature, 2006, 442: 265-269.
    294. Roth C H., Joschko M.. A note on the reduction of runoff from crusted soils by earthworm burrows and artificial channels, Z. Pflanzenernaeh. Bodenkd., 1991, 154: 101-105.
    295. Sabatini M A., Rebecchi L., Cappi C., Bertolani R., Fratello B.. Long-term effects of three different continuous tillage practices on Collembola populations, Pedobiologia, 1997, 41: 185-193.
    296. Satchell J E.. Lumbricidae. In: Burges, A., Raw, F. (Eds.), Soil Biology. Academic Press, London, 1967, pp. 259-322.
    297. Schauermann J.. Zum Energieumsatz phytophager Insekten im Buchenwald. II Die produktionsbiologische Stellung der Rüsselk?fer (Curculionidae) mit rhizophagen Larvenstadien. Oecologia, 1973, 13: 313-350.
    298. Scheu S., Theenhaus A., Jones T H.. Links between the detrivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development, Oecologia, 1999, 199: 541-551.
    299. Schmitt D P., Norton D C.. Relationship of plant parasitic nematodes to sites in native Iowa prairies, Journal of Nematology, 1972, 4: 200-206.
    300. Scholte K., Lootsma M.. Effect of farmyard manure and green manure crops on populations of mycophagous soil fauna and Rhizoctonia stem canker of potato, Pedobiologia, 1998, 42: 223-231.
    301. Seastedt T R.. The role of microarthropods in decomposition and mineralisation processes, Annual Review of Entomolgy, 1984, 29: 25-46.
    302. Set?l? H., Huhta V.. Soil fauna increase Betula pendula growth: laboratory experiments with coniferous forest floor, Ecology, 1991, 72: 665-671.
    303. Set?l? H.. Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi, Ecology, 1995, 76: 1844-1851.
    304. Set?l? H., Rissanen J., Markkola A M.. Conditional outcomes in the relationship between pine and ectomycorrhizal fungi in relation to biotic and abiotic environment, Oikos, 1997, 80: 112-122.
    305. Set?l? H.. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza, Oecologia, 2000, 125: 109-118.
    306. Simons W R.. Nematode survival in relation to soil moisture, Medelingen van de Landbouwhogeschool te Wageningen, 1973, 73 (3): 1-85.
    307. Six J., Eliott E T., Paustian K., Doran J W.. Aggregation and soil organic matter accumulation in cultivated and native grassland soils, Soil Science Society of America Journal, 1999a, 62: 1367-1377.
    308. Six J., Paustian K., Elliott E T., Combrink C.. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregateassociated carbon, Soil Science Society of America Journal, 2000, 64: 681-689.
    309. Six J., Feller C., Denef K., Ogle S M., Sa J C M., Albrecht A.. Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage, Agronomie, 2002, 22: 755-775.
    310. Sohlenius B., Sandor A.. Vertical distribution of nematodes in arable soil under grass (Festuca pratensis) and barley (Hordeum distichum), Biology and Fertility of Soils, 1987, 3: 19-25.
    311. Spedding T A., Hamel C., Mehuys G R., Madramootoo C A.. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems, Soil Biology & Biochemistry, 2004, 36: 499-512.
    312. Standen V.. The influence of soil fauna on decomposition by micro-organisms in blanket bog litter. J. Anim. Ecol., 1978, 47: 25-38.
    313. Stinner, B.R., Crossley Jr., D.A.. Nematodes in no-tillage agroecosystems. In: Freckman, D.W. (Ed.), Nematodes in soil ecosystems. University of Texas Press, Austin, Texas, USA, 1982, pp. 14-28.
    314. Stinner B R., House G J.. Arthropods and other invertebrates in conservation-tillage agriculture, Annual Review of Entomology, 1990, 35: 299-318.
    315. Stockdill S M J.. The effect of earthworms on pastures, Proc. N. Z. Ecol. Soc., 1966, 13: 68-75.
    316. Stockdill S M J.. Effects of introduced earthworms on the productivity of New Zealand pastures,Pedobiologia, 1982, 24: 29-35.
    317. Sturz A V., Carter M R., Johnston H W.. A review of plant disease, pathogen interactions and micropbial antagonism under conservation tillage in temperate humid agriculture, Soil Till. Res., 1997, 41: 169-189.
    318. Stout J D., Heal O W.. Protozoa in Soil Biology (eds A. Burges and F. Raw), Academic Press, London, 1967, pp. 149-195.
    319. Teuben A.. Nutrient availability and interactions between soil arthropods and microorganisms during decomposition of coniferous litter: a mesocosm study, Biology and Fertility of Soils, 1991, 10: 256-266.
    320. Taylor L R., et al.. A variety of diversities. In Mound L A and Warloff N (eds ), Diversity of Insect Faunas; 9th Symposium of the Royal Entomological Society, Oxford : Blackwell, 1978, 1-18.
    321. Teuben A., Roelofsma T A P J.. Dynamic interactions between functional groups of soil arthropods and microorganisms during decomposition of coniferous litter in microcosm experiments, Biology and Fertility of Soils, 1990, 9: 145-151.
    322. Teuben A.. Nutrient availability and interactions between soil arthropods and microorganisms during decomposition of coniferous litter: a mesocosm study, Biol. Fertil. Soils, 1991, 10: 256-266.
    323. Tisdall J M., Oades J M.. Organic matter and water-stable aggregates in soils, Journal of Soil Science, 1982, 3: 141-161.
    324. Todd T C.. Effects of management practices on nematode community structure in tallgrass prairie, Appl. Soil Ecol., 1996, 3: 235-246.
    325. Topoliantz S., Ponge J F., Viaux P.. Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures, Plant and Soil, 2000, 225: 39-51.
    326. Unger P W., Stewart B A., Parr J F., Shingh R P.. Crop residue management and tillage methods for conserving soil and water in semi-arid regions. Soil & Tillage Research, 1991, 20, 219–240.
    327. Usher M B.. Population and community dynamics in the soil ecosystem. In: Fitter, A. H., Atkinson, D. (eds) Biological interactions in soil, Blackwell Scientific Publishers, Oxford, 1985, pp. 243-265.
    328. Vedder B., Kampichler C., Bachmann G., Bruckner A., Kandeler E.. Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil, Biol. Fertil. Soils, 1996, 22: 22-30.
    329. Verhoef H A., Nagelkenke C J.. Formation and ecological significance of aggregations in Collembola, An experimental study, Oecologia, 1977, 31: 215-216.
    330. Verhoef H A., de Goede R G M.. Effects of collembolan grazing on nitrogen dynamics in a coniferous forest. In: Fitter, A.H., Atkinson, D. (eds) Biological interactions in soil, Blackwell Scientific Publishers, Oxford, 1985, pp. 367-376.
    331. Verhoef H A., Brussaard L.. Decomposition and nitrogen mineralization in natural and agro-ecosystems: the contribution of soil animals, Biogeochemistry, 1990, 11: 175–211.
    332. Verschoor B C., de Goede R G M., de Vries F W., Brussaard L.. Changes in the composition of the plant-feeding nematode community in grasslands after cessation of fertiliser application, Applied Soil Ecology, 2001, 17: 1-17
    333. Villenave C., Ekschmitt K., Nazaret S., Bongers T.. Interactions between nematodes and microbial communities in a tropical soil following manipulation of the soil food web, Soil Biology & Biochemistry, 2004, 36: 2033-2043.
    334. Visser S.. Role of the soil invertebrates in determining the composition of soil microbial communities. In: Fitter, A. H., Atkinson, D. (eds) Biological interactions in soil, Blackwell Scientific Publishers, Oxford, 1985, pp. 297-317.
    335. Vita P De., Paolo E Di., Fecondo G., Fonzo N Di., Pisante M.. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy, Soil & Tillage Research, 2007, 92: 69-78.
    336. Vossbrink C R., Coleman D C., Woolley T A.. Abiotic and biotic factors in litter decomposition in a semiarid grassland, Ecology, 1979, 60: 265-271.
    337. Vreeken-Buijs M J., Geurs M., de Ruiter P C., Brussaard, L.. The effects of bacterivorous mites and amoebae on mineralization in a detrital based below-ground food web; microcosm experiment and simulation of interactions, Pedobiologia, 1997, 41: 481-493.
    338. Vreeken-Buijs M J., Hassink J., Brussaard L.. Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use, Soil Biology & Biochemistry, 1998, 30:97-106.
    339. Vyn T J., Raimbault B A.. Long-term effect of five tillage systems on corn response and soil structure, Agronomy Journal, 1993, 85: 1074-1079.
    340. Wallwork J A.. Ecology of Soil Animals, McGraw-Hill, New York, 1970.
    341. Wander M M., Bidart M G., Aref S. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils, Soil Science Society of America Journal, 1998, 62: 1704-1711.
    342. Wang K H., McSorley R., Gallaher R N.. Relationship of soil management history and nutrient status to nematode community structure, Nematropica, 2004, 34: 83-95.
    343. Wardle D A.. Impacts of disturbance on detritus food webs in agroecosystems of contrasting tillage and weed management practices, Advances in Ecological Research, 1995, 26:105-185.
    344. Wasilewska L. Impact of human activities on nematode communities in terrestrial ecosystems, in Ecology of Arable Land, Perspectives and Challenges (eds M. Clarholm and L. Bergstr?m), Kluwer Academic Publishers, Dordrecht, 1989, pp. 123-132.
    345. Werner D.. Ergebnisse r?ntgenmorphologischer Untersuchungen verdichteter und gelockerter Bodengefüge, Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 1993, 72: 281-284.
    346. Werner M R.. Soil quality characteristics during conversion to organic orchard management, Applied Soil Ecology, 1997, 5: 151-167.
    347. Willoughby G L., Kladivko E J., Savabi M R.. Seasonal variations in infiltration rate under no-till and conventional ?disk. tillage systems as affected by Lumbricus terrestris activity, Soil Biol. Biochem., 1997, 29: 481-484.
    348. Winsome T., McColl J G.. Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer Eisen (Megascolecidae), Soil Biol. Biochem., 1998, 30:1677-1687.
    349. Winter J P., Voroney R P., Ainsworth D A. Soil microarthropods in long-term no-tillage and conventional corn production, Canadian Journal of Soil Science, 1990, 70: 641-654.
    350. Witkamp M., Crossley Jr D A.. The role of microarthropods and microflora in breakdown of white oak litter, Pedobiologia, 1966, 6: 293-303.
    351. Yeates G W.. Soil nematodes in terrestrial ecosystems, J. Nematol., 1979, 11: 213-229.
    352. Yeates G W.. How plants affect nematodes, Adv. Ecol. Res., 1987, 17: 61-113.
    353. Yeates G.. Modification and qualification of the nematode maturity index, Pedobiologia, 1994, 38: 97-101.
    354. Yeates G W., Bird A F.. Some observations on the influence of agricultural practices on the nematode faunae of some South Australian soils, Fundamental and Applied Nematology, 1994, 17: 133-145.
    355. Yeates G W., Bongers T.. Nematode diversity in agroecosystems, Agric. Ecosyst. Environ., 1999, 74: 113-135.
    356. Yeates G.. Nematodes as soil indicators: functional and biodiversity aspects. Biol. Fertil. Soils, 2003, 37, 199-210.
    357. Young I M., Ritz K.. Tillage, habitat space and function of soil microbes. Soil Till. Res., 2000, 53: 201-213.
    358. Zamuner E C., Picone L I., Echeverria H E.. Comparison of phosphorus fertilization diagnostic methods for wheat under no-tillage, Soil & Tillage Research, 2006, 89: 70-77.
    359. Zhang Q., Zak J C.. Effects of gap size on litter decomposition and microbial activity in a subtropical forest, Ecology, 1995, 76: 2196-2204.
    360. Ziegler F., Zech W.. Formation of water-stable aggregates through the action of earthworms: Implications from laboratory experiments, Pedobiologia, 1992, 36: 91-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700